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Abstract. Electrocardiography imaging (ECGI) is a new non invasive technol-
ogy used for heart diagnosis. It allows to construct the electrical potential on the
heart surface only from measurement on the body surface and some geometrical
informations of the torso. The purpose of this work is twofold: First, we propose a
new formulation to calculate the distribution of the electric potential on the heart,
from measurements on the torso surface. Second, we study the influence of the
errors and uncertainties on the conductivity parameters, on the ECGI solution.
We use an optimal control formulation for the mathematical formulation of the
problem with a stochastic diffusion equation as a constraint. The descretization
is done using stochastic Galerkin method allowing to separate random and de-
terministic variables. The optimal control problem is solved using a conjugate
gradient method where the gradient of the cost function is computed with an ad-
joint technique . The efficiency of this approach to solve the inverse problem and
the usability to quantify the effect of conductivity uncertainties in the torso are
demonstrated through a number of numerical simulations on a 2D geometrical
model. Our results show that adding ±50% uncertainties in the fat conductivity
does not alter the inverse solution, whereas adding ±50% uncertainties in the
lung conductivity affects the reconstructed heart potential by almost 50%.

1 Introduction

The ECGI procedure helps medical doctors to target some triggers of cardiac arrhythmia
and consequently plan a much more accurate surgical interventions [1]. The mathemat-
ical problem behind the ECGI solution is known to be ill posed [2]. Therefore, many
regularization techniques have been used in order to solve the problem [3–7]. Thus, the
obtained solution depends on the regularization method and parameters [8]. Further-
more, the inverse solution does not depend only on the regularization method but also
to the physical parameters and the geometry of the patient. These dependencies have
not been taken into account in most (if not all) of the studies. In particular, in most of
the studies in the literature the torso is supposed to be a homogenous. Moreover, when
the conductive heterogeneities are considered, they are fixed according to data obtained
from textbooks. The problem is that these data are different from a paper to another
[9–11]. Their variability is mainly due to the difference between the experiment envi-
ronments and other factors related to the measurement tools. Only few works have been
performed in order to study the effect of conductivities uncertainty in the propagation



of the electrical potential in the torso [12–14]. In [13], authors use the stochastic finite
elements method (SFEM) to evaluate the effect of lungs muscles and fat conductivi-
ties on the forward problem. In [14], authors used a principal component approach to
predict the effect of conductivities variation on the body surface potential.

However, to the best of our knowledge, no work in the literature has treated the
influence of conductivity uncertainties of the ECGI inverse solution. In this work, we
propose to use an optimal control approach to solve the inverse problem and to compute
the potential value on the heart, we use an energy functional [15]. with SPDE constraints
as proposed in [13]. We are interested in assessing the effect of the variability of tissue
conductivity on the solution of the ECGI problem. The resolution of optimal control
will be made using an iterative procedure based on the conjugate gradient method and
the numerical approximation will be performed using the SFEM.

2 Methods

2.1 Solving stochastic forward problem of electrocardiography

Following [13], we represent the stochastic characteristics of the forward solution of the
Laplace equation by the generalized chaos polynomial. For the space domain we use
simplified analytical 2D model representing a cross-section of the torso (see Figure 1) in
which the conductivities vary stochastically. Let us first denote by D the spatial domain
and Ω the probability space. By supposing that the conductivity parameter depends on
the space and on the stochastic variable σ(x, ξ), the solution of the Laplace equation
does also depend on space and the stochastic variable u(x, ξ)). The stochastic forward
problem of electrocardiography can be written as follows:

5.(σ(x, ξ)5 u(x, ξ)) = 0 in D ×Ω,
u(x, ξ) = u0 on Γint ×Ω,
σ(x, ξ)∂u(x,ξ)∂n = 0 on Γext ×Ω,

(1)

where, Γint and Γext are the epicardial and torso boundaries respectively, ξ ∈ Ω is the
stochastic variable (it could also be a vector) and u0 is the potential at the epicardial
boundary.

2.2 Numerical descretization of the stochastic forward problem

We use the stochastic Galerkin (SG) method in order to solve equation (1). A stochas-
tic process X(ξ) of a parameter or a variable X is represented by weighted sum of
orthogonal polynomials known as probability density functions PDFs {Ψi(ξ)}. More
details about the different choices of PDFs could be found in [16]. In our case we use
the Legendre polynomials which are more suitable for uniform probability density .

X(ξ) =
∑p
i=0 X̂iΨi(ξ)

where X̂i are the projections of the random process on the stochastic basis {Ψi(ξ)}pi=1.
The mean value and the standard deviation of X over Ω are then computed as follows

E(X) =

∫
Ω

p∑
i=0

X̂iΨi(ξ) = X̂0, stdev[X] =
( p∑
i=1

X̂2
i

∫
Ω

Ψi(ξ)
2
) 1

2



Since in our study we would like to evaluate the effect of the conductivity random-
ness of the different torso organs on the electrical potential. Both of σ and u are now
expressed in the Galerkin space as follows:

σ(x, ξ) =

p∑
i=0

σ̂i(x)Ψi(ξ), u(x, ξ) =

p∑
j=0

ûj(x)Ψi(ξ)

By substituting (2),(3) into the elliptic equation (1) and by projecting the result on
the polynomial basis {Ψk(ξ)}pk=1 we obtain the following system: For k = 0, ..., p :

p∑
i=0

p∑
j=0

Tijk∇.(σ̂i(x)∇)ûj(x)) =0 in D,

û0(x) =u0(x) on Γint,

ûj(x) =0 on Γint ∀j = 1, ...p,

σ̂i(x)
∂ûj(x)

∂n
=0 on Γext ∀ i, j = 0, ...p,

(2)

where Tijk = E[Ψi(ξ), Ψj(ξ), Ψk(ξ)]. By applying the standard finite elements varia-
tional formlation and Galerkin projections we obtain a linear system of size (p× dof),
where dof is the number of the degrees of freedom for the Laplace equation in the
deterministic framework.

Fig. 1: 2D computational mesh of the torso geometry showing the different regions of
the torso considered in this study (fat, muscle, lungs, torso cavity).

2.3 Stochastic inverse problem problem

In this section we propose to build an optimal control problem taking into account the
variability of the tissue conductivities in the torso. Let us first propose a gold standard
solution representing the true electrical potential in the torso. Supposing that the true
conductivity distribution in the torso is σT , at a given time the true electrical potential
in the torso uT is governed by the Laplace equation, it depends on the extracellular
potential at the epicardium uex as follows:

5.
(
σT 5 uT

)
= 0 in D,

uT = uex on Γint,

σT
∂uT

∂n = 0 on Γext.
(3)



From the deterministic forward problem solution uT , we extract the electrical potential
at the external boundary and we denote it by f = uT /Γext . For the inverse problem for-
mulation, we write a cost function that takes into account the uncertainties in the torso
conductivities. We then use an energy cost function as used in [17, 15] constrained by
the stochastic conductivity Laplace formulation as presented in the previous paragraph.
We look for the current density and the value of the potential on the epicardial boundary
(η, τ) ∈ L− 1

2 (Γint)× L
1
2 (Γint) minimizing the following cost function

J(η, τ) = 1
2E
(
‖v(x, ξ)− f‖2L2(Γext)

+ 1
2

∥∥∥σ(x, ξ)∂u(x,ξ)∂n − η
∥∥∥2
L2(Γint)

)
with v(x, ξ) solution of :
5.(σ(x, ξ)5 v(x, ξ)) = 0 in D ×Ω,
v(x, ξ) = τ on Γint ×Ω,
σ(x, ξ)∂v(x,ξ)∂n = 0 on Γext ×Ω.

(4)

In order to solve this minimization problem, we use a conjugate gradient method as
used in [15] where the components of the gradient of the cost function are computed
using an adjoint method. The gradient of the functional J is given by:

< ∂J(η,τ)
∂η .φ >= −E[

∫
Γint

(σ ∂v∂n − η)φdΓint] ∀φ ∈ L2(Γint),

< ∂J(η,τ)
∂τ .h >= E[

∫
Γint
σ ∂λ∂nhdΓint] ∀h ∈ L2(Γint),

with λ solution of :
∇.(σ(x, ξ)∇λ(x, ξ)) = 0 on D ×Ω,
λ(x, ξ) = σ(x, ξ)∂v(x,ξ)∂n − η on Γint ×Ω,
σ(x, ξ)∂λ(x,ξ)∂n = −(v − f) on Γext ×Ω.

(5)

2.4 The conjugate gradient algorithm.

The stochastic Cauchy problem has been reformulated as a minimization one in the
previous section. For the numerical solution, we use a conjugate gradient optimization
procedure. The algorithm is then as follows,
Step 1. Given f ∈ L2(Γext), choose an arbitrary initial guess

(ϕp, tp) ∈ L2(Γint)× L2(Γint)

Step 1.1. Solve the well-posed stochastic forward problem :
∇.(σ(x, ξ)∇vp(x, ξ)) = 0 in D ×Ω,
σ(x, ξ)∂v

p(x,ξ)
∂n = 0 on Γext ×Ω,

vp(x, ξ) = tp on Γint ×Ω.
(6)

Step 1.2. Solve the stochastic adjoint problem:
∇.(σ(x, ξ)∇λp(x, ξ)) = 0 in D ×Ω,
λp(x, ξ) = σ(x, ξ)∂v(x,ξ)∂n − ϕp on Γint ×Ω,
σ(x, ξ)∂λ

p(x,ξ)
∂n = −(v(x, ξ)− f) on Γext ×Ω.

(7)

step 1.3. : We evaluate the gradient of the cost function:

∇J(ϕp, tp) =
(
E
[
ϕp − σ(x, ξ)∂v

p(x, ξ)

∂n

]
, E
[
σ(x, ξ)

∂λp(x, ξ)

∂n

])
(8)



Step 1.4. Determine the descent direction dp as follows::{
γp−1 =

‖∇J(ϕp,tp)‖2

‖∇J(ϕp−1,tp−1)‖2

dp := (dp1, d
p
2) = −∇J(ϕp, tp) + γp−1dp−1

(9)

We compute: (ϕp+1, tp+1) = (ϕp, tp) + αpdp
where the scalar αp is obtained through a linear search by :

αp = −
E[
∫
Γext

zp(vp − f)dΓext] + E[
∫
Γint

(σ ∂z
p

∂n − d
p
1)(σ

∂vp

∂n − ϕp)dΓint]

E[
∫
Γext

(zp)2dΓext] + E[
∫
Γint

(σ ∂z
p

∂n − d
p
1)

2dΓint]
(10)

where zp is the solution of the following stochastic problem:
∇.(σ(x, ξ)∇zp(x, ξ)) = 0 in D ×Ω
zp(x, ξ) = dp2 on Γint ×Ω
σ(x, ξ)∂z

p(x,ξ)
∂n = 0 on Γext ×Ω

(11)

Step 2. Having obtained (ϕp, tp) for p ≥ 0, set p = p + 1 and repeat from step 1.1
until the prescribed stopping criterion is satisfied. As a stopping criterion we choose
‖E[vp(x, ξ)]− f‖L2(Γext)

≤ ε or ‖ ∇J(ϕp, tp) ‖≤ ε. In practice, we take ε = 0.001.

3 Results

In this section we present the numerical results of the stochastic inverse problem. In
order to assess the effect of the conductivity uncertainties of each of lungs and fat con-
ductivities on the reconstructed electrical potential on the heart boundary, we start by
generating our ground truth solution by solving the equation (3). For the sake of sim-
plicity we take a harmonic function on the heart boundary: where the exact extracellular
potential uex(x, y) = exp(x) sin(y).

Since we assume that the uncertainty of the conductivity value follows a uniform
probability density, as probability density functions {Ψi} we use the Legendre polyno-
mials defined on the interval Ω = [−1, 1]. We also suppose that the true conductivity
uncertainty interval is centered by σT , the true conductivity. We propose to study three
cases. In the first case we suppose that there is no uncertainties. In the second (re-
spectively, third) case we suppose that all the conductivities values are known but the
conductivity of fat (respectively, lungs) where we gradually increase the uncertainty
from zero to ±50% of the true conductivity value σT . We solve the stochastic inverse
problem following the algorithm described in the previous section. We measure the ef-
fect of the uncertainties using relative error (RE) and the correlation coefficient (CC).
In table1, we show the performance of the stochastic method. We used different level
of uncertainties: 0%, ±3%, ±10%, ±20%, ±30% and ±50%. We find that the relative
error of the inverse solution has been barely affected by the uncertainties of the fat con-
ductivity even for high uncertainty levels. In fact the RE (respectively, CC ) is 0.1245
(respectively, 0.993) when there is no uncertainties and for ±50% of uncertainties the
RE (respectively, CC) is 0.1276 (respectively, 0.991). On the contrary the effect of the
lung conductivity uncertainties is high: The RE increases from 0.1245 when we don’t
consider the uncertainties to 0.4852 when we have ±50% of uncertainties on the lung
conductivity.



conductivity uncertainties 0% ±3% ±10% ±20% ±30% ±50%

relative error fat 0.1245 0.1245 0.1248 0.1248 0.1251 0.1276
lungs 0.1245 0.1263 0.1439 0.2208 0.3333 0.4852

Corr coeff fat 0.9930 0.9930 0.9945 0.9943 0.9980 0.991
lungs 0.9930 0.9933 0.9899 0.9767 0.9660 0.885

Table 1: Relative error and correlation coefficient of the stochastic inverse solution for
different levels of uncertainty on the fat and lungs conductivities .

The effect of the uncertainty on the correlation coefficient could also be qualita-
tively seen in Figure 2, where the pattern of the mean value of the stochastic inverse
solution looks the same in Figure 2 (a) (no uncertainties) and (b) (±50% of uncertain-
ties on the fat conductivity) and different in Figure 2 (c) (±50% of uncertainties on
lungs conductivity). Similarly the effect of uncertainties on the relative error could be
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In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.25

0.2

0.15

0.1

0.05

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.8

0.6

0.4

0.2

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

1.5
1
0.5
0
-0.5
-1
-1.5

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.25

0.2

0.15

0.1

0.05

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.8

0.6

0.4

0.2

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

1.5
1
0.5
0
-0.5
-1
-1.5

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.25

0.2

0.15

0.1

0.05

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

0.8

0.6

0.4

0.2

0.0

solve the stochastic inverse problem following the algorithm described in the previous
section.

In Figure 2 we show the mean value of the stochastic inverse problem solution for
the three cases. Qualitatively, the mean of the solutions didn’t change too much. In Fig-
ure 3 we show the deviation of the inverse solution from the exact solution. Comparing
Figure 3 (left) to Figure 3 (middle), we remark that the deviation from the exact solu-
tion did not change while considering the fat conductivity uncertainties. Whereas if we
compare these last figures to Figure 3 (right) we see that the deviation from the exect
solution has been substantially increased. The same behavior is seen on the traces of
the electrical potential on the �int boundary: In Figure 4, we see that he inverse solution
on the heart boundary does not change too much when considering the fat conductiv-
ity uncertainties and considerably changes when considering ±50% lungs conductivity
uncertainties.

Fig. 2: Left (respectively, middle, right):Mean of the SFE solution with respect to null
uncertainty in all organs model (respectively,±50% from the reference fat and lungs
conductivity)

Fig. 3: Left (respectively, middle, right):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,±50% from
the reference fat and lungs conductivity)

1.5
1
0.5
0
-0.5
-1
-1.5

Fig. 2: Mean value of the SFEM inverse solution : No uncertainties(a), ±50% uncer-
tainty in the fat conductivity(b) and ±50% uncertainty in lungs conductivity (c)

qualitatively seen in Figure 3. As shown in Table 1, the error does not change too much
from no uncertainties (Figure 3 (a)) to ±50% of fat conductivity uncertainty (Figure 3
(b)). Whereas the error is high for ±50% of lungs conductivity uncertainty (Figure 3
(c)). The propagation of uncertainties from the conductivities to the the inverse problem
solution is reflected in the deviation of the stochastic inverse solution from the ground
truth presented in Figure 4. We remark that the error is concentrated in the heart bound-
ary Γint, it reaches 0.8 for ±50% of lungs conductivity uncertainty and 0.25 for ±50%
of fat conductivity uncertainty.

4 Discussion

Solving the inverse problem in electrocardiography imaging based on an optimal con-
trol problem allowed us to quantify the effect of the torso organs conductivity uncertain-
ties using a stochastic finite element method. This work is the first mathematical study
of the effect of the conductivity uncertainties on the inverse problem solution. Our re-
sults show that increasing the level of the fat conductivity uncertainty from zero to
±50% of its original value does not alter the quality of the reconstructed potential. This
is in line with the results presented in [13] for the forward problem when introducing
±50% uncertainties in the fat conductivity. On the contrary, the results that we obtained
for the uncertainties on the lungs conductivity show an important effect on the ECGI
solution. In fact the relative error is about 50% when introducing ±50% of uncertainty
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Fig. 3: Comparison of the SFEM solution to the ground truth on the heart boundary
Γint: (a) no uncertainties, (b) ±50% uncertainties in the fat conductivity, (c) ±50%
uncertainties in lungs conductivity. Exact solution (blue continuous line). Stochastic
inverse solution mean value (red dashed line). X-axis polar coordinate angle from −π
to π. Y-axis value of the electrical potential on the boundary Γint.
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Fig. 4: Deviation of the SFEM inverse solution from the ground truth solution: No un-
certainties (a), ±50% uncertainty in the fat conductivity (b) and ±50% uncertainty in
lungs conductivity (c).

and the CC is significantly altered. This result is different from he results presented in
[13] for the forward solution with ±50% uncertainties in the lungs conductivity where
the standard deviation does not exceed 3% of the mean value.

5 conclusions

In this work we presented a novel approach to study sensitivity to parameters values
in data completion inverse problem and that could have application in a wide range of
bioelectric and biomedical inverse problems resolution. We used a stochastic finite el-
ement method in order to take into account the variability of the conductivity values in
the ECGI inverse problem formulated in an optimal control manner. We used a conju-
gate gradient method to solve this problem where the gradient of the cost function was
computed using an adjoint method. We have described the different steps of the algo-
rithm used to solve this stochastic inverse problem. The numerical simulation that we
conducted in a simple 2D case showed that there is an important sensitivity of the solu-
tion to the lungs conductivity, whereas the uncertainties on the fat conductivity did not
affect too much the inverse solution. It is still not clear if the difference in the sensitivity
to the uncertainties is due to volume of the organs and/or their positions and proximity
to the heart and/or the magnitude of their mean conductivities. This question would be
a subject of a mathematical and numerical investigation as a continuation of this work.
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