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New Mathematical approaches in Electrocardiography Imaging inverse problem

Keywords: 

Improve ECGI inverse problem reconstruction

Introduce new mathematical approches to the field of the ECGI inverse problem Compare the performance of the new mathematical approaches to the state-of-the-art methods, mainly the MFS method used in commercial devices.

In silico validation of the new approches.

Assessment of some simplification hypothesis: Torso inhomogeneity Propose some uncertainty quantification apronches to deal with measurements errors

Context and objectives

Optimal control approach

Mathematical model

In silico gold standard

Results

Torso Heterogeneity effect

Conclusions

Forward model

If we know the heart potential we can compute the electrical potential

Inverse problem

If we know the electrical potential and the current density at the outer boundary of the torso and we look for the electrical potential at the heart surface

Computational heart and torso anatomical models + electrodes position

Computational torso meshes: 250 nodes mesh (blue). More accurate FE mesh with 6400 nodes (green)

Remarks

Introducing the torso heterogeneity is natural with FEM. also anisotropy could be introduced

The error is more important in the left ventricle

Main results and perspectives

New mathematical approches for solving the inverse problem in electrocardiography imaging based on optimal control Over all the 20 cases used in this study the optimal control method performs better than the MFS both in terms of relative error and correlation coefficient:

T ru T • n T = 0, on ext .

(

) 2 
where T stands for the torso conductivity tensor and n T is the outward unit normal to the torso external boundary ext . The heart-torso interface ⌃ is supposed to be a perfect conductor. Then we have a continuity of current and potential between the extra-cellular myocardial region and the torso region.

( u e = u T , on ⌃, ( e + i )ru e • n T = T ru T • n T , on ext .

(3)

Other works [9], [10], [11] consider that the electrical current does not flow from the heart to the torso by assuming that the heart is isolated from torso. This approximation is appealing in terms of computational cost because it uncouples the Laplace equation ( 2) in the torso from the bidomain equations in the heart (1), which allows to reduce the size of the linear system to solve. It is even more appealing when the interest is only on the ECG computation, in that case the ECG solution could be an "off line" matrix vector multiplication after solving the bidomain equation, details about computing the transfer matrix could be found in [12]. Although this approach is very appealing in terms of computational cost, numerical evidence has shown that it can compromise the accuracy of the ECG signals (see e.g.

[11], [4], [13]). Thus, in order to accurately compute ECGs we consider the the state-of-the-art heart-torso full coupled electrophysiological problem (1)-( 3) representing the cardiac electrical activity from the cell to the human body surface.

III. INVERSE PROBLEM

The inverse problem in electrocadiography imaging (ECGI) is a technique that allows to construct the electrical potential on the heart surface ⌃ from data measured on the body surface ext . We assume that the electrical potential is governed by the diffusion equation in the torso as shown in the previous paragraph. For a given potential data T measured on the body surface ext , the goal is to find u e on ⌃ such that the potential data in the torso domain satisfies (5)

u N satisfies u N (x 0 ) = u D (x 0 ) and 8 > < > :

div( T ru N ( )) = 0, in ⌦ T ,

T ru N ( ).n = 0, on ext , u N ( ) = , on ⌃.

(6)

Let's define the cost function as follows

J( ) = 1 2 Z ⌦ T (ru D ( ) ru N ( )) 2 . ( 7 
)
This means that if J( ) = 0, we have ru D ( ) = ru N ( ) and then ru D ( ).n = ru N ( ).n on the boundary and in particular on ext . Therefore, since u D = u N = on ⌃ and by uniqueness of the Laplace solution, we obtain that u D ( ) = u N ( ) in all the domain ⌦ T . Which means that both of solutions u D ( ) and u N ( ), satisfy both Neumann and Dirichlet boundary conditions on ext at the same time.

We need to minimize the cost function J. Since we are able to calculate the gradient of the cost function, we can use a gradient descent method. For any test function , the gradient of J reads: For a given initial guess , we compute the incomplete boundary condition following this algorithm:

Algorithm 1 Algorithm for i = f irst time step to last time step do load the known boundary data u itions of the monodomain problem. The precise defons of g and I ion depend on the electrophysiological membrane ionic model. In the present work we make of one of the human myocyte model Beeler Reuter H stands for the heart domain which is in our case tria. In order to simulate the body surface potential rst need to compute the extracellular potential in the t. Supposing the the extracellular conductivity tensor i , where i is the intracellular conductivity tensor 2 R. The extracellular potential satisfies ( + 1) div( i ru e ) = div( i rv m ).

T (t i ) / ext compute u D ( ) compute u N ( ) compte r J( ) = (ru D ru N ).n while (k r J( ) k> tolerence) do ⇤ r J( ) compute u D ( ) compute u N ( ) compte r J( ) = (ru D ru N ).n end while save u T (t i ) /⌃ =
(2) can easily check that

u e = 1 (1 + ) (< v m > v m ) (3) 
solution of equation ( 2). Morover, it is the unique son satisfying

✓ Z ⌦ H u e ◆ = 0. , < v m >= 1 |⌦ H | Z ⌦ H v m is the mean value of v m in e.
In order to compute the body surface potential we to solve a Laplace equation on the torso with a Dirichoundary condition on the heart-torso interface [4].

8 > < > : div( T ru T ) = 0, in ⌦ T , T ru T .n = 0, on ext , u T = u e , on ⌃. (4) 
forward problem algorithm is: (a) compute the transbrane potential by solving equation ( 1), (b) compute xtracellular potential using the formula (3), (c) comthe torso potential by solving (4). As it was explained e introduction we build a synthetic data base of BSPs their correspondant EGMs. Each sample of BSPs and s corresponds to a stimulation location. We simulated art beats, each one corresponds to a given I stim . We finite element method in order to solve equations (1) (4), a space discretisation of the heart and torso dos is then needed. Since we are interested in targeting pic beats in the atria, we only consider the electrical activation in the atria. The finite element geometry of atria is given in Figure 2.1 (left). it was embedded in a torso geometry given in Figure 2.1 (right) [6].

2.2.

Inverse problem: a regression method

As explained in the previous paragraph, we have n samples of BSP and EGMs.

The sequence (BSP i , EGM i ) i=1...n 2 R p⇥m ⇥ R q⇥m is the data set of our metamodel. Here p (respectively, q) is the number of potential measurement locations on the body surface (respectively, on the heart surface), and m is the number of time steps. We denote by (x k ) k=1...p (respectively, (y k ) k=1...q ) the positions of the BSP measurements (respectively, positions of EGMs measurements) and (t l ) l=0...m 1 the times of the recordings. For the i th element of our data set we have, BSP i 2 R p⇥m , where BSP i (l ⇥ p + k) = u T (x k , t l ), for k = 1, ..., p and l = 0, ..., m 1, and EGM i 2 R q⇥m where, EGM i (l ⇥ q + k) = u e (y k , t l ), for k = 1, ..., q and l = 0, ..., m 1.

The main goal is to build a function f able to accurately map a BSP to an EGM. We use a kernel ridge regression method based on the gaussian kernel

K(x, y) = e |x y| 2 2 2 , 8x, y 2 R m⇥p . We look for f in a Reproducing Kernel Hilbert Space (RKHS) (H, h•, •i H ) characterized by the following prop- erty, 8f 2 H, 8x 2 R m⇥p , f(x) = hf (•), K(•, x)i H .
(5) where h•, •i H is the inner product in H. The use of the Gaussian kernel can be motivated by the following property (see [7]): given a compact subset K of R m⇥p , the set of the restriction to K of functions from H is dense in the set of continuous functions from K to R. In other word, tween the extra-cellular myocardial region and the torso gion.

MFS approach

( u e = u T , on ⌃,

( e + i )ru e • n T = T ru T • n T , on ⌃. ( 3 
)
ther works [9], [10], [11] consider that the electrical current es not flow from the heart to the torso by assuming at the heart is isolated from torso. This approximation appealing in terms of computational cost because it couples the Laplace equation (2) in the torso from the domain equations in the heart (1), which allows to reduce e size of the linear system to solve. It is even more pealing when the interest is only on the ECG computation, that case the ECG solution could be an "off line" matrix ctor multiplication after solving the bidomain equation, tails about computing the transfer matrix could be found [12]. Although this approach is very appealing in terms computational cost, numerical evidence has shown that it n compromise the accuracy of the ECG signals (see e.g. 1], [5], [13]). Thus, in order to accurately compute ECGs e consider the the state-of-the-art heart-torso full coupled ectrophysiological problem (1)-( 3) representing the cardiac ectrical activity from the cell to the human body surface.
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Inverse problem

The inverse problem in electrocadiography imaging CGI) is a technique that allows to construct the electrical tential on the heart surface ⌃ from data measured on the dy surface ext . We assume that the electrical potential is verned by the diffusion equation in the torso as shown the previous paragraph. For a given potential data T easured on the body surface ext , the goal is to find u e on such that the potential data in the torso domain satisfies (5)

8 > < > : div( T ru N ( )) = 0, in ⌦ T , T ru N ( ).n = 0, on ext , u N ( ) = , on ⌃. (6) 
Let's define the cost function as follows

J( ) = 1 2 Z ⌦ T (ru D ( ) ru N ( )) 2 . ( 7 
)
This means that if J( ) = 0, we have ru D ( ) = ru N ( ) in the whole domain ⌦ T and then ru D ( ).n = ru N ( ).n on the boundary and in particular on ext . Therefore, since u D = u N = on ⌃ and by uniqueness of the Laplace solution, we obtain that u D ( ) = u N ( ) in all the domain ⌦ T . Which means that both of solutions u D ( ) and u N ( ), satisfy both Neumann and Dirichlet boundary conditions on ext at the same time. This means that is the solution of the inverse problem.

Our goal is to minimize the cost function J. Since we are able to calculate the gradient of the cost function, we can use a gradient descent method. For any test function , the gradient of J reads:

hr J( ), i = ⌧ Z ⌦ T T (ru D ru N ) r T (ru D ru N ), = ⌧ Z ⌦ T T (ru D ru N ) r ( T ru D ), ⌧ Z ⌦ T T (ru D ru N ) r ( T ru N ), = ⌧ Z @⌦ T T (ru D ru N ).n u ⇤ D ( ) ⌧ Z @⌦ T (u D ( ) u N ( )) T ru ⇤ N ( ).n (8) where u ⇤ D ( ) is solution of the following problem 8 > < > : div( T ru ⇤ D ( )) = 0, in ⌦ T , u ⇤ D ( ) = 0, on ext , u ⇤ D ( ) = , on ⌃, (9) and u ⇤ N ( ) is solution of the following problem 8 > < > : div( T ru ⇤ N ( )) = 0, in ⌦ T , T ru ⇤ N ( ).n = 0, on ext , u ⇤ N ( ) = , on ⌃. (10) Since, u ⇤ D ( ) = 0, on ext , u D ( ) = u N ( ) = on ⌃ and T ru ⇤ N ( ).n = 0 on ext , we then obtain r J( ) = T (ru D ( ) ru N ( )).n /⌃ (11)
1) Iterative solver: We can solve the problem iteratively as in [] For a given initial guess , we compute the incomplete boundary condition following the algorithm 1.

In practice, putting = 0 out of the time loop reduces the number of iterations in the "for" loop. This could be explained by the fact that the solution at time t + t is closer to the solution at time t than it is to zero. (3)

8 > < > : div( T ru N ( )) = 0, in ⌦ T , T ru N ( ).n = 0, on ext , u N ( ) = , on ⌃. (6) 
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J( ) = 1 2 Z ⌦ T (ru D ( ) ru N ( )) 2 . ( 7 
)
This means that if J( ) = 0, we have ru 
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This means that if J( ) = 0, we have ru Our goal is to minimize the cost function J. Since we are able to calculate the gradient of the cost function, we can use a gradient descent method. For any test function , the gradient of J reads: (6)
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This means that if J( ) = 0, we have ru D ( ) = ru N ( ) in the whole domain ⌦ T and then ru D ( ).n = ru N ( ).n on the boundary and in particular on ext . Therefore, since u D = u N = on ⌃ and by uniqueness of the Laplace solution, we obtain that u D ( ) = u N ( ) in all the domain ⌦ T . Which means that both of solutions u D ( ) and u N ( ), satisfy both Neumann and Dirichlet boundary conditions on ext at the same time. This means that is the solution of the inverse problem.

Our goal is to minimize the cost function J. Since we are able to calculate the gradient of the cost function, we can use a gradient descent method. For any test function , the gradient of J reads:
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1) Iterative solver: We can solve the problem iteratively as in [] For a given initial guess , we compute the incomplete boundary condition following the algorithm 1.

In practice, putting = 0 out of the time loop reduces the number of iterations in the "for" loop. This could be explained by the fact that the solution at time t + t is closer NG AND Y. RUDY flating the heart surface by a factor of 0.8 relative to the geometrical center of the heart. The geometrical center of the heart can be found by computing the average coordinate value of all the heart surface nodes. For the torso surface, the fictitious boundary ˆ T is obtained by inflating the torso surface by a factor of 1.2 relative to the geometrical center of the heart.

Expressing Eqs. ( 2) and (3) in matrix form gives:

Â⃗ a = ⃗ b (4) where, Â = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 f (∥x 1 -y 1 ∥) • • • f (∥x 1 -y M ∥) . . . . . . • • • . . . 1 f (∥x N -y 1 ∥) . . . f (∥x N -y M ∥) 0 ∂ f (∥x 1 -y 1 ∥) ∂n • • • ∂ f (∥x 1 -y M ∥) ∂n . . . . . . • • • . . . 0 ∂ f (∥x N -y 1 ∥) ∂n • • • ∂ f (∥x N -y M ∥) ∂n ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , ⃗ a = ⎛ ⎜ ⎜ ⎜ ⎝ a 0 a 1 . . . a M ⎞ ⎟ ⎟ ⎟ ⎠ , ⃗ b = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ u T (x 1 ) . . . u T (x N ) 0 . . . 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Matrix  is of dimension 2N × (M + 1); ⃗ a and ⃗ b are vectors of dimensions M + 1 and 2N respectively. This matrix equation can not be solved for ⃗ a without regularizaiton, 76 because the matrix  is ill-conditioned and the measured body surface potential contains measurement error. The Tikhonov regularization method 76 with CRESO-determined regularization parameter 24 is used to stabilize the inverse procedure and obtain ⃗ a, similar to our previous ECGI inverse computations using mesh-based BEM. 15,16,32,33,47,56,61,62,65-71 Once the coefficient vector ⃗ a is obtained, u(x) can be computed at any location in the domain using:

u(x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ , y j ∈ ˆ (5)
The epicardial potential can then be calculated using:

u E (x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ E , y j ∈ ˆ (6)
Epicardial potentials are calculated using (6) on many epicardial nodes; numbers are provided for each dataset in the Results section. An epicardial potential map, reflecting the spatial distribution of potentials on the epicardial eart surface by a factor of 0.8 relative to the center of the heart. The geometrical center of be found by computing the average coordinate the heart surface nodes. For the torso surface, boundary ˆ T is obtained by inflating the torso factor of 1.2 relative to the geometrical center g Eqs. ( 2) and (3) in matrix form gives:

Â⃗ a = ⃗ b (4) 1 f (∥x 1 -y 1 ∥) • • • f (∥x 1 -y M ∥) . . . . . . • • • . . . 1 f (∥x N -y 1 ∥) . . . f (∥x N -y M ∥) 0 ∂ f (∥x 1 -y 1 ∥) ∂n • • • ∂ f (∥x 1 -y M ∥) ∂n . . . . . . • • • . . . 0 ∂ f (∥x N -y 1 ∥) ∂n • • • ∂ f (∥x N -y M ∥) ∂n ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , a 0 a 1 . . . a M ⎞ ⎟ ⎟ ⎟ ⎠ , ⃗ b = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ u T (x 1 ) . . . u T (x N ) 0 . . . 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
of dimension 2N × (M + 1); ⃗ a and ⃗ b are vecnsions M + 1 and 2N respectively. rix equation can not be solved for ⃗ a without n, 76 because the matrix  is ill-conditioned ured body surface potential contains measure-The Tikhonov regularization method 76 with rmined regularization parameter 24 is used to inverse procedure and obtain ⃗ a, similar to ECGI inverse computations using mesh-based 

ition : a 0 + M j=1 a j f (∥x k -y j ∥) = u T (x k ), 1 ≤ k ≤ N , x k ∈ T , y j ∈ ˆ (2) dition : M j=1 a j ∂ f (∥x k -y j ∥) ∂n = c T (x k ) = 0, 1 ≤ k ≤ N , x k ∈ T , y j ∈ ˆ (3) 1 4πr
is the fundamental solution of Laplace's , r = ∥x -y∥ is the 3D Euclidean distance x and point y, n is normal to the torso surconstant component of u T (x) and a j is the a virtual source at location y j . Note that a 0 ifferent units in this formulation. The cone volume is reflected in the coefficient a j ; it ar explicitly in the ECGI formulation when interest is homogenous. M is the number of s. N is the number of torso surface points. is f domain , and ˆ is the auxiliary boundary y domain ˆ , which contains the domain as 1. conditions are satisfied on N torso surface q.

(2) u T (x k ) is the measured body surface ctrode position x k . In Eq. ( 3), c T (x k ) = 0 beo is in air, an insulating medium that does urrent flow. The locations of the fictitious configured based on the particular domain ich in ECGI is a multi-connected surface sed of the body surface and heart surface ). Using a static configuration scheme (see e fictitious sources are placed on two aux-( ˆ = ˆ T ∪ ˆ E ) which are determined by tion of the true surfaces (torso surface and Figure 1 shows the configuration of the fictia 2D representation. The fictitious boundary to the heart surface ˆ E is obtained by de-flating the heart surface by a factor of 0.8 relative to the geometrical center of the heart. The geometrical center of the heart can be found by computing the average coordinate value of all the heart surface nodes. For the torso surface, the fictitious boundary ˆ T is obtained by inflating the torso surface by a factor of 1.2 relative to the geometrical center of the heart.
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u(x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ , y j ∈ ˆ (5)
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u E (x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ E , y j ∈ ˆ (6)
Epicardial potentials are calculated using (6) on many epicardial nodes; numbers are provided for each dataset in the Results section. An epicardial potential map, reflecting the spatial distribution of potentials on the epicardial Y. WANG AND Y. RUDY e auxiliary domain ˆ , which contains the as shown in Fig. 1). As the fundamental y Laplace's equation everywhere except at this representation satisfies Laplace's equaain . In addition, the specified boundary imposed at a set of boundary points (colloon the domain boundary . Since the funions do not have singularities at points on , standard quadrature rules can be used to e surface potential and its normal gradient on the boundary. 37 the Appendix (Eqs. (a21) and (a22)), MFS to discretize the Dirichlet and Neumann itions in Eq. (1) as:
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Expressing Eqs. ( 2) and (3) in matrix form gives: This matrix equation can not be solved for ⃗ a without regularizaiton, 76 because the matrix  is ill-conditioned and the measured body surface potential contains measurement error. The Tikhonov regularization method 76 with CRESO-determined regularization parameter 24 is used to stabilize the inverse procedure and obtain ⃗ a, similar to our previous ECGI inverse computations using mesh-based BEM. 15,16,32,33,47,56,61,62,65-71 Once the coefficient vector ⃗ a is obtained, u(x) can be computed at any location in the domain using:
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u(x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ , y j ∈ ˆ (5)
The epicardial potential can then be calculated using: 

u E (x) = a 0 + M j=1 a j f (∥x -y j ∥), x ∈ E ,

Experimental Methods and Protocols

MFS ECGI reconstructions were performed on data from four studies: (i) Single-site pacing in an isolated canine heart suspended in a human torso-shaped tank; data were obtained during pacing from a right ventricular (RV) anterior epicardial location; 62 (ii) RV endocardial pacing in a patient undergoing bi-ventricular pacing for cardiac resynchronization therapy (CRT); (iii) Simultaneous RV endocardial pacing and left ventricular (LV) epicardial pacing in a patient undergoing bi-ventricular pacing for CRT; (iv) Normal atrial activation in a healthy human subject. 65 

Isolated Canine Hearts Suspended in a Human

Torso-Shaped Tank 62

The performance of MFS in ECGI was evaluated using data from a human torso-shaped tank. 62 The setup consisted of an isolated canine heart suspended in a homogenous electrolytic medium in the correct anatomical position inside a tank molded in the shape of a ten-year old boy. The tank had 384 surface electrodes recording torso potentials and 242 rods with electrodes at their tips that formed an epicardial recording envelope around the heart. The complete sets of torso-surface potentials and epicardial potentials were obtained by recording over several beats. The directly measured epicardial potentials by the rod-tip electrodes served as a "gold standard" for MFS ECGI validation. The torsosurface potentials provided the input data for MFS ECGI noninvasive reconstruction of epicardial potentials, electrograms and isochrones, which were then evaluated by comparison with the directly measured "gold standard". Details were provided in previous ECGI publications. 15,61,62,70 To simulate focal arrhythmogenic activity, the heart was paced from an anterior epicardial location. The same datasets were used in BEM ECGI and reported in previous publications. 62 Here, these datasets are used to evaluate MFS ECGI and compare its performance to that of BEM ECGI. The pacing protocol also provided a measure of MFS ECGI spatial accuracy (its accuracy in locating the known pacing site). After pacing, a quasi-elliptical region of intense epicardial negativity forms around the pacing site. 61,62,70,74 Bi-Ventricular Pacing In Human Subjects 65 We also applied MFS ECGI to clinical data from patients with an implanted bi-ventricular pacing device. For the biventricular pacing data, MFS ECGI accuracy in locating the pacing sites was evaluated by comparison with the pacing electrodes' positions as determined from CT images. The reconstructed activation pattern was evaluated based on the known patterns of activation generated by pacing.

Data from two heart failure patients undergoing cardiac resynchronization pacing therapy 65 are presented. Subject 1 was paced from a right ventricular (RV) endocardial site, close to the RV apex. Subject 2 was paced simultaneously from an RV endocardial site and from a left ventricular (LV) epicardial site. Body surface potentials were recorded with a 224-channel mapping system using an electrode-vest as previously described. 65 Epicardial geometry and location of the torso electrodes were obtained from CT images of the thorax. The locations of the cardiac pacing leads were also determined from these CT images. 65 Normal Atrial Activation in a Healthy Human Subject 65 MFS ECGI was applied to reconstruct atrial activation in a healthy young adult. The same data were used in BEM ECGI and reported in a previous study. 65 The atrial activation pattern was reconstructed from recorded P-wave body surface potential maps with 224 channels, together with a subject-specific torso and atrial geometry obtained using CT. The directly measured normal atrial activation pattern in isolated human hearts (Durrer et al. 25 ), was used for qualitative evaluation of the MFS ECGI reconstruction.

Informed consent was obtained according to Institutional Review Board guidelines at University Hospitals of Cleveland, which approved all human studies protocols.

Evaluation Procedures

For the tank-torso protocols, measures in terms of relative error (RE) and correlation coefficients (CC) were computed with respect to the measured data to quantitatively evaluate the accuracy of ECGI; RE and CC were defined previously. 71 RE gives an estimate of the amplitude difference and CC gives an estimate of the similarity of potential patterns or electrogram morphologies between the measured and computed data: 

R E = L i=1 V C i -V M i 2 L i=1 V M i 2 CC = L i=1 V M i -V M V C i -V C L i=1 V M i -V M 2 L i=1 V C i -V C 2 For potential

Experimental Methods and Protocols

MFS ECGI reconstructions were performed on data from four studies: (i) Single-site pacing in an isolated canine heart suspended in a human torso-shaped tank; data were obtained during pacing from a right ventricular (RV) anterior epicardial location; 62 (ii) RV endocardial pacing in a patient undergoing bi-ventricular pacing for cardiac resynchronization therapy (CRT); (iii) Simultaneous RV endocardial pacing and left ventricular (LV) epicardial pacing in a patient undergoing bi-ventricular pacing for CRT; (iv) Normal atrial activation in a healthy human subject. 65 

Isolated Canine Hearts Suspended in a Human

Torso-Shaped Tank 62

The performance of MFS in ECGI was evaluated using data from a human torso-shaped tank. 62 The setup consisted of an isolated canine heart suspended in a homogenous electrolytic medium in the correct anatomical position inside a tank molded in the shape of a ten-year old boy. The tank had 384 surface electrodes recording torso potentials and 242 rods with electrodes at their tips that formed an epicardial recording envelope around the heart. The complete sets of torso-surface potentials and epicardial potentials were obtained by recording over several beats. The directly measured epicardial potentials by the rod-tip electrodes served as a "gold standard" for MFS ECGI validation. The torsosurface potentials provided the input data for MFS ECGI noninvasive reconstruction of epicardial potentials, electrograms and isochrones, which were then evaluated by comparison with the directly measured "gold standard". Details were provided in previous ECGI publications. 15,61,62,70 To simulate focal arrhythmogenic activity, the heart was paced from an anterior epicardial location. The same datasets were used in BEM ECGI and reported in previous publications. 62 Here, these datasets are used to evaluate MFS ECGI and compare its performance to that of BEM ECGI. The pacing protocol also provided a measure of MFS ECGI spatial accuracy (its accuracy in locating the known pacing site). After pacing, a quasi-elliptical region of intense epicardial negativity forms around the pacing site. 61,62,70,74 Bi-Ventricular Pacing In Human Subjects 65 We also applied MFS ECGI to clinical data from patients with an implanted bi-ventricular pacing device. For the biventricular pacing data, MFS ECGI accuracy in locating the pacing sites was evaluated by comparison with the pacing electrodes' positions as determined from CT images. The reconstructed activation pattern was evaluated based on the known patterns of activation generated by pacing.

Data from two heart failure patients undergoing cardiac resynchronization pacing therapy 65 are presented. Subject 1 was paced from a right ventricular (RV) endocardial site, close to the RV apex. Subject 2 was paced simultaneously from an RV endocardial site and from a left ventricular (LV) epicardial site. Body surface potentials were recorded with a 224-channel mapping system using an electrode-vest as previously described. 65 Epicardial geometry and location of the torso electrodes were obtained from CT images of the thorax. The locations of the cardiac pacing leads were also determined from these CT images. 65 Normal Atrial Activation in a Healthy Human Subject 65 MFS ECGI was applied to reconstruct atrial activation in a healthy young adult. The same data were used in BEM ECGI and reported in a previous study. 65 The atrial activation pattern was reconstructed from recorded P-wave body surface potential maps with 224 channels, together with a subject-specific torso and atrial geometry obtained using CT. The directly measured normal atrial activation pattern in isolated human hearts (Durrer et al. 25 ), was used for qualitative evaluation of the MFS ECGI reconstruction.

Informed consent was obtained according to Institutional Review Board guidelines at University Hospitals of Cleveland, which approved all human studies protocols.

Evaluation Procedures
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Note that if we consider a static geometry, operators S N , S D and S rhs are computed once for all, since they depend only on the mesh and the conductivities in the torso represented by T . Computing S N , S D and S rhs avoids solving a 3D finite element problem at each iteration and allows a real time solving of the inverse problem.

III. NUMERICAL RESULTS

We start by generating synthetic data using an ECG simulator based on the bidomain model. We generate BSPs for two heart cases, a healthy and a fibrillation conditions. The model parameters are the same in both cases they only differ by the stimulation protocols: In the first case, the heart is stimulated in the apex and the electrical wave propagates from apex to base. We refer to this simulation as a normal or healthy case. In the second case we apply a S1-S2 protocol, in order to produce a re-entry wave, we refer to this case as a fibrillation or re-entree case. These two cases will be considered as our gold standard data. Further informations about the forward problem modelling could be found in [6], [7]. For each time step, we extract BSPs, we add 5% of noise and we use it as the given data T . we then solve the inverse problem following the KMF method explained in the previous paragraph. In Fig. 3 (respectively, Fig. 4), we show snapshots of the electrical potential distribution in the body (including heart surface and torso volume), in these snapshots we compare the inverse solution to the gold standard normal (respectively, re-entree) case. The distribution of the reconstructed electrical potential is synchronized with the gold standard electrical potential distribution in both normal and re-entree cases. We remark that the wave front is well captured but in the inverse solution it is much more smoother than in the exact solution. As shown in previous study [8], the wave front in the normal case is much accurate than in the re-entree case. Hence we will focus our study on the re-entree case. In Fig. 5 (left) (respectively right), we show a comparison between the inverse and the exact solutions show the spatial distribution of the relative error in time computing the l 2 relative error in time at each point of t heart surface geometry. We see that the error is much high in the left ventricle where its maximum reaches 75% wh in the right ventricle surface it doesn't exceed 35%. In F Our results show that the heterogeneity in the torso has an impact on the accuracy of the solution both in terms of RE and CC.

We are working on other new approches for solving ECGI problem and also quantifying the effect of the torso conductivity uncertainties on the ECGI solution Inria Bordeaux Sud-Ouest, IHU-LIRYC, CHU-Bordeaux, Université de Bordeaux.

x 1 , . . . , x N : Torso points y 1 , . . . , y M : Heart points Discretization with Finite elements method.
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 1 Fig. 1. Two-dimensional geometrical description: heart domain ⌦ H , torso domain ⌦ T (extramyocardial regions), heart-torso interface ⌃ and torso external boundary ext .

  ru T ) = 0, in ⌦ T , T ru T .n = 0, and u T = T, on ext , u T =?, on ⌃.

  find u e , for a given boundary value distribution on ⌃, we propose to define u D ( ) and u N ( ) as follows, ru D ( )) = 0, in ⌦ T , u D ( ) = T, on ext , u D ( ) = , on ⌃.
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 2 Figure 2. Finite element computational domains: Atria geometry with the different locations of stimulus used to construct the training data set (lfet). Torso geometry with different BSP measurements locations (right).

  Two-dimensional geometrical description: heart domain ⌦ H , torso main ⌦ T (extramyocardial regions), heart-torso interface ⌃ and torso ternal boundary ext .

  ru T ) = 0, in ⌦ T , T ru T .n = 0, and u T = T, on ext , u T =?, on ⌃.

  to find u e , for a given boundary value distribution on ⌃, we propose to define u D ( ) and u N ( ) as follows, 8 > < > : div( T ru D ( )) = 0, in ⌦ T , u D ( ) = T, on ext , u D ( ) = , on ⌃.

  heart domain ⌦ H , torso gions), heart-torso interface ⌃ and torso myocardial region and the torso u e = u T , on ⌃,

  D ( ) = ru N ( ) in the whole domain ⌦ T and then ru D ( ).n = ru N ( ).n on the boundary and in particular on ext . Therefore, since u D = u N = on ⌃ and by uniqueness of the Laplace solution, we obtain that u D ( ) = u N ( ) in all the domain ⌦ T . Which means that both of solutions u D ( ) and u N ( ),

  D ( ) = ru N ( ) in the whole domain ⌦ T and then ru D ( ).n = ru N ( ).n on the boundary and in particular on ext . Therefore, since u D = u N = on ⌃ and by uniqueness of the Laplace solution, we obtain that u D ( ) = u N ( ) in all the domain ⌦ T . Which means that both of solutions u D ( ) and u N ( ), satisfy both Neumann and Dirichlet boundary conditions on ext at the same time. This means that is the solution of the inverse problem.

  ru N ( )) = 0, in ⌦ T , T ru N ( ).n = 0, on ext , u N ( ) = , on ⌃.
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  33,47,56,61,62,65-71coefficient vector ⃗ a is obtained, u(x) can be any location in the domain using:M a f (∥x -y ∥), x ∈ , y ∈ ˆ (5)Y. WANG AND Y. RUDY he auxiliary domain ˆ , which contains the as shown in Fig.1). As the fundamental fy Laplace's equation everywhere except at this representation satisfies Laplace's equamain . In addition, the specified boundary imposed at a set of boundary points (colloon the domain boundary . Since the funtions do not have singularities at points on , standard quadrature rules can be used to he surface potential and its normal gradient d on the boundary. 37 n the Appendix (Eqs. (a21) and (a22)), MFS d to discretize the Dirichlet and Neumann ditions in Eq. (1) as:

  1); ⃗ a and ⃗ b are vectors of dimensions M + 1 and 2N respectively.

  y j ∈ ˆ (6) Epicardial potentials are calculated using (6) on many epicardial nodes; numbers are provided for each dataset in the Results section. An epicardial potential map, reflecting the spatial distribution of potentials on the epicardial Solve the computed every millisecond during the cardiac cycle. The time series of reconstructed epicardial potential maps are then organized by location to provide temporal electrograms for any given point on the epicardium. A reconstructed epicardial electrogram provides the potential variation with time at a given point on the epicardium during the cardiac cycle. Epicardial isochrone maps (a map of the epicardial activation sequence) are computed by taking the time of maximum negative du E dt of the temporal electrogram ("intrinsic deflection") at a given location as the time of epicardial activation at that location.

  maps, L is the number of epicardial points at which potentials are measured and computed. V C i is Meshless Method for Inverse ECG 1275 surface, is computed every millisecond during the cardiac cycle. The time series of reconstructed epicardial potential maps are then organized by location to provide temporal electrograms for any given point on the epicardium. A reconstructed epicardial electrogram provides the potential variation with time at a given point on the epicardium during the cardiac cycle. Epicardial isochrone maps (a map of the epicardial activation sequence) are computed by taking the time of maximum negative du E dt of the temporal electrogram ("intrinsic deflection") at a given location as the time of epicardial activation at that location.

  maps, L is the number of epicardial points at which potentials are measured and computed.V C i isThe operator S rhs maps the BSP T to the residual part S rhs T , the solution of the following problem on ⌃ 8 ru) = 0, in ⌦ T , u = T, on ext , T ru.n = 0, on ⌃.
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 3 Fig. 3. Snapshots of the potential distribution in the normal case. Forward solution (left) and Inverse solution (right). The color bar scale is in mV.

Fig. 4 .

 4 Fig. 4. Snapshots of potential distribution for re-entry case. Forwa solution (left) and Inverse solution (right). The color bar scale is in mV

Fig. 6 .

 6 Fig. 6. Left (respectively, right): left (respectively, right) ventricle view the heart showing the l 2 relative error in time at each point of the geomet The color bar is dimensionless.

end for Cases metric MFS + CRESO O.C interpolated data O.C refined data Single and double stimulus (6 cases)

  

		RE	0.81±0.04	0.71±0.02	0.59±0.06
		CC	0.57±0.07	0.7±0.03	0.8±0.04
	Re-entry (VT)	RE	0.78±0.06	0.67±0.04	0.59±0.05
	(14 cases)	CC	0.6±0.08	0.73±0.04	0.83±0.04
		RE	0.79±0.06	0.69±0.04	0.59±0.05
	All 20 cases				
		CC	0.59±0.07	0.72±0.04	0.82±0.04

⌦ T ⌦ H ext ⌃

re 1. Two-dimensional geometrical description: heart ain ⌦ H , torso domain ⌦ T (extramyocardial regions), t-torso interface ⌃ and torso external boundary ext .
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