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Abstract. In life sciences, the experts generally use empirical knowledge
to recode variables, choose interactions and perform selection by classical
approach. The aim of this work is to perform automatic learning algo-
rithm for variables selection which can lead to know if experts can be
help in they decision or simply replaced by the machine and improve they
knowledge and results. The Lasso method can detect the optimal subset
of variables for estimation and prediction under some conditions. In this
paper, we propose a novel approach which uses automatically all vari-
ables available and all interactions. By a double cross-validation combine
with Lasso, we select a best subset of variables and with GLM through
a simple cross-validation perform predictions. The algorithm assures the
stability and the the consistency of estimators.

Keywords: Lasso, Cross-validation, Variables selection, Prediction.

1 Introduction

Malaria is endemic in developing countries, mainly in sub-Saharan Africa. It
is the main cause of mortality especially for children under five years of age
in Africa [13]. Generally, cohort studies take place in endemic areas for char-
acterizing the malaria risk. These cohorts studies are on newborn babies and
pregnant women. They are introduced to know about the immunity of newborn
face to malaria and the construction of this immunity. They also help to know
the determinants implicated in the appearance of first malaria infections on the
newborn. The distribution of the main vector of malaria (anopheles) and the
exposure to malaria risk are spatiotemporal and different at small scale (house
level) [2]. Generally the experts in medicine and epidemiology, use they empirical
knowledge on phenomenon in the process of data analysis. Some variables are
automatically recoded because in numeric form, they are not interpretable [2]
and interactions are chosen. Classical variables selection methods are wrapper
(forward, backward, stepwise, etc.), embedded, filter and ranking. All details on
theses methods are described in [7]. The goal of wrapper method is to select



subset of variables with a low prediction error. The wrapper algorithm is im-
proved by Structural wrapper to obtain a sequence of nested subset of feature
for optimality is developed in [1]. In practice, classical method of features selec-
tion are practically unfeasible in high dimension because the number of features
subsets given by (2P) where p is the number of features, increases. The Lasso
method proposed by Tibshirani [12] is a regularized estimation approach for re-
gression models that uses an Lj-norm and constrains the regression coefficients.
The Lasso method minimize the likelihood L(f5) or the log-likelihood I(8). The
results of this method is that all coefficients are shrunken toward zero and some
are set exactly to zero. Many studies [4], [6], [11], [14] have improved the orig-
inal Lasso method. The Generalized Linear Model (GLM) combined with the
Lasso, penalize the log-likelihood of the GLM and constrains the Li or Ly or
(L1+Ls)-norm of the regression coefficients to be inferior to some parameter
known as tuning or regularizing parameter [6], [14]. The usage of penalization
technique to select variables in generalized models is at embryonic stage. Most
of the algorithms implemented in our work are based on [9], [6], [14]. According
to the nature of the target variable, family of models used for feature selection,
estimation and prediction are generally linear models, generalized models, mixed
models, generalized mixed models, multilevel modeling [2]. It is also well known
that cross-validation may lead to overfitting[3] and one alternative solution is
precentile — cv [10]. The results will be compared to the results of those of the
reference method (B-GLM) which uses a backward procedure combine with a
GLM [2]

2 Methodology

2.1 Data collection and variables

The study area was conducted in Tori-Bossito a district of Republic of Bénin,
between July 2007 and July 2009. The study area (season, vegetation), the
methodology of mosquito collection and identfication, the environnement and
behavioral data are described in [2]. The dependent variable was the number
of Anopheles collected in a house over the three nights of each catch, and the
explanatory variables were the environmental factors, i.e. the mean rainfall be-
tween two catches (Rainfall), the number of rainy days in the ten days before the
catch (RainyDN10), the season during which the catch was carried out (Season),
the type of soil 100 meters around the house (Soil), the presence of construc-
tions within 100 meters of the house (Works), the presence of abandoned tools
within 100 meters of the house (Tools), the presence of a watercourse within 500
meters of the house (Watercourse), the type of vegetation 100 meters around
the house (NDVT), the type of roof (Roof), the number of windows (Windows),
the ownership of bed nets (Bed nets), the use of insect repellent and the number
of inhabitants in the house (Repellent), see more details in [2], the number of
rainy days during the three days of one survey (RainyDN). In the previous work
[2], a second type of variables are obtained by recoding the original explanatory
variables one based of the knowledge of experts in entomology and medicine.



The Original and recoded variables are described in tables (6,7).

Four type of combination of these variables have been used. The firs is only the
original variables, the second the original variables with village as fixed effect,
the third is recoded variables and the last is the recoded variables with village
as fixed effect.

2.2 Models

The algorithm implemented uses GLM-Lasso to detect the entire paths of the
variables, in order to detect all changes in the process of regularization. This
regularization consist on penalizing the likelihood of the GLMs by adding a
penalty term

PO =26 (1)
=1

with A > 0.
Then the log-likelihood penalized is :
lpen (B]Y) = larm (B]Y) +P(X) (2)
The penalty problem is reduce to :
B = Argmax [igLar(BY) + P(V)] (3)

The choice of the regularizing parameter lambda is done by minimizing a score
function. In practice, this equation doesn’t have exact numerical solution. It
can be used the combination of Laplace approximation, the Newton-Raphson
method or the Fisher scoring to solve it. This procedure is used at each learning
step.

One of the power of the Lasso is to shrink some coefficients toward to zero and
the other to exactly zero. When the regularizing parameter \ exceeds certain
threshold (A\qz), the intercept is the only non-zero coefficient [12]. For two
different values of the regularizing parameter A and )\ inferior to A, let S
and 3’ be the vectors of fixed coefficients respectively associated to A and X/,
B # ' [4,12]. Then let us define the function

Qi)\i’—>3i

Ai €10, Mnaz)s BZ is the vector of coefficients Bi = (B“,Big, ..,Bip), p is the
number of coefficients in the model. The parameter A is considered as discreet
then A; € {Ag, A1, ..., Amaz |- Because the lasso coefficients are biased, GLM is
used to debiased estimators and makes predictions. Under matrix shape, GLM
model is

glEY|B)] =XpB (4)

where (Y], 8) follow a Poisson distribution of parameter E(Y|3),
n is the number of observations, X the n x (p 4+ 1)-dimension matrix of co-
variables (environmental variables), 8 is a (p + 1)-vector of fixed parameters



including the intercept, Y is the vector of the target variable.
(Y|X =2) ~P(\); where \ =™ (5)

Then
e@B)?i o8
P((Y =y|X =2)) = W X e (6)

With Z; = (Y = y;|X = z), the likelihood on n observations can defined as

L(Zy,...,Zn) = H X e (7)

y; don’t depend on A then

L(Z1,...,Zy,) = C’steJrZyi(:cB) —e®®  where Cste = — Zlog((yi)!) (9)
=1

= =1

2.3 Leave One Level Out Double Cross-Validation (LOLO-DCV)

This algorithm is a double cross-validation with two levels. Its aim is to com-
pute a second cross-validation (CV2) for prediction at each step of learning of a
first cross-validation (CV1). The predictors obtained with (CV2) are consistent
for prediction on the test set for (CV1). This algorithm run like described in
Algorithm (2.1). LOLO-DCV uses a score of cross validation defined like:

Score(\;) = Deviance(X;) =2 X (L(saty — L(n)) (10)

Where L(4q44)is the log-likelihood of saturated model and L(y,) the log-likelihood
of the concerned model. For A = \,,,4, the model obtained is the null model which
contain only the intercept and L 44 = 0, the model which adjust perfectly data.
Then

Score(Amaz) = Deviance(NULL) = —2 x (L (11)

nlaﬂ:)

Score(N;) = =2 x (L))

(Cste + Zyl(zﬂ) - 6(956))] , keR
i=1

Score(A;) =2 [(e(w) - iy&xﬂ))] +K, KeR (12)
i=1

=-2




Algorithme 2.1 LOLO-DCV
1. The data are separated in N-folds
2. A each step of the first level
(a) The folds are regrouped in two part : E4 and Er, E4 : the learning set which
contained the observations of (N — 1)-folds,
FEr : the test set, contained the observations of the last fold.
(b) Hold-out Er
(¢) The second level of cross-validation
i. A full cross validation is compute on E4
ii. The two regularizing parameters ”lambda.min” and lambda.lse” are got
back.
iii. The coefficients of actives variables (variables with non-zero coefficient)
associated to these two parameters are debiased
iv. Prediction are performed using a glm model on Er
v. The presence P(X;) of each variable is determined
3. The step (2c) is repeated until predictions is performed for all observations.

To minimize the score is reduced to minimize the quantity (Z?Zl yi(zB) — e(w)).
In gaussian case, the score used is the mean cross-validation error, a vector of
length X [5]. Assume that :

B Score(X;)
B el )
then :
Deviance()\;) = (1 — R) x Score(Amaz) (14)

We know that L4 = 0 then « is a log-likelihood ratio between the concerned
model and the null model. The optimal value A\.min of X\ is the one minimize
the Score(.) function.

A.min = Arg H)l\in[Score()\i)] (15)
For all positive value of \;, the score exist and is finite. it shows that the score of

cross validation converge. The optimal value of A\g; is given by the minimization
of the function Score(.).

Xoj = Arg H)l\ivn[Score(/\i)] (16)

If A\oj = Aq then the parameter lambda.min is lambda.min = Ay [9], [8]. Let
Std(Score(.)) the estimate of standard error of Score(.). Suppose

Xox = Arg rr/l\ivn[Score()\i) + Std(Score()\;)] (17)

i

If Ao = A, then the parameter lambda.lse is defined as
lambda.lse = Ay, [9], [8].



2.4 Prediction power and quality criteria
During the computation of LOLO-DCV :

1. GLM-Lasso is used to trace the trajectories of variables, to detect the high
value of the regularizing parameters, and detect changes in the regularization
process,

2. a double cross validation is used to select the best subset of variables for
prediction based on the score,

3. a GLM is used by the best subset to predict via a simple cross validation.

At last step the prediction accuracy of the method is calculated as average
performance across hold-out predictions. For each observation Y;, the predicted
value is ;. We assume that the observed value Y;, 1 < i < nis really predict by
Y; if —0.5<Y; —Y; <0.5. The prediction accuracy P, is define by:

P,(Y;)=1 if —05<Y;-Y;<05
P,(Y;) =0 elsewhere.

This calculation gives the number of good predictions by each method and the
power of prediction. The main quality criteria is the prediction power of a model
and the other are the mean, the standard deviation, the quadratic risk of pre-
diction. For an any method we have :

R
Mean = — Z Y;, Deviance = Score(lambda.min), Std = vDeviance
n

i=1

I . 1 .
Absolute risk = — Z |Y —Y;|, Prediction Power = 100 x #{i, P,(Y;) =1,1<i <
n n

i=1

where #A denote the cardinality of A

2.5 Frequent variables

Let X = (X1,X2,...,Xp) the set of all variables include interactions. A each
step j of first level of LOLO-DCV, the Lasso provides the coefficients of all classes
of variables and based on this it can determine the presence or the absence of
each variable. For any A, let define the function ”Presence” of variable like:

Pi(X;) =1 if Bi(\)#0
P;(X;) =0 elsewhere.

where ;(\) is a vector of coefficients of X; in the model at the step j. For a
threshold s, 1 < s <100, the set of frequent variables is

Var_freq(A) = ¢ X;, ———



Notations:

Var freq lambda_min = Var_freq(lambda.min)

Var freq lambda_lse = Var_freq(lambda.1se)

LOLO DCV lambda_min denote LOLO-DCV using A = lambda.min
LOLO DCV lambda_lse denote LOLO-DCV using A = lambda.lse

2.6 interactions between variables

In general experts in epidemiology and medicine decide to choose some interac-
tions according to they knowledge and experience. To avoid this way of making,
LOLO-DCV generate automatically all interactions in the full set of explana-
tory variables used in model. This involves that the number of variables grows
exponentially and the classical method of variable selection will failed. LOLO-
DCYV automatically learn with all variables and all interactions and provides the
optimal set of variables for predictions.

3 Results

3.1 Summary of results on prediction accuracy and quality criteria

Table 1. Summary of B-GLM prediction

Method Mean Deviance Std Absolute risk Prediction Power (%)

B-GLM 3.75 62.29 7.89 3.88 73.53

Table 2. Summary of original variables

Method Mean Deviance Std Absolute risk Prediction Power (%)
LOLO DCV lambda_min 3.75 72.04 8.49 4.48 78.76
LOLO DCV lambda_lse 3.75 72.04 8.49 4.48 78.76
Var freq lambda_min 3.75 68.05 8.25 3.96 74.84

Var freq lambda_lse 3.74 59.28 7.70 3.81 75.98




Table 3. Summary of original variables with village as fixed effect

Method Mean Deviance Std Absolute risk Prediction Power (%)
LOLO DCV lambda_min 3.75 72.04 8.49 4.48 78.76
LOLO DCV lambda_l1se 3.75 72.04 8.49 4.48 78.76
Var freq lambda_min 3.73 55.70 7.46 3.50 75.00
Var freq lambda_lse 3.74 57.33 7.57 3.63 76.80

Table 4. Summary of recoded variables

Method Mean Deviance Std Absolute risk Prediction Power (%)
LOLO DCV lambda_min 3.75 72.04 8.49 4.48 78.76
LOLO DCV lambda_1se 3.75 72.04 8.49 4.48 78.76
Var freq lambda_min 3.75 59.21 7.69 3.84 75.82
Var freq lambda_lse 3.74 59.97 7.74 3.81 73.86

Table 5. Summary of recoded variables with village as fixed effect

Method Mean Deviance Std Absolute risk Prediction Power (%)
LOLO DCV lambda_min 3.75 72.04 8.49 4.48 78.76
LOLO DCV lambda_lse 3.75 72.04 8.49 4.48 78.76
Var freq lambda_min 3.73 60.11 7.75 3.87 76.31

Var freq lambda_lse 3.75 59.21 7.69 3.84 75.82
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3.2 Quality of estimators and optimal subset variables of prediction

Quality of estimators Recoded variables

The best subset of variables selected by each method is:

1. B-GLM prediction:
Season (season), the number of rainy days during the three days of one sur-
vey (RainyDN), mean rainfall between 2 survey (Rainfall), number of rainy
days in the 10 days before the survey (RainyDN102), the use of repellent
(Repellent), The index of vegetation (NDVI) the interaction between season
and NDVT (season:NDVI) [2].
2. LOLO-DCV
(a) Original variables:
Season and interaction between mean rainfall between 2 survey (sea-
son) and the number of rainy days during the three days of one survey
(Rainfall:RainyDN).
(b) Original variables with village as fixed effect:
Season (season) and interaction between number of rainy days in the 10
days before the survey and village (RainyDN10:village).
(c) Recoded variables:
Season (season) and mean rainfall between 2 survey (RainyDN10).
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(d) Recoded variables with village as fixed effect:
Season (season) and interaction between the number of rainy days dur-

ing the three days of one survey and presence of work around the site
(RainyDN:Works).

LOLO-DCV _lambda_min and LOLO-DCV lambda_lIse achieves exactly the same
performance in prediction: Mean, quadratic risk, absolute risk, and prediction
power (Table. 2, 3, 4, 5). The mean of predictions of the both methods is ap-
proximatively the same with the mean of observations (3.74) which is achieved
exactly with frequent variables obtained by lambda_1se selection.

LOLO-DCV shows the Influence of interactions on the target variables. The
variability of the score in prediction at village level (high in one the village (Do-
hinonko)) detect some problems in the data at this village. It is confirmed by
the experts. The (Fig. 1, 2, 3, 4) shows two class of variables, the most frequent
and the least frequent. The best Prediction power is with LOLO DCV (78.76)
and the one with frequent variable is of LOLO-DCV lambda.lse (76.80), this
method also has the same mean in prediction with observations. The number
of variables and all interactions is p = 136, the classical methods will compute
N = 2136 different model before selecting the best subset. Combined with double
cross-validation, calculation will be unrealizable because of complexity of algo-
rithm. The strength of LOLO-DCV is the usage of lasso and the two level cross
validation. In a relative short time LOLO-DCYV detect all feature selected by the
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B-GLM and some interpretable interactions among them. The (Tables. 1, 2, 3,
4, 5) show that LOLO-DCYV is relatively the best in prediction (mean, absolute
risk, deviance) and the best with the prediction power. The distribution of the
prediction error according to the classes of anopheles shows a high variability for
B-GLM and low for the LOLO-DCV. The optimal subset of feature obtained by
LOLO-DCYV algorithm is approximatively the same at each step. This prove it’s
stability. In final the best subset of variables for prediction is variables selected
in Original variables with village as fixed effect (2b)

4 Conclusion

Lasso method combined with a GLM uses L1 or Ly penalization on likelihood to
estimate predictors. The usage of Lasso, GLM and cross-validation for features
selection is an active area of research in features and variables selection. In this
work we propose LOLO-DCV method applied to a real data. The computation
time is strongly reduced with the parallelization of the cross-validation loop. The
usage of levels for building the folds in cross-validation is important because a
random sampling will use all characteristics of all levels and the predictions will
be wrong. The experts can easily be helped by the machine in they decision.
These results encourage a best exploring of this approach for features selection.
Adding random effects at some levels to improve our method is part of our



future work possibly by combining the adaptative, group and sparse form of
lasso procedure.

Annex

Description of originales variables

Table 6. Originale variables.

Variables Nature Number of modalities Modalities
Repellent Nominal 2 Yes/ No
Bed-net Nominal 2 Yes/ No
Type of roof Nominal 2 Tole/ Paille
Ustensils Nominal 2 Yes/ No
Presence of constructions Nominal 2 Yes/ No
Type of soil Nominal 2 Humid/ Dry
Water course Nominal 2 Yes/ No
Majority Class Nominal 3 1/4/7
Season Nominal 4 1/2/3/4
Village Nominal 9

House Nominal 41

Rainy days before mission Numeric Discrete 0/2/---/9
Rainy days during mission Numeric Discrete 0/1/---/3
Fragmentation Index Numeric Discrete 26/--- /71
Openings Numeric Discrete 1/---/5
Number of inhabitants Numeric Discrete 1/---/8
Mean rainfall Numeric Continue 0/---/82
Vegetation Numeric Continue 115.2/---/ 159.5
Total Mosquitoes Numeric Discrete 0/---/481
Total Anopheles Numeric Discrete 0/---/87

Anopheles infected Numeric Discrete 0/---/9




Description of recoded variables

Table 7. Recoded variables. Variables with star are recoded.

Variables Nature Number of modalities Modalities
Repellent Nominal 2 Yes/ No
Bed-net Nominal 2 Yes/ No
Type of roof Nominal 2 Tole/ Paille
Utensils Nominal 2 Yes/ No
Presence of constructions  Nominal 2 Yes/ No
Type of soil Nominal 2 Humid/ Dry
Water course Nominal 2 Yes/ No
Majority class * Nominal 3 1/2/3
Season Nominal 4 1/2/3/4
Village* Nominal 9

House * Nominal 41

Rainy days before mission * Nominal 3 Quartile
Rainy days during mission Numeric Discrete 0/1/---/3
Fragmentation index * Nominal 4 Quartile
Openings™ Nominal 4 Quartile
Nber of inhabitants * Nominal 3 Quartile
Mean rainfall * Nominal 4 Quartile
Vegetation™ Nominal 4 Quartile
Total Mosquitoes Numeric Discrete 0/---/481
Total Anopheles Numeric Discrete 0/---/87
Anopheles infected Numeric Discrete 0/---/9
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