SiViBiR++ project: Simulation of a Virtual Bioreactor Landfill using Feel++

G. Dollé, O. Duran, N. Feyeux, E. Frénod, M. Giacomini

August 25, 2015 - CIRM, Luminy

CEMRACS project financed by:

Modeling a bioreactor landfill

3 Implementation

5 Conclusions

What is a bioreactor landfill?

A bioreactor landfill is a waste management facility that features:

- Decomposition of organic wastes (waste treatment)
- Production of **methane** and **heat** through the process (energy generation)

1 ton of waste can generate 100m³ of methane

Functioning of a bioreactor landfill:

• Bacteria consume organic wastes (fats, carbohydrates, ...)

 $CH_3CH_2COOH + H_2O \longrightarrow 3H_2O + CO_2 + 2CH_4$

Functioning of a bioreactor landfill:

• Bacteria consume organic wastes (fats, carbohydrates, ...)

 $CH_3CH_2COOH + H_2O \longrightarrow 3H_2O + CO_2 + 2CH_4$

• The reaction produces heat

Functioning of a bioreactor landfill:

• Bacteria consume organic wastes (fats, carbohydrates, ...)

$$CH_3CH_2COOH + H_2O \longrightarrow 3H_2O + CO_2 + 2CH_4$$

- The reaction produces **heat**
- The reaction takes place in presence of *good* temperature and humidity conditions

A bioreactor landfill model

Functioning of a bioreactor landfill:

• Bacteria consume organic wastes (fats, carbohydrates, ...)

$$CH_3CH_2COOH + H_2O \longrightarrow 3H_2O + CO_2 + 2CH_4$$

- The reaction produces heat
- The reaction takes place in presence of *good* temperature and humidity conditions

Inputs and outputs:

- Methane is extracted by the drains (productors system)
- Liquid water is injected into the bioreactor to increase humidity and decrease the temperature (injectors system)

SiViBiR++ project aims at answering the following questions:

- What are the equations describing the bioreactor landfill?
- How to numerically simulate a bioreactor landfill?
- Can we **predict** the quantity of gas that will be produced by the bioreactor landfill in the next 20/30 years?

Implementation

• Concentration of bacteria

- Concentration of bacteria
- Concentration of organic carbon

- Concentration of bacteria
- Concentration of organic carbon
- Concentration of liquid water

- Concentration of bacteria
- Concentration of organic carbon
- Concentration of liquid water
- Concentration of gas (methane, carbon dioxide, water vapor, oxygen and nitrogen)

- Concentration of bacteria
- Concentration of organic carbon
- Concentration of liquid water
- Concentration of gas (methane, carbon dioxide, water vapor, oxygen and nitrogen)
- Temperature

- Concentration of bacteria
- Concentration of organic carbon
- Concentration of liquid water
- Concentration of gas (methane, carbon dioxide, water vapor, oxygen and nitrogen)
- Temperature
- Velocity of the gas mixture

Bacteria production and organic carbon consumption

- *d_b* : Concentration of bacteria
- C^{org} : Concentration of organic carbon

$$\begin{cases} \frac{\partial C^{\text{org}}}{\partial t} = -ad_b C^{\text{org}} \Psi(w) \widetilde{\Psi}(T) \\ \frac{\partial d_b}{\partial t} = -c_d \frac{\partial C^{\text{org}}}{\partial t} \end{cases}$$

 $\Psi(w)$ accounts for the *good conditions* of humidity $\widetilde{\Psi}(\mathcal{T})$ accounts for the *good conditions* of temperature

Heat equation

The temperature T is solution of the classical heat equation

$$\frac{\partial T}{\partial t} - k_T \Delta T = -c_T \frac{\partial C^{\text{org}}}{\partial t}$$

The source term depends on the consumption of organic carbon during the reaction driven by the bacteria

Boundary conditions impose a given temperature on the external wall of the bioreactor and on the top membrane:

Evolution of the gases and the water

Modeling the gases:

- G: Concentration of a gas in the bioreactor
- u: Velocity field
- $\phi {:}$ Porosity of the wastes

$$\phi \frac{\partial G}{\partial t} + \underbrace{u \cdot \nabla G}_{\text{transport}} = \underbrace{f(t, x)}_{\text{source term}}$$

The source term is

- zero for oxygen (O) and nitrogen (N) \Rightarrow f = 0
- due to the consumption of C^{org} for methane (*M*) and carbon dioxide (C^{dx}) $\Rightarrow f \propto -\frac{\partial C^{\text{org}}}{\partial t}$
- related to the condensation phenomenon for the water vapor (h)

Evolution of the gases and the water

Modeling the gases:

- G: Concentration of a gas in the bioreactor
- u: Velocity field
- $\phi :$ Porosity of the wastes

$$\phi \frac{\partial G}{\partial t} + \underbrace{u \cdot \nabla G}_{\text{transport}} = \underbrace{f(t, x)}_{\text{source term}}$$

The source term is

- zero for oxygen (O) and nitrogen (N) \Rightarrow f = 0
- due to the consumption of C^{org} for methane (*M*) and carbon dioxide (C^{dx}) $\Rightarrow f \propto -\frac{\partial C^{\text{org}}}{\partial t}$
- related to the condensation phenomenon for the water vapor (h)

Modeling the water:

- Advection-diffusion equation with a vertical drift due to the gravity
- The source term reproduces the condensation phenomenon and the injection of liquid water

Velocity field

Hypothesis:

- Incompressible flow
- Darcy's law

$$\begin{cases} \nabla \cdot u = 0 \\ u = -\nabla \Phi \end{cases} \quad \Rightarrow \quad -\Delta \Phi = 0$$

Boundary conditions :

 $\begin{cases} u \cdot n = 0 & \text{ on } \partial \Omega \\ u \cdot n = u_{\text{out}} & \text{ on the drains} \end{cases}$

Remark

The boundary condition on the drains may be rewritten as a source term concentrated on a line in the equation for the velocity field: $-\Delta \Phi = G^{pump}$

Modeling a bioreactor landfill

Finite Element Embedded Library and Language in C++

A Domain Specific Language for PDE's embedded in C++ providing a syntax very close to the mathematical language

Features

- $\bullet\,$ Supports an arbitrary approximation order for Galerkin methods (cG, dG) in 1D, 2D and 3D
- Supports simplex, hypercube and high order meshes
- Supports seamless parallel computing
- Supports large scale parallel linear and non-linear solvers (PETSc/SLEPc)
- Supports mesh preprocessing (GMSH)

The geometry of the bioreactor landfill 1/2

We focus on the alveolus 7b represented as a customizable box (the Chinese food box) to handle different geometries:

- Parametrized lengths, slopes, ...
- Varying slopes (shear transformations)

GMSH geometry

(Courtesy of Entreprise Charier)

The geometry of the bioreactor landfill 2/2

Two grids of small pipes model

- Water injectors
- Gas extraction system (productors)

represented as 1D lines located inside the 2D/3D domain.

3D-1D coupling

Two methods to handle 1D lines in 3D geometries:

- 1D lines embedded in the 2D/3D mesh
 - \implies Add constraints to the mesh (mesh size, partitions in parallel, ...)!
- Interpolation between 1D lines and 2D/3D meshes
 - \implies High computational cost (Construction of the interpolation operator)

Interpolated line (left), Embedded line (right)

3D-1D coupling

Two methods to handle 1D lines in 3D geometries:

- 1D lines embedded in the 2D/3D mesh
 - \implies Add constraints to the mesh (mesh size, partitions in parallel, ...)!
- Interpolation between 1D lines and 2D/3D meshes
 - \implies High computational cost (Construction of the interpolation operator)

Solution of the Laplace equation in 3D using Dirac masses over lines as source term

Approximation of the organic carbon and the temperature

- Semi-implicit treatment of the non-linear reaction term
- Explicit treatment of the coupling terms

At each time step, we seek C^{org} in the space of \mathbb{P}_1 Finite Elements such that

$$\int_{\Omega} \frac{C^{\operatorname{org},n+1} - C^{\operatorname{org},n}}{\Delta t} \Phi dx = -\int_{\Omega} a C^{\operatorname{org},n+1} (d_b^0 + c_d C^{\operatorname{org},0}) \Psi(w^n) \widetilde{\Psi}(T^n) \Phi dx$$
$$+ \int_{\Omega} a c_d C^{\operatorname{org},n} C^{\operatorname{org},n+1} \Psi(w^n) \widetilde{\Psi}(T^n) \Phi dx$$

At each time step, we seek \mathcal{T} in the space of \mathbb{P}_1 Finite Elements such that

$$\int_{\Omega} \frac{T^{n+1} - T^n}{\Delta t} \Phi dx + k_T \int_{\Omega} \nabla T^{n+1} \cdot \nabla \Phi dx = -c_T \int_{\Omega} \frac{\partial C^{\operatorname{org}, n}}{\partial t} \Phi dx$$

Approximation of the velocity field

We consider a **mixed formulation** for the velocity equation:

$$\begin{cases} \nabla \cdot u = G^{\text{pump}} \\ u = -\nabla \Phi \end{cases}, \qquad u \cdot n = 0 \text{ on } \partial \Omega \end{cases}$$

We seek $(u, \Phi) \in H(\operatorname{div}) \times L^2(\Omega)$ such that $u \cdot n = 0$ on $\partial \Omega$

$$\begin{cases} \int_{\Omega} u \cdot \nabla \Psi dx - \int_{\partial \Omega} u \cdot n \Psi ds = -\int_{\Omega} G^{\text{pump}} \Psi dx \\ \int_{\Omega} (u \cdot v + \nabla \Phi \cdot v) dx = 0 \end{cases}, \quad \forall (v, \Psi) \in H(\text{div}) \times L^{2}(\Omega) \end{cases}$$

Approximation of the velocity field

We consider a **mixed formulation** for the velocity equation:

$$\begin{cases} \nabla \cdot u = G^{\text{pump}} \\ u = -\nabla \Phi \end{cases}, \qquad u \cdot n = 0 \text{ on } \partial \Omega \end{cases}$$

We seek $(u, \Phi) \in H(\operatorname{div}) \times L^2(\Omega)$ such that $u \cdot n = 0$ on $\partial \Omega$

$$\begin{cases} \int_{\Omega} u \cdot \nabla \Psi dx - \int_{\partial \Omega} u \cdot n \Psi ds = -\int_{\Omega} G^{\text{pump}} \Psi dx \\ \int_{\Omega} (u \cdot v + \nabla \Phi \cdot v) dx = 0 \end{cases}, \quad \forall (v, \Psi) \in H(\text{div}) \times L^{2}(\Omega) \end{cases}$$

Finite Element approximation: $RT_0 \times \mathbb{P}_0$ Pros:

• Good representation of the velocity field

Cons:

• In order to assure the well-posedness of the problem, we add a perturbation term $\epsilon\Phi$ to the first equation

Approximation of gas and water concentrations

Pure advection equation using Lax-Wendroff

$$\phi \frac{\partial G}{\partial t} + u \cdot \nabla G = f(t, x)$$

Pros:

• It solves the pure advection equation

Cons:

• Some spurious numerical oscillations may appear

Approximation of gas and water concentrations

Pure advection equation using Lax-Wendroff

$$\phi \frac{\partial G}{\partial t} + u \cdot \nabla G = f(t, x)$$

Pros:

• It solves the pure advection equation

Cons:

• Some spurious numerical oscillations may appear

Advection-diffusion equation using SUPG stabilization

$$\phi \frac{\partial G}{\partial t} + u \cdot \nabla G + k_G \Delta G = f(t, x)$$

Pros:

• It stabilizes the equation for a wide range of Péclet numbers

Cons:

• It introduces a diffusion term which is not present in the original model and requires caution handling near the boundary

Mixed formulation: velocity field and pressure

Velocity field and pressure computed in alveolus 7b

Advection equation 1/3

• 2D advection-diffusion equation with high Péclet number: test case without stabilization

Advection equation 1/3

• 2D advection-diffusion equation with high Péclet number: test case with SUPG

Advection equation 2/3

• 3D advection-diffusion equation with high Péclet number: test case with SUPG

Advection equation 3/3

• 3D pure advection equation using 1-step Lax-Wendroff method

3 Implementation

Conclusions

About Feel++:

- Feel++ is a very generic and rich environment for Finite Element computations
- Feel++ is highly scalable and allows applications in several fields
- Feel++ experience may be greatly improved by means of additional documentation and well-documented tutorials

About the bioreactor landfill model:

- Several numerical schemes for the simulation of a bioreactor landfill have been explored
- A partial coupling of the equations has been implemented

Conclusions

About Feel++:

- Feel++ is a very generic and rich environment for Finite Element computations
- Feel++ is highly scalable and allows applications in several fields
- Feel++ experience may be greatly improved by means of additional documentation and well-documented tutorials

About the bioreactor landfill model:

- Several numerical schemes for the simulation of a bioreactor landfill have been explored
- A partial coupling of the equations has been implemented

What's next:

- Tune the parameters involved in each equation
- Couple the full model
- Perform data assimilation to tune the parameters of the full model
- Compute some long-time predictions of methane production

Special thanks to Christophe Prud'homme for his support and his suggestions during the development of this project.

Thanks to all the Cemracsians: organizers and participants.