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Abstract The paper presents a focused survey about the presence and the
use of the concept of “preferences” in Artificial Intelligence. Preferences are a
central concept for decision making and have extensively been studied in dis-
ciplines such as economy, operational research, decision analysis, psychology
and philosophy. However, in the recent years it has also become an important
topic both for research and applications in Computer Science and more specif-
ically in Artificial Intelligence, in fields spanning from recommender systems
to automatic planning, from non monotonic reasoning to computational so-
cial choice and algorithmic decision theory. The survey essentially covers the
basics of preference modelling, the use of preference in reasoning and argu-
mentation, the problem of compact representations of preferences, preference
learning and the use of non conventional preference models based on extended
logical languages. It aims at providing a general reference for all researchers
both in Artificial Intelligence and Decision Analysis interested in this exciting
interdisciplinary topic.
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CNRS, UMR 7243, LAMSADE, Paris, France
PSL, University Paris Dauphine
E-mail: alexis.tsoukias@dauphine.fr

Paolo Viappiani
CNRS, UMR 7606, LIP6, F-75005, Paris, France
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
4 Place Jussieu, 75005 Paris, France E-mail: paolo.viappiani@lip6.fr



2 Gabriella Pigozzi et al.

1 Introduction and Notation

Preferences are a central concept of decision making and have extensively
been studied in disciplines such as economy, operations research, psychology,
and philosophy. As preferences are fundamental for the analysis of human
choice behaviour, they are becoming of increasing importance for computa-
tional fields such as artificial intelligence, databases, and human-computer
interaction. Preference models are needed in decision-support systems such
as web-based recommender systems, in automated problem solvers such as
configurators, in autonomous systems such as Mars rovers. Nearly all areas of
artificial intelligence deal with choice situations and can thus benefit from com-
putational methods for handling preferences. Moreover, recommender systems,
personal assistants, and other interactive systems need to elicit and satisfy the
user’s preferences in order to be able to give truly satisfactory recommenda-
tions. Social choice methods are also becoming of importance in computational
domains such as multi-agent systems.

The field of “preferences” became an emerging area of scientific investiga-
tion for several research groups in computer science and in the recent years we
assist to a number of workshops, conferences and editorial initiatives aiming
at promoting this area at the edge of fields such as decision analysis, artificial
intelligence, social choice and economics (see for instance [244]). We mention:

– the special issue (vol. 20) of the journal Computational Intelligence in 2004,
(see for instance [95]),

– the Dagstuhl seminar1 (04271) on “Preferences: Specification, Inference,
Applications” in 2004, starting from which a number of seminars and work-
shops have been organised every year since (notably the MPREF series of
Multidisciplinary Workshops on Advances in Preference Handling),

– the special issue of the AI Magazine on “Preference Handling in AI” pub-
lished in Winter 2008 (that included a general tutorial [60], and survey pa-
pers covering preferences in interactive systems [223], planning [24], conver-
sational recommender systems and electronic commerce applications [237],
constraint satisfaction [249], social choice [79] and multiobjective optimiza-
tion [111]),

– the special issue of the journal Annals of Operations Research (vol. 163)
in 2008 (see [245]),

– the Algorithmic Decision Theory conferences held in 2009, 2011 and 2013
(see [247,61,226]),

– the special issue (vol. 175) of the journal Artificial Intelligence in 2011, (see
[94]),

– the Dagstuhl seminar2 (14101) on “Preference Learning” in 2014, and

1 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=04271
2 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14101

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=04271
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14101
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– the establishment of the EURO Working Group on Preference Handling
which regroups the international community concerned by this subject.3

This article makes an overview of the recent advances in this area, with a
focus on reasoning, argumentation, deontic reasoning, representation, learning,
and non-classical models (preference representations based on fuzzy sets and
beyond). The reader only needs to be acquainted with basic notions of discrete
mathematics and logic.

Traditionally preferences have always been modelled as binary relations
applied to a set which we will denote as A. For the purpose of this article
we will only consider finite or enumerable infinite sets which can be of three
types:

– enumeration of objects;
– subsets of vector spaces (typically A ⊆ Rn, A being an enumerable subset);
– subsets of the product space of n attributes Xi (A ⊆

∏n
i Xi).

Hence preferences over composed objects such as trees or graphs are not con-
sidered here.

The use of binary relations includes the cases where preferences are ex-
pressed either as binary comparisons of objects among them (relative compar-
ison) or as binary comparisons of objects to “norms” or “standards” (absolute
comparison), see [83].

Basic references on this issue can be considered: [115,178,243,117,251,169,
269,275,229,119,4,219]. In this article we adopt the notation introduced in
[251]. The usual definitions of (a)symmetric, (ir)reflexive, transitive, Ferrers 4,
etc. relations apply. We use a generic preference relation (being just reflexive)
denoted � to be read “at least as good as”, from which we can get an asym-
metric part, denoted � (and usually called strict preference) and a symmetric
one denoted ∼. The symmetric part can be distinguished in indifference (de-
noted ≈) and incomparability (denoted ./), the later being irreflexive (while
indifference is reflexive). In Section 7 we will see that also the asymmetric
part can be further decomposed in several relations. Besides using an explicit
representation (in terms of sets), preferences are usually represented using
graphs, directly representing the binary relation, matrices (a non graphical
representation of a graph) and, under precise conditions, numerically (so that
the ordering resulting on the set A can be expressed using the natural ordering
of numbers).

We adopt the term “preference structure” in order to denote collections of
preference relations which establish ordered partitions of A and fulfil a number
of properties. Such preference structures are named as “weak orders”, “inter-
val orders”, “PQI interval orders”, etc. (for definitions see [219]). Preference

3 The reader is invited to check the website http://preferencehandling.free.fr for an ac-
count of all the activities related to this domain.

4 A relation R ⊆ A×A is Ferrers if ∀x, y, z, w ∈ A, (xRy ∧ zRw)→ (xRw ∨ zRy).

http://preferencehandling.free.fr
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structures can be “characterised”: showing the necessary and sufficient con-
ditions for which actual preferences upon a set A happen to be one of these
structures. Such representation theorems can be of three types:

– direct conditions upon the binary relations and their combinations;
– forbidden configurations of the associated graph structure;
– specific conditions admitting numerical presentations.

A typical example is the interval order preference structure. The first type
of characterisation states that � is an interval order iff ∀x, y, z, w ∈ A (x �
y ∧ y ∼ z ∧ z � w) → x � w. The second type of characterisation states
that � is an interval order iff no subgraph on 4 vertices x, y, z, w can just
consist of the arcs (x, y), (z, w) and neither (x,w) nor (z, y). The third type of
characterisation states that � is an interval order iff ∀x, y ∃l, r : A 7→ R l(x) <
r(x) : x � y ↔ l(x) > r(y).

We already introduced the difference between “relative” and “absolute”
comparisons (or preferences). In the first case � ⊆ A× A. In the second case
� ⊆ A × N ∪ N × A where N is the set of norms or standards to which
elements of A have to compare in order to make an assessment (for instance
when we say that x ∈ A is “good” we assume that x � y, y ∈ N being the
norm or standard of “good”). Another difference can be established between
“direct” and “extended” preferences. The first ones are as usual represented by
�⊆ A×A. The second ones are represented by <⊆ 2A×2A. Generally a certain
coherence between � and < is expected when they concern the same set A. In
other terms, extended preferences concern the comparison of whole subsets of
A among them and not just among single elements (the reader can see [25,212,
211] for the multiple semantics of this type of preferences). A third distinction
can be introduced between “first” and “second” order preferences. First order
preferences are the usual orderings upon a set A. Second order preferences
instead concern any potential order among the orderings of the set A. Consider
the case where we have n orderings �j upon a set A representing preferences
holding under different scenarios (let us call J the set of scenarios; and j ∈ J).
The existence of an ordering relation D⊆ J × J represents a second order
preference among the orderings obtained for each single scenario. Typical cases
are likelihood comparisons (scenario i is likely to occur not less than scenario
j) or importance comparisons (the order according to dimension i is at least as
important as the order according to dimension j: �iD�j). The reader should
note that in most cases second order preferences are not independent from
first order preferences (cfr. [197,52]) and that despite their intuitive appealing
they do not constitute “primitive information” for the construction of decision
models (see [83]).

The types of preferences we discussed until now introduce purely ordinal
information. In the case such preferences admit a numerical representation (for
instance of the type: x � y ↔ f(x) > f(y)) this is not unique: all monotonic
increasing transformations of the numerical representation are admissible. In
other terms we only consider the ordinal information numbers convey. The
values (numbers) we can associate to elements of A in order to respect the
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order induced by some preference model do not admit any “quantitative”
interpretation. Should we be interested in more “quantitative” information
we need to be able to model “differences of preferences”: the difference of
preference between x and y is at least as large as the difference of preference
between z and w (xy % zw). The reader can see more in [52] and [56].

Preferences are conveyed through “preference statements”: I like x, y is
better than z, I do not like w, x combined to y is worse than z combined to w
etc. As such they can also be modeled as logical sentences (using some appro-
priate language). For this purpose we will make reference to some basic logical
notation (for a basic reference see [285]). Moreover we draw the attention of
the reader to issues related to the semantics of logical inference (model theory)
since preferences can and have been used in order to extend reasoning (for an
introduction see [95]).

The article is organized as follows. Section 2 reviews the literature about
the use of preferences in extending reasoning models. Section 3 presents the
use of preferences in argumentation theory. Section 4 discusses deontic logic,
an approach to model preference statements in specially tailored languages.
Section 5 discusses the problem of compact (in computational terms) repre-
sentations of preferences. Section 6 presents the literature about preference
learning. Section 7 reviews non conventional preference models, mainly estab-
lished using logical approaches.

2 Preferences in reasoning

I have an appointment for the first time with Björn, a Swedish man. When
I arrive, I am introduced to a short man with dark hair and dark eyes. He
is Björn. My surprise (and maybe yours as well) is due to the fact that the
prototypical Swedish person is tall, blond and blue-eyed. Everyday we reason
with incomplete information, we assume the world is as normal as possible
and jump to conclusions, that may be later given up upon learning new in-
formation. Such kind of reasoning is called nonmonotonic, to distinguish it
from the traditional deductive inference in which the set of conclusions grows
proportionally to the set of available information. So, following a famous syllo-
gisms, from “All men are mortal” and “Socrates is a man”, we can derive that
“Socrates is mortal” and this conclusion will remain no matter what other
information we may add later. In other words, in classical logic, we cannot
retract a previously obtained conclusion. If something was derivable at some
point, it will still be derivable if we add more premises. This can be expressed
formally by the Monotonicity property for the classical consequence relation:

If Γ ` α, then Γ ∪ β ` α (1)

where Γ is a finite set of formulas and α and β are formulas of a proposi-
tional language L5, built up from a finite set P of propositional symbols and

5 For simplicity here we consider classical propositional logic.
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the usual connectives (¬,∧,∨,→,↔). An interpretation is a total function
P → {0, 1} that assigns a truth value (0 or 1 or, equivalently, false or true)
to any propositional letter. An interpretation w is said to be a model of a
formula α (denoted by w |= α) if and only if w makes α true in the usual truth
functional way. The notion of model captures the semantics of the logical con-
nectives. The syntactic counterpart Γ ` α means that α is deducible from Γ
(where Γ may be empty).

Our everyday reasoning does not satisfy monotonicity. The most famous
bird in computer science is Tweety: if I know that Tweety is a bird, I will
assume that Tweety flies. However, upon learning that Tweety is a penguin, I
will withdraw the previous conclusion. So, we have that Γ ` α, but Γ ∪β 0 α,
where β is the information that Tweety is a penguin.

As Robert Koons notes [176], defeasible reasoning has been object of philo-
sophical investigations since Aristotle’s Topics and Posterior Analytic, but the
subject received particular interest from researchers in artificial intelligence
during the last forty years. The need to investigate and formalize nonmono-
tonicity emerged in the 1970s, when artificial intelligence researchers were
facing knowledge representation problems [239,200]. To John McCarthy, non-
monotonicity is what characterizes common sense reasoning. The 1980s saw a
great development of formalisms to capture nonmonotonic reasoning: circum-
scription [200,201,189], default logics [240,112], modal nonmonotonic logics
[203,204], an epistemic reformulation of McDermott’s logic, i.e. autoepistemic
logic [210] which was in its turn modified and investigated by Halpern and
Moses in [150], and extended logic programming [133,134], a fragment of Re-
iter’s default logic. One may view all major formalisms for nonmonotonic rea-
soning as different approaches to the problem of identifying belief sets preferred
for reasoning, once the world is assumed to be as normal as possible [67].

Yoav Shoham [261,260,262] observed that, in spite of the differences be-
tween the various formalisms for nonmonotonic reasoning, it is possible to
provide a unifying semantical framework for nonmonotonic logics by general-
izing the notion of minimal models introduced in circumscription.6 Shoham
considers any standard logic L, that is, any logic with the usual model-theoretic
semantics, such as propositional logic, first-order predicate logic, and modal
logic. A preference logic is obtained by associating L with a strict partial pref-
erence order � on interpretations. If in classical logic the meaning of a formula
is the set of models that satisfy it, Shoham shows that nonmonotonic logics
are obtained by adding a preference ordering, which allows the logic to focus
only on a subset of these interpretations. This captures the idea behind all
nonmonotonic logics, that is to assume the world is as normal as possible and
use this assumption to identify those models that are ‘preferable’ in a certain
respect. So, when waiting for Björn, I’m justified to expect a blond, tall and
blue-eyed man as the prototypical Swedish person is blond, tall and with blue
eyes. An inference in the preferential framework can be seen as a selection of
those conclusions that hold in all maximally preferred interpretations. Thus,

6 A similar but less general proposal was made by Bossu and Siegel [45].
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from having that ∆ |= α if α is true in all models of ∆ (as in classical logic), we
now have that ∆ |= α if α is true in all preferred models of ∆. Also, from the
previous it does not automatically follow that ∆ ∪ β |= α. This is so because
the set of preferred models of ∆∪β may not be a subset of the set of preferred
models of ∆. Shoham needs to modify the usual notions of satisfaction and
entailment to take the ordering on interpretations into account. In [260] he
defines a preferred model and preferential entailment as follows:

Definition 1 (Preferred model) An interpretation m preferentially satis-
fies α (written m |=� α) iff m satisfies α and there is no other interpretation
m′ (with m′ � m) such that m′ satisfies α. Then, m is said to be a preferred
model of α.

Definition 2 (Preferential entailment) α preferentially entails β (written
α |=� β) iff the models of β are a superset of the preferred models of α.

Shoham claims that some nonmonotonic logics are special cases of his gen-
eral framework while the connections to others is not clear. The system that
is closest to Shoham’s framework is the family of logics based on circumscrip-
tion. In general terms, circumscribing a predicate is reducing the individuals
that satisfy that predicate in the theory to only those that are necessary in
view of the theory. Predicate circumscription assumes that the objects that
can be shown to have a certain property by reasoning from certain facts are
all the objects that satisfy such given predicate, as in the famous missionaries
and cannibals puzzle.7. Thus, circumscription means preferring those models
of the theory that have minimal extensions of the predicates in question. Cir-
cumscription can then be captured by Shoham’s preferential model semantics.
That is not surprising since, as Shoham himself acknowledges, “the notion of
preferred models was implicit in McCarthy’s work from the start” [260, p.
237].

Unlike circumscription and the minimal knowledge logic of Halpern and
Moses, the relation of Reiter’s default logic with Shoham’s framework is less
clear. Default logics are consistency-based logics as they privilege the syntactic
approach in the definition of nonmonotonic inference. A default theory is a

7 The puzzle asks how three missionaries and three cannibals can cross a river. The infor-
mation given is that there is a rowboat for two people and that, if the cannibals outnumber
the missionaries, the missionaries will be eaten. As McCarthy observed, if someone would
suggest to use the bridge or the helicopter, we would be irritated. This is because the as-
sumption is that only the elements explicitly provided in the puzzle are assumed to exist. If
we want to be able to avoid the excessive qualification (for example, saying that the capacity
of the boat does not change in the course of the action, that no bridge or helicopter exist,
etc.), circumscription is a candidate to achieve this:

[Circumscription] will allow us to conjecture that no relevant objects exist in certain
categories except those whose existence follows from the statement of the problem
and common sense knowledge. When we circumscribe the first order logic statement
of the problem together with the common sense facts about boats etc., we will be
able to conclude that there is no bridge or helicopter. [200, p.30]
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first-order classical logic theory to which nonmonotonic inference rules are
added. These are default rules and have the form:

α : β1, ..., βn/γ (2)

where α, β1, ..., βn and γ are closed predicate logic formulae. The meaning
of Equation 2 is the following: if α is known, and if it is consistent to assume
β1, ..., βn, then infer γ. The crucial notion of default logics is that of extensions
(conclusion sets), which are obtained by applying as many default rules as
possible without running into an inconsistency. A default theory can have one,
several or no extensions. Shoham translates default theories into a modal one
and adds a preference relation on the Kripke structures. He then considers
examples where the default theory and its translation into a modal theory
have a different number of extensions. Introducing a preference criterion does
not lead to capture Reiter’s definition of extensions. Shoham, then, concludes
that more work needs to be done to cast light on that relationship. This was
finally achieved by David Makinson [195], who showed that Reiter’s default
logic cannot be captured by the preferential entailment framework. The reason
is that, unlike preferential logics, default logics are not cumulative.8

The variety of nonmonotonic formalisms raised the question of whether
it was possible to provide a systematic approach that could classify, distin-
guish and clarify the relations between each formalism. Dov Gabbay was the
first to suggest to study the different consequence relations defined by the
different nonmonotonic systems [127]. The step undertaken was not an obvi-
ous one, as not all nonmonotonic formalisms assumed a consequence relation
[155,156]. In his seminal paper, Gabbay worked on Gentzen-style consequence
relations to single out the minimal conditions a nonmonotonic consequence
relation ∼| should satisfy in order to represent a nonmonotonic logic. In addi-
tion to Monotonicity (1), a classical consequence relation satisfies other two
properties, Reflexivity :

Γ ∪ α ` α (3)

and Cut :

If Γ ` α and Γ ∪ α ` β, then Γ ` β (4)

Assuming that α and β are formulas, α ∼| β should be read as “β is a
plausible consequence of α”. If we substitute ∼| to the classical consequence
relation, we obtain the defeasible versions of Reflexivity (α ∼| α) and Cut, to
which Gabbay added a weak version of Monotonicity (which obviously cannot
hold in a nonmonotonic system), called Cautious Monotony :

8 For the same reason, Reiter’s default logic does not satisfy Cautious Monotonicity (5).
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If Γ ∼| α and Γ ∼| β, then Γ ∪ α ∼| β (5)

Cautious Monotony is the converse of Cut, and it is also called Cumulative
Monotony because it says that it is safe to draw consequences and then use
them as additional premises.

If Gabbay did not provide a semantics for his properties, five years later,
Kraus, Lehmann and Magidor [179] developed Gabbay’s and Shoham’s works
and characterized nonmonotonic consequence relations both proof-theoretically
and semantically:

[N]one of the nonmonotonic systems defined so far in the literature
[...] may represent all nonmonotonic inference systems that may be
defined by preferential models. The framework of preferential models,
therefore, has an expressive power that cannot be captured by negation
as failure, circumscription, default logic or autoepistemic logic. [...] The
main point of this work, therefore, is to characterize the consequence
relations that can be defined by models similar to Shoham’s in terms
of proof-theoretic properties. To this end, Gabbay’s conditions have to
be augmented. [179, p. 168-169]

The weakest logical system introduced by Kraus, Lehmann and Magidor,
system C (for cumulative), adds to the properties of Reflexivity, Cut and
Cautious Monotonicity proposed by Gabbay, the inference rules of Left Logical
Equivalence:

If |= α↔ β and α ∼| γ, then β ∼| γ (6)

and Right Weakening :

If |= α→ β and γ ∼| α, then γ ∼| β (7)

Among the rules that can be derived in C, we should mention the And
rule:

If α ∼| β and α ∼| γ, then α ∼| β ∧ γ (8)

This rule guarantees that plausible consequences can be accumulated via
conjunction, and so can be seen as a principle of cumulativity that all basic
nonmonotonic logics satisfy. Kraus, Lehmann and Magidor develop a semantic
account for C, and provide a representation theorem.

Even though system C satisfies the minimal requirement for a nonmono-
tonic logic, Kraus, Lehmann and Magidor consider it to be too weak. A
stronger and best fitted for nonmonotonic inference systems is system P (for
preferential), which generalizes Shoham’s preferential semantics and so it is
of particular interest here. This system is equivalent to the one proposed by
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Ernest Adams in the context of conditional logic [2] and to the ‘conservative
core’ of Judea Pearl and Hector Geffner’ probabilistic system for default rea-
soning [222]. The system P consists of all the rules of C with the addition of
the Or rule:

If α ∼| γ and β ∼| γ, then α ∨ β ∼| γ (9)

An important derived rule of P is D, originally suggested by Makinson in
a personal communication to the authors:

If α ∧ ¬β ∼| γ and α ∧ β ∼| γ, then α ∼| γ (10)

The relevance of D resides in the fact that it allows the principle of rea-
soning by cases, which is a problem in nonmonotonic reasoning, as Pearl’s
famous example [220] shows. Suppose that we know that male birds fly and,
as a separate default rule, that female birds fly. The default theory in which,
in addition to the previous two default rules, we know that Tweety is a bird
(without having information about its gender) has as only extension the orig-
inal information that Tweety is a bird. This is so because the prerequisites of
the two rules cannot be verified. This means that the conclusion that Tweety
flies is not obtained, even though it is an intuitively desirable conclusion.

The semantics of P is based on the notion of preferential model. Preferen-
tial models are cumulative ordered models in which the agent has a preference
over worlds (instead of set of worlds, as in Shoham’s version). The preference
relation � is a strict partial order (it was a well-order9 in Shoham’s frame-
work), satisfying the smoothness condition, a technical condition ensuring the
existence of a minimal element when we deal with infinite sets of formulas.

Cumulative reasoning systems provide expected results for the inheritance
of defaults in taxonomies but cannot support transitive reasoning. Kraus,
Lehmann and Magidor show that in the presence of the rules of C, transi-
tivity and monotonicity are equivalent [179, Lemma 3.4]. Hence, frameworks
like system P are too general as they do not allow chaining of defaults. In order
to overcome such limitation, other approaches introduce preference statements
between defaults in order to constrain the possible preference relations. Exam-
ples for such approaches are prioritized circumscription [189,201], pointwise
circumscription [190,135], and prioritized default logic [46,64,22,90].

Approaches using preferences among default rules avoid also to be too weak
in presence of too many conflicting defaults, as it is the case of systems based
on preferential models. Preference information can be explicit (the information

9 A well-order relation on a set Q is a total order on Q with the property that every
non-empty subset of Q has a minimal element. A total ordering of a finite set is trivially a
well-ordering, while this is not the case for infinite sets. Intuitively, such ordering on possible
worlds represents the plausibility order that an agent assigns to a world. An agent’s current
beliefs are the minimal worlds at the bottom of the ranking. The higher a world is, the less
plausible it is for the agent.
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has to be specified by the knowledge engineer, as in [189,63]) or implicit. Ap-
proaches based on an implicit preference information often give higher priority
to more specific rules [274,179,273,131]. But, as observed in [65,67], there may
be other reasons than specificity to prefer one rule over another. In legal rea-
soning, for example, the criteria of recency or authority (for instance, federal
law overrides state law) may also be used in case of conflict between laws.

Systems like Brewka’s [65] include a flexible treatment of preferences over
defaults (unlike in the explicit preference ordering approaches, where the pref-
erence is fixed) and, at the same time, by representing the priority informa-
tion within the logical language, handle other criteria than specificity. Starting
from [64] which added a partial order on defaults to Reiter’s default logic [240],
the idea is to extend the language to make reasoning about default priorities
possible (via the naming of default rules), to generate default extensions and,
finally, to keep only those extensions compatible with the priority information.

Example 1 [65] Suppose that we have the following default rules and facts:
d1 : bird→ flies
d2 : penguin→ ¬flies
penguin
bird
Reither’s default theory would give two extensions, namely E1 = Th{(penguin,
bird, flies)} and E2 = Th({penguin, bird,¬flies}).10 Suppose now that we
also have the information that d2 has priority over d1 (denoted as d2 ≺ d1).
Clearly, only the second extension is compatible with this information. The
system proposed in [65] has a mechanism that ensures that E1 is eliminated.

Delgrande and Schaub [90,89] also consider a default theory where pref-
erence information is part of the theory and preferences among default rules
can be part of a default rule. The novelty is that they show that such a gener-
alised default theory can be translated into a standard default theory without
preferences, but in which defaults are applied in the appropriate order. This
means that all default logic theorem provers can be used for the prioritised
version.

Frameworks for preferential reasoning have not been limited to the proposi-
tional context [179,187]. Among the proposals to capture defeasible reasoning
in logics other than propositional one, we recall Lehmann and Magidor’ ex-
tension to preferential predicate logics [186], defeasible deontic logics [214]
(cf. Section 4), preferential extensions of description logics [70,138,73], and
semantics for preferential reasoning in modal logics [71].

After this short excursus, we may ask ourselves whether a universal logic of
nonmonotonic reasoning is possible. Doyle and Wellman [96] answered nega-
tively to this question. Each formalism for nonmonotonic reasoning can be seen
as a special theory of preferential or rational inference (i.e. how to select the
maximally preferred states). If one could combine the different rational choices
made by the several nonmonotonic formalisms into a single choice, then one

10 Th denotes that an extension is a theory (i.e., it is a deductively closed set).
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could claim that a universal logic of nonmonotonic reasoning exists. Yet, by
adapting the framework for the aggregation of individual preferences of social
choice theory, they show that a negative result similar to Arrow’s impossibility
theorem [20] can be obtained for preferential nonmonotonic logics.

3 Preferences in argumentation theory

An argumentation system contains alternative arguments for or against some
conclusions. Argument-based systems were mostly developed within artificial
intelligence to study defeasible reasoning [230,231,192,213,233,43].11 The non-
monotonicity lies in the fact that an argument may be defeated by another
argument, which in turns may support the opposite claim. Formal argumen-
tation can thus be seen as a generalized way of nonmonotonic reasoning [42],
and indeed several nonmonotonic formalisms including Nute’s Defeasible Logic
[144], Simari’s DeLP [129], logic programming Default Logic [107] have been
shown to conform to the standard semantics of argumentation theory.

Abstract argumentation theory studies the positions that a rational agent
can take in presence of a given set of arguments, where some arguments are
in conflict with others. Arguments and the conflict relations are considered
as generally as possible. Arguments are abstract entities, i.e. their internal
structure is disregarded. Likewise, the conflict relation is left unspecified. If
two arguments are in conflict, this roughly means that they cannot both hold.
Abstracting away from the internal structure of the arguments and from the
precise meaning of the conflict relation allows us to study how to reason in pres-
ence of a conflicting set of arguments in the most general way. Some approaches
assume a particular logic [235] while others do not specify the underlying logic
[43,107].

Argumentation theory is central within artificial intelligence [30] as it pro-
vides a logic-based formalism for the treatment of defeasible reasoning and con-
flict resolution [263,6,171,208,36], negotiation [267,180,11], and argumentation-
based dialogues [13,234,175].

An argumentation framework is simply a set of arguments and a binary
relation among them. Dung (who can be considered to be the father of ab-
stract argumentation) identified the binary relation with an attack relation
[107]. Given an argumentation framework, the aim of argumentation theory is
to identify and characterize the sets of arguments (extensions) that can rea-
sonably survive the conflicts expressed in the framework. In general, given an
argumentation framework, there are several possible extensions [107].

In order to simplify the discussion, we only consider finite argumentation
frameworks.

Definition 3 (Argumentation framework) An argumentation framework
AF is a tuple (Ar ,R), where Ar is a set of arguments and R is a binary

11 However, John L. Pollock’s work, who developed Roderick Chisholm’s ideas [81,82] into
a theory of prima facie reasons and their defeaters, was rather motivated by epistemological
questions in philosophy of science.
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B
C D

Fig. 1 An argumentation framework.

relation on Ar (i.e., R ⊆ Ar ×Ar). An argument A attacks an argument B iff
(A,B) ∈ R.

An argumentation framework can be represented as a directed graph in
which the arguments are represented as nodes and the attack relations as ar-
rows. For instance, the argumentation framework (Ar ,R) where Ar = {A,B,C,
D} and R = {(A,B), (B,A), (A,C), (B,C), (C,D)} is represented in Figure
1. There we have that A and B attack each other, both A and B attack C,
and C attacks D.

Different semantics have been proposed to define the acceptability of argu-
ments in an argumentation framework. In Dung’s original extension approach
[107], an extension is a subset of Ar that represents the set of arguments that
can be accepted. Dung’s semantics are based on the notion of conflict-freeness,
namely a set should not be self-contradictory nor include arguments that at-
tack each other [107]. This ensures that no extension will support contradictory
conclusions.

Definition 4 (Conflict-free / defence) Let (Ar ,R) be an argumentation
framework. The set S ⊆ Ar is conflict-free if and only if there are no A,B ∈ S
such that (A,B) ∈ R.

We also say that S defends A (or, the argument A is acceptable with respect
to S) if, ∀B ∈ Ar such that (B,A) ∈ R, ∃C ∈ S such that (C,B) ∈ R.

As we have seen, conflict-freeness is the minimal requirement for an exten-
sion. The most common acceptability semantics used in the literature are the
following:

Definition 5 (Acceptability semantics) Let AF := (Ar ,R) be an argu-
mentation framework and set S ⊆ Ar .

– S is an admissible extension if and only if it is conflict-free and defends all
its elements.

– S is a complete extension if and only if it is conflict-free and contains
precisely all the elements it defends, i.e., S = {A | S defends A}.

– S is a grounded extension if and only if S is the smallest (w.r.t. set inclu-
sion) complete extension of AF .

– S is a preferred extension if and only if S is maximal (w.r.t. set inclusion)
among admissible extensions of AF .
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– S is a stable extension if and only if S is conflict-free and ∀B /∈ S,∃A ∈ S
such that (A,B) ∈ R.

It is known that for every argumentation framework, there exists at least
one admissible set (the empty set), exactly one grounded extension, one or
more complete extensions, one or more preferred extensions, and zero or more
stable extensions.

The admissible extensions of the argumentation framework in Figure 1
are ∅, {A}, {B}{A,D} and {B,D}. The preferred and stable extensions are
{A,D} and {B,D}, the complete extensions are ∅, {A,D} and {B,D} and,
finally, the grounded extension is ∅.

Though the generality of the framework we have briefly reviewed is part
of its attractiveness, it has been argued that arguments do not have the same
strengths [263,32,75]. Preferences can be added and taken into account in
order to evaluate arguments [10,235,7,12,209]. Consider the following example
due to Amgoud and Cayrol.

Example 2 [9] Let (Ar ,R) be an argumentation framework with Ar = {A,B,
C} and R = {(A,B), (B,C)}. The set of acceptable arguments is {A,C}.
However, suppose that argument B is preferred to A and to C. How can the
preference over arguments and the attack relation be combined when deciding
which arguments to accept? One natural way is to say that, since B is preferred
to A, it can defend itself from the attack of A. This would lead to accept B
and reject C.

Adding preference relations allows for more expressivity. Not only we can
express that some arguments are in conflict, but also that some arguments
are preferable to others, for example, because they express more probable
beliefs or promote more important values [31]. Dung’s framework has then
been extended by introducing preference relations into argumentation systems
[10,235,7,8,209].

Simari and Loui [263] introduced preferences over arguments, and [32] con-
sidered arguments from prioritised beliefs in inconsistent knowledge bases. A
natural domain of application of argument-based systems has been the mod-
elling of legal disagreement [232,257,143]. Indeed, one of the first extensions
of Dung’s argumentation framework was inspired by legal reasoning [235]. In
order to increase the potential for implementation and following [106], ar-
guments were expressed in a logic-programming language and their conflicts
decided with the help of (defeasible) priorities over rules.

A more direct extension of Dung’s framework is the one proposed in [9],
where a preference ordering enriches Dung’s framework. In the literature on
preference-based argumentation, the attack relation in a preference-based ar-
gumentation framework is called defeat, and is denoted by Def .

Definition 6 (Preference-based argumentation framework (PAF)) A
preference-based argumentation framework (PAF ) is a triplet (Ar ,Def ,�),
where Ar is a set of arguments, Def is the defeat binary relation on Ar , and
� is a (partial or total) preorder defined on Ar ×Ar .
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Thus, A � B means that argument A is at least as preferred as B and the
relation � is the strict counterpart of �. As illustrated in Example 2, one idea
to combine preference and attack relations is that if an argument B is preferred
to its attacker A, then A’s attack against B is not successful and B is accepted.
Informally, the idea in [9] is to remove those attacks that conflict with prefer-
ences and calculate Dung’s classical semantics on the resulting argumentation
framework. So, what is the relation between the two frameworks? Kaci and
van der Torre [166] show that a preference-based argumentation framework
can represent an argumentation framework:

Definition 7 (PAF representing an AF ) A preference-based argumenta-
tion framework (Ar ,Def ,�) represents an argumentation framework (Ar ,R)
iff ∀A,B ∈ Ar , it is the case that (A,B) ∈ R iff (A,B) ∈ Def and it is not
the case that B � A.

It should be easy to see that each preference-based argumentation frame-
work represents one argumentation framework, whereas each argumentation
framework can be represented by various preference-based argumentation frame-
works [166].

Inspired by Perelman’s work on persuasion [225,224], Bench-Capon [31] ex-
tends standard argumentation framework to take into account values promoted
by arguments and defines value-based argumentation frameworks (VAF ). The
idea is that in practical reasoning, two individuals may agree on the fact that
an argument attacks another argument, but may disagree on whether that at-
tack is successful because the two arguments promote different values and the
two individuals disagree on the preference over those values. So, preferences
over arguments are determined by the values those arguments support, like
human life, world security and good world relations can be values promoted
by some arguments in a political debate over whether invading Iraq or not [21].
Dung’s framework is thus enriched by adding a non-empty set of values V, a
function val that assigns a value to each argument, and a partial order > over
values. The idea is that an argument A defeats (successfully attacks) an argu-
ment B iff (A,B) ∈ R and the value promoted by B is not more important
than the value promoted by A (i.e. not val(B) > val(A)).

Kaci and van der Torre [166] extend Bench-Capon’s value-based argumen-
tation frameworks in two directions. They take into account the possibility
that arguments support multiple values, and consider various types of pref-
erences over values. In [31], if values v1 is preferred to value v2, then each
argument supporting v1 is preferred to each argument supporting v2. Kaci
and van der Torre claim that real-world situations are more complex and con-
sider two additional preferences: that v1 is preferred to value v2 according to
a first preference relation if and only if at least one argument supporting v1
is preferred to each argument supporting v2, and that v1 is preferred to value
v2 according to a second preference relation if and only if each argument sup-
porting v1 is preferred to at least one argument supporting v2. Similarly as
for the relation between PAF and AF , Kaci and van der Torre show that a
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VAF represents a PAF if and only if, for any two arguments A,B, it is the
case that A � B if and only if val(A) > val(B) or val(A) = val(B).

Instead of having a pre-specified preference relation among arguments or
values, one may consider the case in which arguments can express preferences
between other arguments. This is the route explored by Modgil with the in-
troduction of extended argumentation framework (EAF) [209]. Suppose, for
example, that the BBC and the CNN disagree on today’s weather forecast in
London and that argument C says that BBC are more trustworthy than CNN.
Argument C is expressing a preference for the argument that today it will be
dry in London since BBC said so (argument A) over argument B which claims
the opposite as CNN forecasted a rainy day. Dung’s argumentation framework
is then extended by adding a second attack relation D to Ar and the standard
binary attack relation R. D ranges from an argument to an element of R: if
A attacks (B,C) (denoted by (A, (B,C))), then A claims that C is preferred
to B. In an extended argumentation framework, the success of an attack is
relative to the set of arguments S one is currently considering. Thus, the no-
tion of defeat is parametrised w.r.t. S: let S ⊆ Ar , A is said to defeatS B12 iff
(A,B) ∈ R and @C ∈ S such that (C, (A,B)) ∈ D.

In [209] and [15] it was observed that ignoring those attacks where the
attacked argument is stronger than the attacker does not always give intuitive
results. It can happen that the resulting extension violates the basic condition
imposed on acceptability semantics, namely the conflict-freeness of extensions.
This is problematic as, in turns, it may lead to violate the rationality postulates
put forward in [72].

Example 3 Suppose that an argumentation framework contains only two argu-
ments A and B, and that A attacks B. Assume also that B � A. Preference-
based argumentation frameworks run into troubles because, since B is pre-
ferred to A, the attack against B fails, i.e. no defeat relation holds between
the two arguments. The problem is that, by removing an attack, we remove an
important piece of information from the graph, namely that there is a conflict
between two arguments. By doing so, the two arguments may end up in the
same acceptable extension, violating the basic requirement of conflict-freeness
that grounds the idea of Dung’s extensions as representing coherent positions.

Amgoud and Vesic [15,16] propose a new preference-based argumentation
framework that guarantees conflict-free extensions to deal with the above prob-
lem. However, according to [167,164,165], the source of the problem concerning
removing attacks resides in a misunderstanding of Dung’s framework. The ab-
stract nature of Dung’s framework imposes a careful instantiation of it and, in
particular, a suitable choice of the appropriate defeat relation. A preference-
based argumentation framework with a symmetric conflict relation guarantees
to prevent the undesirable result [164]. The preference relation is then used to
decide the direction of the defeat relation between two arguments.

12 The notation defeatS makes it explicit that defeat is parametrised w.r.t. S.
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4 Deontic logics

The Swedish man we encountered in Section 2 is in fact a serial killer and my
life is now in danger. I know that nobody should kill. However, in order to save
my own life, I have to consider the possibility of killing Björn. If I have the
choice between a bloody murder and a bloodless one, I should go for the second
option. Philosophers, logicians and computer scientists have reasoned about
such a situation, which is one of the many paradoxes (or puzzles) arising in
deontic logic, a logic to reason about concepts like obligations and permissions.
The gentle murderer paradox says that one should not kill but, if one does, he
has the obligation to kill gently [124]. The paradox arises from the fact that
in one of the most familiar systems of deontic logic, the so-called Standard
Deontic Logic (SDL), from those premises one can derive that it is obligatory
to kill tout court, a hardly defendable conclusion.

Deontic logic studies concepts that have a clear practical relevance for
law, ethics, human and artificial institutions, security systems etc. But, as it
happened for modal logic (which strongly influenced deontic logic [205]13),
contributions have also been made on a more theoretical level. Even though
the first natural applications were to formalise legal reasoning [265], deontic
logic has been increasingly used in computer applications. As observed by
Thorne McCarty [202], one of the primary applications of deontic logic is to
detect a violation of an obligation and to trigger the appropriate sanction to
such violation.

The use of deontic logic is especially useful as a knowledge representation
language in all those situations in which a system designer wants to take into
account the violation of some obligations and the appropriate action [161,162].
The study of logical systems of deontic logic, the formal analysis of norma-
tive systems, the formal representation of legal knowledge, the specification
of aspects of norm-governed multi-agent systems and autonomous agents, as
well as normative aspects of protocols for communication, negotiation and
multi-agent decision making are all among the topics of DEON, a biennal
international conference on deontic logic in computer science. Recently, an ex-
tension of multi-agent systems with concepts traditionally studied in deontic
logic gave rise to a new area called Normative Multi-agent Systems [41] with
the satellite NorMAS workshops14.

The beginning of deontic logic can be traced back to the Thirties, when the
Danish philosopher Jørgensen discussed the logical character of imperatives
[163]:

13 An exception was the work by Ernst Mally [196], an early pioneer of deontic logic and
the first one to have used the term Deontik. His work was not influenced by modal logic but
his impact on the discipline was undermined by technical problems [122].
14 According to the definition of the first workshop on normative multiagent systems in

2005, “Normative Multi-Agent Systems are multi-agent systems with normative systems
in which agents can decide whether to follow the explicitly represented norms, and the
normative systems specify how and in which extent the agents can modify the norms” [41].



18 Gabriella Pigozzi et al.

[A]ccording to a generally accepted definition of logical inference only
sentences which are capable of being true or false can function as
premises or conclusions in an inference; nevertheless it seems evident
that a conclusion in the imperative mood may be drawn from two
premises one of which or both of which are in the imperative mood.
[163, p. 290]

The point is that imperatives, legal statutes, moral standards etc. are usu-
ally not viewed as being true or false. Expressions like “Mark, leave the room!”
command a specific behaviour and are not descriptive. Being nondescriptive,
they cannot be termed true or false. Thus, they cannot be premise or conclu-
sion of a logical inference. The Jørgensen’s dilemma expresses the fact that,
though there certainly exists a logical study of normative concepts, it seems dif-
ficult to have a logic of normative concepts. The logic of imperatives is tightly
connected to deontic logic [151], and some authors claim they are essentially
the same discipline.

The discussion of whether norms have truth values continued, but the
first formal system of deontic logic was given only in 1951 by the Finnish
philosopher Georg Henrik von Wright [293,292]. It is consensus to fix in von
Wright’s work the beginning of deontic logic. Subsequent deontic logic systems
built on his work, though essentially any aspect of von Wright’s logic has
been criticised and von Wright himself proposed several systems to overcome
difficulties he encountered.

Many deontic logic systems have been proposed in the literature, like Stan-
dard Deontic Logic (SDL), von Wright’s Old System (OS) [292], Chellas’ Min-
imal Deontic Logic (MDL) [77], Hansson’s Preference-based Deontic Logic
(PDL) [152] and variants of these logics. By taking obligation to be the primary
concept and represent it by the operator O (so Oα reads as “It is obligatory
that α”)15, van der Torre classified those logics on the basis of the following
three properties [271]:

(Weakening) O(α ∧ β)→ Oα
(And) (Oα ∧Oβ)→ O(α ∧ β)
(Violations) wff: α ∧O¬α

The first two properties should be clear. The third property gives the well-
formed formulas (wff) to express violations in the language, by saying that it
may happen that ¬α was obligatory and nevertheless we have that α is the
case. So, if a certain logic (like OS) does not have Violations, it means that
it lacks the possibility to express violations in its language. SDL satisfies all
three properties. MDL satisfies Weakening and Violations, and PDL is the
only system in which Weakening does not hold16, but it satisfies And and
Violations.

15 Taking O as the primary concept means that other notions, like permissible, can be
defined from O. So, for example, if we denote ‘permissible’ by P , we have that Pα↔ ¬O¬α.
16 For explanations of why Weakening cannot hold in preference-based deontic logics, see

[157,139,140,152].
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We give here the syntax and the semantic of the most cited of such systems,
that is Standard Deontic Logic (SDL), a monadic deontic logic that builds
upon propositional logic.

Definition 8 (SDL) Let L be the language built upon a denumerable set P
of propositional variables, the usual connectives ¬ and→ and the operator O.
Axioms of SDL are the following:

(Taut) All tautologies of L.
(K) O(α→ β)→ (Oα→ Oβ)
(D) ¬O⊥

SDL is closed under the following rules of inference:

(Modus Ponens) If ` α and ` α→ β, then ` β
(Necessitation) If ` α then ` Oα

To the reader familiar with modal logic, it will be clear that SDL is just
the normal modal logic KD with a reinterpretation of the � symbol as O for
obligation. Since its birth deontic logic was seen as a branch of modal logic,
thanks to the similarities between modal notions of necessity and possibility
and deontic notions of obligations and permissions. Dissimilarities between the
two fields were, however, noticed by von Wright [295].

The semantics of SDL is a possible worlds (Kripke) semantics.

Definition 9 (Kripke semantics) A possible world (Kripke) model for a de-
ontic theory in SDL is a tuple M =< W,RO, V > that consists of a nonempty
set of worlds W , a binary serial deontic accessibility relation RO between
worlds17, and a valuation function V that assigns a truth value to atomic
propositions in each world w ∈ W . Intuitively, RO(w,w′) means that w′ is
an ideal deontic alternative to the actual world w and that in w′ it holds
everything obligatory in world w. A formula Oα is true in w in M (denoted
M,w |= Oα) iff M,w′ |= α for all w′ with RO(w,w′).

A particular class of obligations that was highly relevant for the develop-
ment of formal deontic logic systems are contrary-to-duty ones. A contrary-
to-duty obligation expresses what one should do when obligations have been
violated, like Gabriella’s violation of the obligation to abstain from killing or,
to take a less prosaic example, what Saint Paul said in the first letter to the
Corinthians:

It is good for a man not to touch a woman. But if they cannot contain,
let them marry: for it is better to marry than to burn. (Cited in [287].)

Many of the deontic logic paradoxes are related to contrary-to-duty para-
doxes. Probably the most famous one is the gentle murderer paradox [124],
which we informally encountered at the beginning of this section.

17 An accessibility relation is serial if, for every world w, there is at least one world acces-
sible to w.
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Example 4 (The gentle murderer paradox) Suppose that the following are wff’s
in a SDL theory:

1. Gabriella should not kill Björn: O¬k
2. If Gabriella kills Björn, then she should do it gently: k → O(k ∧ g)
3. Gabriella kills Björn: k

k → O(k ∧ g) is a contrary-to-duty obligation of O¬k, as it says what one
should do if one violates an obligation. The problem with the gentle murderer
is that in a SDL theory with these sentences, one can derive Ok. By applying
Modus Ponens to (2) and (3) we obtain O(k∧ g), thus Ok by Weakening. Our
theory is thus inconsistent as it contains both Ok and O¬k.

As we have seen in Section 2, default logic formalises the reasoning based
on default assumptions. The world is assumed as normal as possible (Swedish
men are assumed to be tall, blond and with blue eyes, birds are assumed
to be able to fly etc.) unless evidence to the contrary. If this is the case,
previously obtained conclusions may be not any longer derivable. The idea
behind Shoham’s proposal was to add preferences to nonmonotonic logics,
where preferences represent different degrees of normality. In the most normal
case, Swedish men are tall and blond.

Deontic logic can also be a preference-based logic. As preferences served
to represent and treat exceptions in a preference-based nonmonotonic logic,
so they can be used to represent and treat violations in a preference-based
deontic logic. In other words, similar to degrees of normality in preference-
based default logics, preferences can be seen as degrees of ideality in a logic for
normative reasoning. Indeed, many preference-based deontic logics are default
logics (see also Nute’s collection on defeasible deontic logic [214]).

This was the way taken by Bengt Hansson to treat paradoxes in deontic
logic. He realised that paradoxes arose because the semantics used in deontic
logic was too rigid [151]. As seen in Definition 9, the truth condition for deontic
statements is defined by considering only the actual world and the worlds that
are accessible from the actual one (in which everything that is obligatory in
the actual world holds):

In SDL, norms are assumed to refer exclusively to what obtains in the
best possible alternatives. [. . . ] In SDL, only what is compatible with
the best is not wrong. [152, p. 83]

So, for example, the gentle murderer leads to a paradox because we obtain
two conflicting obligations, Ok and O¬k. No world can possibly satisfy both.
The solution prospected by Hansson was to move from the “best possible
alternatives” to a hierarchy of alternatives by defining a preference ordering �
over alternative worlds. Depending on the properties of �, different logics can
be obtained. Hansson, for example, at the beginning assumed only reflexivity
though in general, the preference ordering over the worlds is any partial pre-
order. The gentle murderer paradox can be solved by distinguishing accessible
worlds in which ¬k is true (and k is false) and worlds in which k is true (and
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¬k is false) and say that the first kind of worlds are better than the second
one.

A dyadic deontic logic (or logic of conditional obligation) is a logic in which
an obligation is relative to some circumstances. An obligation O(α|β) means
that “α is obligatory, if β is the case”. Clearly, monadic obligations of type Oα
are a special kind of dyadic obligations where the antecedent is a tautology
O(α|>).

Hansson gave a semantics of dyadic obligations in which an “ideality or-
dering” � over possible worlds is added [151]. When a preference relation over
worlds is added, the intuition is that O(α|β) means that worlds in which α∧β
is true are preferred to those in which ¬α ∧ β is true. Dyadic deontic logics
with a preference ordering were also proposed by Danielsson [87], though it is
Hansson’s work that is the most cited since it is the most easily accessible [1].

Properties like Weakening and And can be reformulated for dyadic logics:

(Weakening) O(α1 ∧ α2|β)→ O(α1|β)
(And) O(α1|β) ∧O(α2|β)→ O(α1 ∧ α2|β)

Deontic logics in a dyadic form were previously introduced by von Wright
[292] and Rescher [241]. Among the several dyadic logics that have been pro-
posed in the literature we recall those by Chellas [77], Alchourrón [3], Lewis
[188] (an extension of Hansson’s [151]), Føllesdal and Hilpinen [122], and van
Fraassen [286]. One difference is that, unlike [188,151,122,286], the logics of
[77,3] satisfy the property called strengthening of the antecedent:

(Strengthening of the Antecedent) O(α|β1)→ O(α|β1 ∧ β2)

van der Torre [271] shows that logics that satisfy strengthening of the
antecedent cannot formalise contrary-to-duty reasoning because strengthen-
ing of the antecedent is one of the key properties that lead to contrary-to-
duty paradoxes. On the other hand, logics that do not have strengthening
of the antecedent can formalise the contrary-to-duty paradoxes. However, Al-
chourrón [3], Castañeda [74], and Tan and van der Torre [268] criticise the
lack of strengthening of the antecedent as - in the words of Castañeda - it
is a “negative solution that looks like overkill” (though such criticism is not
undisputed - see, for example, van Benthem et al [34]). A solution to this
problem proposed by van der Torre is a two-phase deontic logic [271]. The
idea is to have a logic that allows the combination of two desirable proper-
ties for a dyadic deontic logic, that is strengthening of the antecedent and
weakening of the consequent, by forbidding the application of strengthening
of the antecedent after weakening of the consequent, a sequence that leads to
paradoxical results.

5 Compact representations of preferences

As already mentioned in the introduction, preferences are traditionally viewed
as binary relations applied to a set A, such that �⊆ A × A. If the size of
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A is reasonable then an explicit representation of � is feasible both from a
cognitive (human agent) and a computational (artificial agent) point of view.

Consider now the case of choosing a digital camera out of an e-commerce
site. Digital cameras are described by tens of features (each with different
possible values: size of the memory, type of the lens, batteries, brand, price,
etc.). If we denote by Xi the values of each possible attribute, the whole space
of possible digital cameras is a large subset of

∏
iXi. Considering only binary

attributes it is easy to see that the size of A rapidly approaches 2n, n being
the number of attributes. There is no way to handle such a set for several
different reasons:

– a human agent cannot compare the 2n potential options in order to compile
his preferences;

– there is no space in the memory of many artificial agents allowing to store
such a set;

– supposing that we manage to get the whole set of comparisons and that
we managed to store it somewhere, there is no way to compute something
operational out of it, such as verifying if it is at least partially ordered and
(if this is the case) identifying the maximal elements of A (Max(A)={x :
@y ∈ A : y � x}).
Problems of the same type arise when the set A on which preferences

are expected to apply results from other combinatorial manipulations such
as being constructed as the power set of some set Ω of elementary actions
(A ⊆ 2Ω). It is the case when a “portfolio” of actions (or candidates) needs to
be chosen out of a list of alternatives.

An “obvious” solution to this problem could be to use some numerical
representation for the different attributes and/or elementary actions and then
aggregate them appropriately. In a typical case, each attribute is associated
to a value function (ui) and then these are summed to an overall value (U).
However, there are several problems:

1. Suppose we have �i⊆ Xi ×Xi. The conditions under which ∃ui : Xi 7→ R

such that x �i y ⇔ ui(x) ≥ ui(y) are restrictive (�i needs to be a weak
order) and do not hold a priori (see also [51]).

2. Suppose that the conditions for having such value functions are satisfied.
The conditions under which ∃U : A 7→ R such that U =

∑
i ui represents

the preference � over A are even more restrictive:
– the ui need to be more than ordinal measures (to be more precise: they

need to be interval measures such that differences of preferences can be
explicitly considered);

– the ui need to be commensurable among them (to be more precise: the
differences of preferences along one attribute need to be comparable to
the differences of preferences along any other attribute, such comparison
establishing the trade-offs among the attributes);

– the �i (and thus ui) need to be preferentially independent among them
(to be more precise: x �i y needs to hold independently from how x
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and y compare along all other attributes and this condition should hold
among any subset of attributes).

Once again such conditions are not naturally met (see [51]).

Generally speaking we are looking how to compare vectors of the
∏
iXi

space among them (and then possibly find an appropriate way to “measure”
such vectors in some appropriate value scale). Under a conjoint measurement
theory perspective, given two vectors (from the vector space

∏
iXi) x1 =

〈x11 · · ·xn1 〉 and x2 = 〈x12 · · ·xn2 〉, the most general model representing a global
preference should be

〈x11 · · ·xn1 〉 � 〈x12 · · ·xn2 〉 iff ∃F : X2n
i 7→ R such that F (x11 · · ·xn1 , x12 · · ·xn2 ) ≥ 0

The function F is characterisable in many different ways: decomposable,
transitive, skew symmetric, additive etc. (for more details see [178,243,53,55,
54,52]).

However, this is of little practical interest since it does not tell us how to
handle the cases where the simple additive model does not hold (as in the case
of preferential dependencies). The basic idea, proposed in the recent years has
been to develop appropriate languages for compact representations (see [184]).
Before presenting some of such languages we should mention that these are
classified in the literature according to a number of criteria:

– expressiveness;
– concision;
– cognitive relevance;
– computational complexity.

For a discussion about these issues the reader can see [78,199,301].
Compact representations of preference models have been considered mainly

in order to take into account preferential dependencies and conditioning which
impede the use of simple additive conjoint measurement functions. The two
main languages developed for this purpose are CP-nets (accounting for con-
ditional preference statements) and GAI-networks (accounting for generalised
additivity). We mention (without discussing it) the use of lexicographic pref-
erences, a specific case of totally ordered attributes space studied in [116] and
recently used for both aggregation and learning algorithms facing conditional
preferences (see [302], [185]). We will also briefly discuss the approach con-
sisting in directly modelling preference statements as logical sentences. We
will not discuss the problem of choosing a “portfolio” of actions out of a set
of alternatives, since there is no specific language developed for this purpose
(although the reader can have a look at [183]) . The literature rather focusses
on how to “extend” preferences expressed upon a set Ω to the power set 2Ω

and how to handle efficiently the optimisation problems deriving from such an
operation. The reader can see more details in [25,212,255,283].

CP-nets CP-nets have been conceived in order to allow the representation
(and efficient computation) of situations where somebody wants to claim that
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〈xw〉 � 〈yw〉, but 〈yz〉 � 〈xz〉 (the preference between x and y depends on
what comes together to x and to y). A typical example concerns choosing
between red and white wine: I prefer red wine to white wine if we eat meat,
but I prefer white wine to red wine if we eat fish. We can distinguish between:

– unconditional “Ceteris Paribus” (CP) preferences along some of the at-
tributes of X. For instance, if we say that x31 (the first value of attribute
3) is preferred to x32 (the second possible value for the same attribute) all
other things being the same (ceteris paribus), expressed as x31 �CP x32, we
can deduce (assuming that there are three attributes in our domain) that,
for example 〈x11x21x31〉 � 〈x11x21x32〉, and in general that 〈x1ix2jx31〉 � 〈x1ix2jx32〉
with i, j being the indices associated to Xi and Xj .

– conditional preferences, where preferences along a certain attribute (let
us say attribute k) are conditioned by preferences expressed on another
attribute (let us say attribute l).

Technically speaking, a CP-net is represented through a directed graph
among the variables (attributes), where the maximal elements of the graph
are the ones where preferences are unconditioned. It is easy to see that when
the graph is acyclic, computing within a CP-net is very efficient (while it is not
the case otherwise). The reader can see more about CP-nets in [49,59,93,299].
CP-nets have been extended to TCP-nets [58,57] in order to take into account
the “relative importance” that some attributes may have with respect to other
ones and from that to more general CP-theories (see [300]), and to UCP-nets
(see [48]) in order to consider conditional utilities. The case of multiple agents
has been discussed in [248]. CP-nets have been applied in several configuration
problems as well as in planning.

GAI-networks The intuition behind additive utility (such that U(x) =∑
j uj(x

j)) is that the contribution of each attribute to the overall utility is
independent from all other attributes (and subsets of attributes). However,
decomposable and additive conjoint measurement functions hold only under
very strong conditions. Under less restrictive conditions [23,115]) we can in-
stead have utility functions based on a “generalised additive independence”
such that:

U(x) =
k∑
i=1

ui(x
Ci)

where:

– Ci are subsets of the set of attributes X (and there are k of these factors);
– DCi =

∏
j∈Ci

Xj ;
– ∃ui : DCi 7→ R.

The general idea within such functions is to measure both the utility con-
tribution of each single attribute and the utility contribution of each subset of
attributes (as if they were single ones). The reason for this is due to the posi-
tive or negative “synergies” two or more attributes may present: for instance
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having white wine (first attribute) with fish (second attribute) has a positive
synergy (which implies giving a positive reward in the function), while having
red wine (first attribute) with fish (second attribute) has a negative synergy
(which implies giving a penalisation in the function). Such generalised addi-
tivity includes many of the existing utility aggregation procedures (additive,
k-additive etc.). However, what is important with such functions is the pos-
sibility to represent them in suitable graphical models, named GAI networks
allowing for nice compact representations and efficient computation even for
rather complex dependencies. The reader can see more details in [105,141,
142].

Logical representations The basic idea here is to work directly on a
set of sentences (which express preferences, values, desires and their opposite)
instead of the binary relations. We can distinguish two approaches.

The first one consists in associating to each sentence ϕ ∈ L (where L is a
set of preferential sentences) a numerical value representing the contribution
of ϕ (when logically satisfied) to the overall utility of the agent owing L. Such
values can also represent priorities in satisfying sentences or “distances” from
some “target state of the agent” (see for instance [32,66,182,221]). It is easy to
show that in most cases such an approach boils down to use possibility theory
(and possibility logic) as representation language (see for instance [33,108]).
A slightly different approach has been developed starting from a Constraint
Satisfaction Programming perspective: the idea here is to see preference state-
ments as compact constraints and use the power of constraint programming
in order to solve preference aggregation and recommendation problems. The
reader can see more in [246,249,250,132]. For other approaches the reader can
also see [68,44].

The second approach consists in establishing a “logic of preferences”, an
idea going back to the 60s [294,296]. We have discussed several aspects of
this approach in Section 4. We just recall here that the principle consists in
elaborating a language allowing to express sentences of the type ϕ∧¬ψ�¬ϕ∧ψ:
it is preferred a situation where ϕ holds and ψ does not hold to one where ϕ
does not hold and ψ holds. For more details the reader can see [37,168,284].

6 Analytics of preferences: learning and eliciting

We now take the point of view of Björn, who has invited Gabriella for dinner.
He needs to decide the menu (consisting of a first course, a second course, a
beverage and a dessert) for the evening’s dinner based on his very limited infor-
mation about her preferences. In addition, he might be able to use stereotype
information (e.g. it is known that many researchers in logic-based artificial
intelligence have a preference for spicy foods), or he may try to extrapolate
preferences by observations of past behaviors (she has been noticed at the
conference dinner choosing chicken and not beef). Finally, he might call her
on the phone in order to ask her very specific questions about her preferences,



26 Gabriella Pigozzi et al.

as for instance comparison queries (would you prefer pasta or risotto as a first
course?). Queries of specific semantics need to be asked for attributes that
are not preferentially independent; for example if the preference over bever-
ages depends on the instantiation of the second course, one cannot simply ask
to compare between red and white wine, but Björn may ask: given that the
second course is fish, do you prefer red or white wine ? It will however be
impossible for him to ask Gabriella to reveal her complete preference relation
over the (combinatorial) combinations, so he will do better asking questions
that are informative (for instance, if he knows for sure that she is allergic to
nuts, he will not ask preference questions involving this item; and neither will
ask about caviar, if this item is too expensive given the available budget).

The topic of preference learning or eliciting has recently raised substantial
interest in the communities of operations research and artificial intelligence.
Note that in the former, the term preference elicitation is more frequent, while
in the latter (especially in the subfield of machine learning) the term prefer-
ence learning is common (due to different emphasis on the process for the
former and on the data for the latter). Indeed there is a convergence between
these communities in addressing these problems; a stream on preference learn-
ing has been organized at the European conference on Operations Research
(EURO) for a number of years; we also mention the recent initiative of estab-
lishing the workshop From Multi-criteria Decision Aid to Preference Learning
(DA2PL). In order to emphasize this convergence we propose to adopt the
term of preference analytics as more general term.

Learning or eliciting preferences means to acquire preference information in
either direct or indirect way, from preference statements, critiques to examples,
observations of user’s clicking behaviour, etc. The study of the assessment of
the preferences of a decision maker goes back to several decades; particular em-
phasis has been given to the elicitation of utility functions for multi-attribute
and multi-criteria settings [173]. Classic approaches for utility elicitation focus
on high risk decision and aim at assessing the decision maker’s utility very
precisely. The decision maker is asked a number of questions in order to assess
precisely the parameters of the utility function, with the exact questions to be
asked depending on the adopted protocol.

Decision makers are asked questions that can be local, focusing on at-
tributes in isolation, or global, aimed at comparing complete outcomes. In
particular, standard gamble queries (SGQ) ask the following: “Choose between
option x0 for sure or a lottery < x>, l, x⊥, 1−l >” (where the best option x> is
obtained with probability l, the worst option x⊥ is obtained with probability
1− l). An answer to a SGQ gives a constraint on the utility of x0. Assume,
without loss of generality that u(x>)=1 and u(x⊥)=0; the expected utility of
the lottery < x>, l, x⊥, 1−l > is l. Consider, for instance, the standard elicita-
tion procedure for additive models; the decision analyst would typically ask to
consider an attribute (for example, dessert), ask for the best (say, the Italian
dessert tiramisù) and worst value (apple pie). He will then ask local standard
gamble queries for each remaining color to assess its local utility value (value
function). The subsequent problem is that of refining the intervals on local
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utility values, which can be done with the so-called bound queries. The next
step is then of assessing the “scaling” factors that relate the weighting at-
tributes to each other. In order to do this, a “reference” outcome is fixed and
typical questions are based on the notion of indifference swaps (asking the de-
cision maker to assess the required changes to make two alternatives equally
preferred) in order to assess the relative importance of different features or
criteria.

The classic approach to elicitation suffers from a number of drawbacks.
Gamble queries (and similar questions) are difficult to respond. The precision
attained with classical elicitation methods is often unnecessary and the cogni-
tive cost might just not be worth the effort. While classic elicitation protocols
are well-founded, and can lead to being able to rank alternatives from the best
to the worst, their applicability has been questioned. Starting from a couple of
decades ago, in the operations research community, several researchers [158,
84] started to deal with the problem of eliciting a utility function when only
incomplete information is available. Instead of fully eliciting a utility function,
indirect elicitation methods assess a utility function from assignment examples
(for instance, examples are assigned to classes). More recently, researchers in
artificial intelligence [47,76,298,50,288,289] have developed elicitation tech-
niques for utility elicitation, with the goal of mitigating the cognitive cost for
the user. Indeed in AI, the aim is that of developing agents that act regionally
on behalf of the user; eliciting the preferences of the user in an effective way
is therefore crucial.

Preference disaggregation methods The UTA method [158] is an as-
sessment procedure for a set of utility functions based on linear programming.
Local utilities are piecewise linear; the interval is divided in subintervals and
linear interpolation is used to approximate the utility contribution of a given
feature. Pairwise preferences are expressed with linear inequalities; slack vari-
ables are added to allow inconsistencies in the preference information. Since
several utility functions may in general be feasible, a typical approach is the
minimization of the sum of such slack variables, yielding a utility function
that fits as good as possible the available preference information. An alterna-
tive method is MACBETH18 [84], also based on a system of linear inequalities,
that asks the user to give some reference levels for each feature/criterion and
information about the difference of satisfaction between the values of a given
feature. Utility elicitation methods goes beyond additive models; several re-
searchers have considered models based on the Choquet integral; for instance
the TOMASO decision support system [198] and the MYRIAD software tools
[181]. A review of methods for preference disaggregation (the general term for
this kind of assessment; this is in contrast to preference aggregation that com-
bines preference information given a specified model) can be found in [159].

The idea that, when presented with limited information about the user
preferences, there is not just one but many consistent utility functions, gives

18 Measuring Attractiveness by a Categorical Based Evaluation TecHnique.
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rise to robustness concerns. Let us assume that at a given point in the in-
teraction P represents the set of preference statements available and UP the
set of possible overall utility functions consistent with those. In robust ordinal
regression [147], a choice x is necessarily preferred to y, written �N , if, for
all feasible utility functions u, it holds that u(y)≥u(x) (with strict necessary
preference x �N y if u(y)>u(x) for all feasible utility functions u); x is pos-
sibly preferred to y, written �P , if there exists at least one utility function u
such that u(x) ≥ u(y) with u ∈ UP . The properties of the necessary prefer-
ence �N and of possible preference relation �N are analyzed: it is easy to see
that �N⊆�P (if something is necessary, it is also possible); moreover it holds
that if something is necessarily preferred to something else, the latter cannot
be possibly preferred to the former19: if x�N y then it cannot hold y �P x.
The method UTAGMS provides linear programming formulations in order to
compute necessary and possible rankings; notice that when additional prefer-
ence statements are added, �P might only decreases and �N increases. The
method UTADISGMS (UTilités Additives DIScriminantes) is the analogous
for sorting problems [148] (alternatives need to be assigned to classes, that are
ordered from the most to the worst preferred), given a set of examples of as-
signments and assuming an underlying additive model, the method associates
to each alternative the set of necessary and possible assignments.

Analytic Hierarchy Process (AHP) A number of methods base the
evaluation of alternatives under conflicting criteria on subjective judgments of
the decision maker about pairwise comparisons of alternatives [191]. The most
famous approach of this family is the Analytic Hierarchy Process (AHP) [253],
a method widely used for decision aid. The decision maker provides pairwise
information about the intensity of the different criteria that are mapped in a
numerical scale, constructing an evaluation matrix. The principal eigenvector
of the matrix is used as a weighting vector. The items are also evaluated in a
pairwise fashion with respect to each of the criteria; then, item evaluations are
multiplied by the weighting vector in order to assess the ranking. Despite its
popularity, AHP has been criticized by several authors. In particular, [85] crit-
icizes the method with respect to the semantics of the priority vector derived
from the principal eigenvalue method, as the method derived violates a con-
dition of order preservation between importance weights. More problematic is
that AHP, in its classic formulation, may display the (usually undesired) phe-
nomenon of rank reversal: adding, as additional choice, an alternative that is
a copy of a dominated item, can impact the final ranks (obtained with AHP)
of other alternatives, and even change the item that is ranked first (in other
words aggregation with AHP violates the independence of irrelevant alterna-
tives). Belton and Gear [28] give a numeric example for which AHP gives
B � A � C but, after adding D (a clone of B) AHP gives A � B ∼ D � C.
Dyer [110] shows how rank reversal of this kind might happen even when D is
dominated by B (and not just a clone). These observations sparked a vigor-

19 There is an obvious similarity to approaches using modal logic, however no formal logical
treatment is made in robust ordinal regression.
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ous debate in the community, with several replies to Dyer’s papers [153,254]
and followups [109], with the opinions differing on the interpretation of rank
reversal and its acceptability, and the applicability of variants of AHP that
circumvents the problem.

Leaving aside technical problems, we note that the procedure underlying
AHP is quite cognitive demanding: the construction of the comparison matri-
ces involves asking the decision maker a number of questions that is quadratic
in the number of constraints and features; therefore this method can only be
applied to decision problems involving a small number of items and features.
Indeed, consider the problem of choosing a camera out of n possible choices
and m criteria (quality of lens, memory, software,...), the user will be requested
to answer m2 +mn2 questions (for example, if there are 20 different models of
cameras and 10 criteria, the user will be asked to answer 520 questions, some-
thing considered unacceptable in typical electronic commerce applications).

Reasoning about similar decision problems Departing from traditional
axiomatic approaches in economics, [136] analyzes (from a formal point of
view) the situation of a decision maker who makes use of previous choices
in memory in order to estimate the utility of a choice in a new problem.
This is similar to what happens in case-based reasoning (a subfield of arti-
ficial intelligence) where solutions to previous similar problems are adapted
in order to solve the problem at hand. This idea has been also considered
in preference-based systems, in particular in approaches to recommendation
based on case-based reasoning [206,266].

Adaptive Utility Elicitation Ideally, a system for automated elicitation
and recommendation will only consider cognitive plausible forms of interac-
tions, focusing on the available alternatives of the current decision problem. A
number of researchers [47,76,298,50,288] have proposed the idea of an interac-
tive utility-based recommender system. It is assumed that the user has a latent
utility function that dictates his preferences; the system maintains a “belief”
(whose nature will be clearer in a moment) about such utility function u. The
general schema is as follows (bearing some similarity to active learning):

1. Some initial user preferences P0 are given; initialize belief
2. Repeat until the belief meets some termination condition

(a) Ask user a query q
(b) Observe the user response r
(c) Update the belief given r

3. Recommend the item optimal according to the current belief

A number of alternative proposals have been made with respect to 1) how
preference uncertainty is represented in a belief, 2) which criterion is used to
make a recommendation, and 3) how to select the question that is asked next.
In the following Table, we outline some possibilities.
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minimax-regret maximin-utility Bayesian
approach approach approach

knoweldge constraints constraints prob. distribtion
representation
which option minimax maximin expected
to recommend? regret utility utility
which query worst-case worst-case maximin expected value
to ask next? regret reduction improvement of information

A possibility for representing the current belief about the utility is to en-
code user responses with constraints (as in UTA) and reason about all possible
consistent utility functions (as in robust ordinal regression) making use of a
robust decision criterion to select the item to recommend. While maximin is
a possibility [290], Boutilier et al. [50] suggest to adopt minimax regret, that
is a less conservative robust criterion for decision making under uncertainty
[258,177]. The intuition behind the approach of minimax regret is that of an
adversarial game; the recommender selects the item reducing the “regret” with
respect to the “best” item when the uninown parameters are chosen by the
adversary. As before, P represents the set of preference statements available
and UP the set of possible overall utility functions consistent with those. The
max regret of an option x is the maximum difference between the utility of
the best item and the utility of x when an adversary is choosing the utility
function u ∈ UP :

MR(x;UP) = max
y∈X

max
u∈UP

u(y)−u(x) (11)

with X being the set of possible choices. The minimax regret MMR(W )
of UP and the minimax optimal item x∗P are then found by finding the item
associated with the smallest maximum regret: MMR(UP) = min

x∈X
MR(x,UP)

and x∗P = arg min
x∈X

MR(x,UP). The advantages of regret-based approach are

threefold: 1) it is easy to update our knowledge about the user: whenever a
query is answered, we treat the answer r as a new preference and derive a new
set UP∪r 20 2) simple “priors” can be encoded with constraints on UP and
3) there are efficient heuristics that directly use the computation of minimax
regret to choose the queries to ask next to the user: the current solution strategy
[298,50] asks the user to compare x∗P and its adversarial choice y∗P associated
with maximum regret. The approach comes with limitations too, as it cannot
deal with noisy responses and the formulation of the optimization depends on
the assumption about the utility.

A principled idea is that of asking queries with high (a posteriori) improve-
ment in decision quality. Assuming a query q that can have R responses, for
each response r ∈ R we can consider the updated utility space UP∪r assuming

20 For instance UP is a polytope in the case of a linear utility model defined by a vector
of weights w; UP∪r will be then a subset of UP , consisting of all instantiations of w that
satisfies r in addition to P.
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that the answer to q is r; the associated minimax regret is MMR(UP∪r) (that
can only be lower or equal to MMR(UP)). A good query will significantly re-
duce minimax regret in each of the scenarios. A (non probabilistic) notion of
myopic value of information [288] can be defined considering the worst-case
regret reduction of query q when the utility function must lie in UP :

RR(q;UP) = min
r∈R

[MMR(UP)−MMR(UP∪r)] =MMR(UP)−max
r∈R

MMR(UP∪r).
(12)

For example, consider the question q =“Do you prefer pizza or pasta?”.
The possible responses are R = {pizza � pasta,pasta � pizza,pasta ∼ pizza}.
In order to compute the regret reduction RR(q;UP) (with respect to a set of
already stated preferences P) we need to consider UP∪{pizza�pasta} (the set of

utility functions satisfying pizza � pasta in addition to P), UP∪{pizza≺pasta}
and UP∪{pizza∼pasta}. In each of these utility spaces we compute minimax

regret, consider the response associated with the highest value (in order to be
robust with respect to the less favorable response), and subtract the current
minimax regret value.

We can now use RR to numerically compare queries, as for example estab-
lishing that asking to compare pizza with pasta is less informative than asking
to compare the shepherd’s pie with risotto. In particular asking to compare
pasta alla carbonara with pasta in bianco (pasta with butter) when the former
is known to be necessarily preferred to the latter (according to the �N intro-
duced before) gives no regret reduction at all; nor there is value in repeating
questions in this model. The “best” query according to this measure is then
the query with maximal regret reduction; q∗ = arg maxq RR(q;UP). Notice
that a query can have significantly different RR values depending on the UP
(the currently known preferences may have a strong impact on the value of
the query). The straightforward approach for query selection would be to con-
sider all candidate queries, evaluate RR and pick the one with highest value;
however this is impractical for large outcomes spaces. Practical methods for
framing query selection as an optimization problems for comparison queries
(and choice queries, that extend comparison queries to a set of elements) are
thoroughly discussed in [288].

Alternatively, one could assume a Bayesian standpoint: this has the advan-
tage of handling noisy information, can exploit prior information (if available)
and can be used with different assumption about the choice model of the
user. We assume distributional information about the parameters involved in
the user’s utility function; the belief θ(w) is a probability distribution over
the parameters of the utility function that encodes the knowledge of the sys-
tem about the user’s preferences; expected utility of a given item x is given
by EUθ(x) =

∫
u(x;w) θ(w) dw. The recommendation x∗θ is the one associ-

ated with maximal expected utility under the current probabilistic belief:
EU∗θ =maxx∈AEU(x); and x∗θ =arg maxx∈AEUθ(x). When a new preference
is acquired (for instance, the user states that he prefers apples over orange), the
distribution is updated according to Bayes, using Monte Carlo methods, or in-
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ference scheme based on expectation-propagation [207], in particular Trueskill
[154] can be adapted to preference elicitation [149].

The problem of deciding which questions to ask could be formulated as
a Partially Observable Markov Decision Process (POMDP) [47], however it
is impractical to solve for non trivial cases. A more tractable approach is
to consider (myopic) Expected Value Of Information (EVOI), the difference
between the expected posterior utility (of the best recommendation in the
updated belief) EPU∗θ(q) associated to a query q and the current EU∗θ:

EVOIθ(q) = EPU∗θ(q)− EU∗θ =
∑
r∈R

Pθ(r) EU∗θ|r −EU∗θ (13)

where R is the set of possible responses (answers), θ is the current belief
distribution, θ|r the posterior and Pθ(r) the probability of a given response
according to θ, whose value depends on the assumptions made about the
choice model. Returning to our example about the dinner, a possible query
could be to choose the preferred dish among pasta, risotto and shepherd’s
pie (these three dishes constitute R in this example); the posterior distribu-
tions would be θ|risotto, θ|pasta and θ|shepherd respectively (the distribu-
tion of the parameters conditioned to the selected dish being the preferred
one among those mentioned); Pθ(risotto) would weigh numerically (let’s say,
for instance, 75% of probability) the scenario of preferring risotto to both
pasta and to the shepherd’s pie; and similarly we can assess Pθ(pasta) and
Pθ(shepherd). In order to ask the most informative question, we then ask the
query q∗ = arg maxEV OIθ(q) with highest EVOI or, equivalently, the query
with highest EPU (since the current EU∗ value can be considered as a constant
when choosing the query maximizing EVOI). For choice queries (“Among the
following options, which one do you prefer?”), Viappiani and Boutilier [289]
showed that the problem of finding the optimal query is tightly connected
to the problem of finding an optimal recommendation set (the generation of
shortlisted alternatives from which the user makes a selection [236], as in the
display of search engine results) and near-optimal queries can be computed
efficiently with worst-case guarantees.

Learning preferences from data A number of methods in the machine
learning community have been developed in order to assess a set of parameters
consistent with what is known about the user; these include methods based
on support vector machines, such as SVM-rank [160]. The common ground of
these approaches is that they fit an assumed model using the available data,
and use the learned model to make predictions. For the problem of learning
a utility function, this can mean that each user’s preference is viewed as a
constraint (an hyperplane in case of linear models) on the parameter space,
and max-margin learners aim at identifying the set of parameters that maxi-
mize the minimum distance from the nearest hyperplane. These methods are
“pointwise” in the sense that a single best guess of the user’s utility function
is provided as output. While these methods work well for tasks such as pre-
diction (as this is the setting they were designed to), they are not readily apt
for interactive systems, when one needs to assess which question the system
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should ask next (the focus of machine learning is most often of learning from
available data).

Some approaches do not make the assumption that a latent numeric utility
function exists. These include models from ranking, such as Mallows models
[86]; for an approach for learning Mallows models see for instance Lu and
Boutilier [193]. At the extreme model-free approaches do not make any spe-
cific model assumption at all, but rely on local estimation techniques. Common
approaches are based on clustering and on using the information about the
nearest neighbors in order to make estimations about the preferences of the
user (implicitly there is an assumption of regularity, meaning that preferences
of neighbors are similar). These approaches are popular for label ranking (a
type of preference problem where the input data is based on preference rank-
ings that are assigned to a specific label), in particular for the problem of
predicting preferences based on demographic information, where the notion of
similarity between user is defined naturally. A case-based nearest neighbors
approach is proposed by Brinker and Hüllermeier [69], while Yu, Wan and Le
[303] propose a method based on decision trees.

If one knows specific information about the underlying preference model,
it is advantageous to exploit this information. A number of works focused
on algorithms for learning preferences under specific model assumptions. In
particular efforts have been made to learn lexicographic models [302] (the lex-
icographic assumption greatly simplifies the learning task, as only very few
rankings are consistent with a lexicographic model) and preferences over sets
[297]. As mentioned before in Section 5, CP-nets are a compact language rep-
resentation for preferences in multi-attribute domains. If we know that a user
has preferences that are consistent with a CP net, what is the best way to learn
them? Chevaleyre et al. [80] address this problem from a theoretical point of
view, providing learnability results. If we want to reason about possible CP
networks consistent with current information, we may use Probabilistic CP
networks (PCP-nets) [38], a compact representation of a probabilistic distri-
bution over CP networks; PCP-nets can be used for learning by conditioning
on available information. Finally, [44] describes how to learn conditionally lex-
icographic preference relations.

7 Non classical preference models

Until now we have always considered preferences as model of “certain informa-
tion”. Indeed they have been considered as binary relations and the language
used in order to formalise any theory about them has been (obviously) classic
logic; the reader can check this in all basic texts about preference modelling:
[115,119,251].

However, it is reasonable that if asked about a preference between any
two x and y one could reply “I do not know” or more generally hesitate
replying partially and/or ambiguously. The problem of representing values and
uncertainty is not really new: Ramsey [238] and De Finetti [88] have addressed



34 Gabriella Pigozzi et al.

the issue already in the 30s and it has been formalised in decision analysis both
in prescriptive terms [291] and normative ones [258]. The problem with these
approaches is that they are limited by the way uncertainty and hesitation
are modelled: practically only probability (although subjective) is considered
along with economically rational preferences ([115]). Such limitations gave rise
to alternative approaches either within the decision theory community [118,
136,174,256] or within the artificial intelligence community (see for instance
[99]). In the following we are going to survey the results of the latter approach.

7.1 Fuzzy sets

The basic idea here is the one to create and/or use languages specifically
tailored to uncertainty modelling purposes, and more specifically the language
of fuzzy sets. The first attempts to use fuzzy sets for preference modelling
purposes date back to the late 70s (see [215], [216], [252]). The major challenge
was to translate the theoretical structures already used in order to characterise
and work with preferences into the new language: what is a fuzzy partition?
How to define a fuzzy transitive binary relation? What should be a fuzzy
preference structure? There is a wide literature in this area (partially surveyed
in [211]) for which we cite some classic references: [100], [121], [145], [169], [227].

If, on the one hand, fuzzy (or valued as they are often are called) preference
relations allowed to introduce a more nuanced and realistic preference mod-
elling language, on the other hand they opened a certain number of problems.

– Preference structures and representation theorems require the introduc-
tion of complex logical sentences. For instance the definition of transitivity
(∀x, y, z ∈ A x � y ∧ y � z → x � z) requires to translate the universal
quantifier as well as the connectives “and” and “imply” under form of ap-
propriate functions. This problem has been addressed through the use of
T-norms and conorms [101,259] possibly satisfying the De Morgan prin-
ciple (such that T (x, y) = N(S(N(x), N(y))), where T , S and N are the
functions representing T-norms, T-conorms and negations respectively). It
has been soon proved that the system of functional equations which re-
sults when usual preference structures need to be characterised does not
admit a unique solution (see [5,121]). This is not surprising knowing the
truth functionality problems of fuzzy reasoning and introduces a degree of
freedom which needs to be managed during the modelling process.

– Most of the times valued preference relations are practically sentences
where preferences are associated to some “measure of uncertainty” (it is
typically the case of expected utility). Under such a perspective when sev-
eral different valued preferences need to be aggregated what practically
we get is a problem of aggregating the associated measures (as in most
ordered statistics problems), which in this case are supposed to be fuzzy
values. The problem has been addressed extending well known aggregation
procedures through the introduction of the Choquet and Sugeno integrals
which are the more general ordered statistics we can conceive (see [146]).
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The reader should note that this approach allows to include probability
measures above preference statements within the same theoretical frame-
work. Actually the concept of fuzzy measure is nothing more than the one
of “capacity”: a function f over the power set of a set Ω (f : 2Ω 7→ [0, 1]
such that f(∅) = 0 and A ⊆ B ⊆ Ω → f(A) ≤ f(B)). Probabilities are
just additive capacities. All that said, such tools implicitly introduce a
commensurability hypothesis among these different measures, which is far
from being true in practice.

– A specific way to address the problem of measuring the uncertainty associ-
ated to preference statements has been the use of possibility distributions
(see [102]): these replace the additive property characterising probabilities
(seen as capacities) with a pure ordinal sum (π(A∪B) = max(π(A), π(B)),
π being a possibility distribution). If we now consider purely ordinal pref-
erence statements and purely ordinal likelihoods (such as described by
possibilities) we get a possibilistic version of “Qualitative Decision The-
ory” an attempt to establish an ordinal version of classic Decision Theory
(see [103], [98]). The problem here is that the resulting decision rules are
either overconfident or not decisive and thus operationally of little interest
(see [99], [114]).

7.2 Beyond fuzzy sets

As already mentioned it might be the case that it is not possible to establish
precisely whether a certain relation holds or not. However, hesitation can be
due either to incomplete information (missing values, unknown replies, unwill-
ingness to reply etc.) or to contradictory information (conflicting evaluation
dimensions, conflicting reasons for and against the relation, inconsistent replies
etc.). More generally speaking while we try to assess the belief of a sentence
or the value of something we may face the, rather common, situation where
both positive information (reasons, values) and negative information (reasons,
values) are available. Typical cases include positive and negative witnesses,
majorities for and vetoes against (a preference or a statement), arguments
for and against, gains and losses etc. Such situations have been considered
in argumentation theory ([272]), value theory ([242]), cognitive studies about
decision under risk and uncertainty ([170], as well as in philosophy and formal
logic (see [97]), [26] and [27]). The common idea behind these approaches is
that the negative information (reasons, values) is not just the complement of
the positive one, but needs to be considered explicitly and formalised appro-
priately. In formal logic this idea has been further developing multi-valued
logics and more precisely four-valued logics (see in [17,18,35,113,123,120,137,
172,270,277]).

In the case of preference modelling, the use of such logics was first suggested
in [276] and [92]. Such logics extend the semantics of classical logic through
two hypotheses:



36 Gabriella Pigozzi et al.

– the complement of a first order formula does not necessarily coincide with
its negation;

– truth values are only partially ordered (in a bilattice), thus allowing the
definition of a boolean algebra on the set of truth values.

The result is that using such logics, it is possible to formally characterise
different states of hesitation when preferences are modelled (see [279], [280]).
Furthermore, using such a formalism, it becomes possible to generalise the
concordance/discordance principle (used in several decision aiding methods)
as shown in [278] and several characterisation problems can be solved (see for
instance [281]). More recently (see [228,125,19,91,217,218,282]) it has been
suggested to use the extension of such logics for continuous valuations.

Among others, this research allowed to show that such continuous val-
uations correspond to the logical counterpart of the concept of bi-capacity
introduced as measure of “bipolar” preference measurement. The issue of bi-
polarity returned of interest in the recent years (see [104]) through different
contributions where the presence of clearly distinct positive and negative rea-
sons are considered in representing preferences and supporting decisions (see
[14,39,40]).

8 Conclusions

Preferences are a key element of decision making and a basic concept for sev-
eral research fields such as economics, decision theory, game theory, artificial
intelligence, classification, databases, etc. This article presented the state of
the art of preferences in artificial intelligence; it introduced techniques for rea-
soning about, argumenting, representing and learning preferences. Note that,
due to the width of the topic, we did not cover some important domains where
handling preferences have also been considered as planning [24], personalized
user interfaces [128], and the recently very active field of preference-based
reinforcement learning [126].

Preferences play a role in almost all sub-areas of artificial intelligence, as
witnessed by the diversity of the formalisms employed in the different sections
of this article. We prospect that in the future preferences will play an even
increasing role (some prominent research directions are mentioned in the dif-
ferent sections of this article). Indeed, artificial intelligence aims at producing
computational artifacts that can help humans in a number of problems act-
ing on their behalf; reasoning, explaining, learning and in general handling
preferences are central issues to be tackled in any non trivial artificial intelli-
gence system. There are several applications [223] of this research area, some
already deployed in practice, including personalized and location-aware rec-
ommendation systems [62] and interactive personalized configuration systems
[264].

We envision that the research issues covered by this survey will be more and
more interconnected: for instance, we can foresee the development of preference
elicitation strategies for non classical preference models (following the recent
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works of [29], where adaptive elicitation techniques are proposed for assessing
preferences dictated by a Choquet integral), or the development of richer lan-
guages for representation of complex preferences, that can then be used for
argumentation. A critical point is that of providing explanations (generated
automatically) to the user on how his preferences are treated (aggregated,
assessed,...) and the reasons behind a particular action taken by the system.
This issue is crucial in the research field of recommender systems [130]; a
recommender system should be able to explain why a particular product is
suggested.

Finally, preferences constitute the central element of negotiations and social
choice problems, that arise from the fact that different agents (or organiza-
tions) have conflicting objectives, expressed in terms of preferences. Voting
systems are ways to aggregate the preferences of different users (or agents)
in order to make a collective choice (as in elections); however for novel ap-
plication domains, such as internet-based decision support tools for groups of
users, new frameworks need to be developed (for instance, voting systems with
incomplete preference profiles and incremental elicitation of votes, following
[194]; alternatively autonomous agents might engage in online argumentations
in order to choose the best candidate for a job). Computational social choice is
the field that studies algorithmic methods to reason about collective choices,
as such preferences are a central element.

We expect that our general survey about preferences in artificial intelli-
gence can be of interest to the researchers of various sub-disciplines of arti-
ficial intelligence, contributing in the widespread adoption of preference han-
dling methods and fostering the development of new research directions at the
intersection of different fields.

Acknowledgments

We thank the three anonymous referees for their valuable comments and sug-
gestions that helped us improving the content and readability of the paper.

Gabriella Pigozzi benefited from the support of the AMANDE project of
the French National Research Agency (ANR-13-BS02-0004); Paolo Viappiani
is supported by the ELICIT project funded by the French National Research
Agency through the Idex Sorbonne Universités under grant ANR-11-IDEX-
0004-02.

References
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158. Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multi-

criteria decision making: the UTA method. European Journal of Operational Research
10, 151–164 (1982)
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279. Tsoukiàs, A., Vincke, P.: A new axiomatic foundation of partial comparability. Theory
and Decision 39, 79–114 (1995)
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