
HAL Id: hal-01222211
https://hal.science/hal-01222211v1

Submitted on 29 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Waves in Newton’s bucket
Jérôme Mougel, David Fabre, Laurent Lacaze

To cite this version:
Jérôme Mougel, David Fabre, Laurent Lacaze. Waves in Newton’s bucket. Journal of Fluid Mechanics,
2015, 783, pp. 211-250. �10.1017/jfm.2015.527�. �hal-01222211�

https://hal.science/hal-01222211v1
https://hal.archives-ouvertes.fr


 
  

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/ 
Eprints ID : 14405

To link to this article : DOI: 10.1017/jfm.2015.527
URL : http://dx.doi.org/10.1017/jfm.2015.527    

To cite this version : Mougel, Jerome and Fabre, David and Lacaze, 
Laurent Waves in Newton's bucket. (2015) Journal of Fluid Mechanics, 
783. pp. 211-250. ISSN 0022-1120.

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Waves in Newton’s bucket

J. Mougel1,†, D. Fabre1 and L. Lacaze1,2

1Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse),
Allée Camille Soula, 31400 Toulouse, France

2CNRS, IMFT, 31400 Toulouse, France

(Received 27 April 2015; revised 30 July 2015; accepted 4 September 2015)

The motion of a liquid in an open cylindrical tank rotating at a constant rate around its
vertical axis of symmetry, a configuration called Newton’s bucket, is investigated using
a linear stability approach. This flow is shown to be affected by several families of
waves, all weakly damped by viscosity. The wave families encountered correspond to:
surface waves which can be driven either by gravity or centrifugal acceleration, inertial
waves due to Coriolis acceleration which are singular in the inviscid limit, and Rossby
waves due to height variations of the fluid layer. These waves are described in the
inviscid and viscous cases by means of mathematical considerations, global stability
analysis and various asymptotic methods; and their properties are investigated over a
large range of parameters (a, Fr), with a the aspect ratio and Fr the Froude number.
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1. Introduction

When a cylindrical container, such as a glass or a pail, is partially filled with
a liquid and put into rotation at a constant rate around its vertical axis, the free
surface deforms as a consequence of centrifugal effects and eventually relaxes to a
parabolic shape. This simple situation, which is now often encountered as an exercise
in undergraduate fluid dynamics courses, was first discussed by Newton (1687), who
described the motion as follows: ‘If a vessel, hung by a long cord, is so often turned
about that the cord is strongly twisted, then filled with water, and held at rest together
with the water; after, by the sudden action of another force, it is whirled about in the
contrary way, and while the cord is untwisting itself, the vessel continues for some
time this motion; the surface of the water will at first be plain, as before the vessel
began to move; but the vessel by gradually communicating its motion to the water,
will make it begin sensibly to revolve [· · ·] till at last, performing its revolutions in
the same times with the vessel, it becomes relatively at rest in it’ (Newton 1687).
After this description of the transient dynamics, which are now explained as a result
of viscous stress originating from the walls and leading to a relaxation to solid
body rotation and a parabolic surface, Newton put forward a philosophical argument
intended as a proof of the existence of an absolute space: ‘This ascent of the water
shows its endeavour to recede from the axis of its motion; and the true and absolute
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circular motion of the water, which is here directly contrary to the relative, discovers
itself, and may be measured by this endeavour.’ In other words, an observer located
in the same frame as the bucket, even if he perceives the water as perfectly still,
could still infer that the bucket is in rotation by a simple observation of the curved
surface.

Reconsidering the original argument of Newton from a modern point of view, one
could argue that, even without noticing the concavity of the surface, an observer
located in the frame of the bucket could convince himself that he is rotating with
respect to an inertial frame by observing that small amplitude perturbations give rise to
wave motions. Indeed, several kind of waves directly due to rotation or affected by it
can be expected to occur in the present situation. At least three families of waves can
be anticipated. First, for frequencies of the order of the rotation rate, one expects to
encounter inertial waves which are directly due to the restoring effect of the Coriolis
force (Greenspan 1990). Second, at much lower frequencies, the radial variation of
height of liquid plays a similar role to that of the zonal variation of the Coriolis
parameter in planetary flows, so one can also expect the existence of Rossby waves.
Finally, surface waves due to the restoring effect of gravity are also encountered, and
one can expect to detect the effects of rotation on their characteristics.

Despite the academic interest linked to its historical significance, only a few studies
have investigated the oscillation modes of the Newton bucket configuration, and most
of them focussed on the sloshing modes without rotation (Henderson & Miles 1994;
Bauer & Eidel 1997; Martel, Nicolas & Vega 1998; Ibrahim 2005), or restricted to
either the weak rotation regime (Miles 1964) or the fast rotation regime (Sun 1960;
Miles & Troesh 1961), where the free surface remains flat at leading order or forms
a hollow cylindrical core, respectively. However, beyond its fundamental interest,
there are several practical situations where it is desirable to possess a comprehensive
description of the various wave solutions of the Newton bucket configuration. First,
the fact that it gives rise to an almost perfect parabolic surface has been exploited
in at least two applications. The first is in producing liquid mirrors, which has
been achieved in large telescopes looking at the zenith by slowly rotating a circular
tank filled with quicksilver or gallium (Borra 1982). The second is linked to the
production of contact lenses by the spin casting process, in which liquid polymer
is injected into a spinning mold (Neefe 1983). In both these situations, it may be
desirable to know the frequencies at which the free surface is more likely to vibrate,
leading to potential disturbances of the desired shape. Second, a closely related
situation, in which only the bottom plate is rotating while the lateral wall is held
fixed, has been the object of a number of recent experiments (Vatistas 1990; Jansson
et al. 2006; Suzuki, Iima & Hayase 2006; Poncet & Chauve 2007; Bergmann et al.
2011) because it gives rise to the onset of spectacular three-dimensional patterns,
including rotating polygons, switching and sloshing. Recently, an explanation of such
phenomena in terms of resonance between several kinds of waves has been proposed
(Tophøj et al. 2013; Fabre & Mougel 2014; Mougel, Fabre & Lacaze 2014). The
proposed mechanism requires some differential rotation, so it is not directly applicable
to the Newton bucket configuration, for which all wave solutions are expected to be
stable (namely, oscillating or weakly damped). However, experimental observations
and a theoretical argument by Bergmann et al. (2011) demonstrate that a substantial
part of the flow, in the central region, is actually close to solid body rotation, so
having at hand a catalogue of the wave solutions existing in this configuration is
highly desirable. Also, it is worth pointing out that the new apparatus by Bach et al.
(2014) is characterized by independent rotation between the cylinder wall and the



bottom plate, and therefore allows one to switch between the two above-mentioned
configurations, namely Newton’s bucket and the rotating bottom experiment.

The objective of this work is, thus, to provide an exhaustive and comprehensive
classification of all the waves existing in the Newton bucket configuration, for a
range of parameters ranging from zero rotation and a flat surface to strong rotation
and highly deformed surfaces (with the possible appearance of a dry central core).
For each family, we will detail the structure of the eigenmodes and the physical
mechanisms behind it, and explore the effect of the parameters (the most important
being the Froude number characterizing the ratio between rotation and gravity effects)
on the frequency and damping rate. For this purpose, we will employ a combination
of various approaches, including numerical solution of the global stability equations
in the viscous case, a simpler approach valid in the shallow-water approximation
which allows some analytical results, and a number of asymptotic approaches. The
paper is organized as follows: in § 2 we describe the geometry and the parameters,
present the general linear equations governing small-amplitude waves in the viscous
case, and introduce the global stability method used to solve them. In § 3, we
analyze the mathematical structure of the inviscid problem, first from the general
equations, and second from the point of view of the shallow-water approximation.
Section 4 is devoted to the exploration and classification of the wave solutions,
relying mostly on the numerical solution of the global stability problem, with
comparisons to approximate solutions of the inviscid problem whenever possible.
Section 5 explores the effect of viscosity and boundary conditions on the waves, in
particular by comparing the results with either no-stress or no-slip conditions along
the walls. Section 6 briefly addresses the case where the cylinder is closed by a top
wall, leading to different phenomena in the high-Froude-number limit. Finally, § 7
summarizes the results and lists a few open directions for future studies.

2. Problem setting: geometry, parameters, and governing equations
2.1. Geometry and parameters

In cylindrical coordinates (r, θ, z) we consider a cylindrical container of radius
R partially filled with water and rotating around its vertical axis of symmetry at
a constant rotation rate Ω with respect to an inertial frame. The gravity field is
constant and vertical, with acceleration g. The volume of fluid filling the cylinder
is fixed and is πR2H, where H denotes the height of the flat free surface at rest.
The first dimensionless parameter is thus purely geometrical, and corresponds to the
aspect ratio

a= H
R
. (2.1)

In the general case we consider an incompressible, viscous liquid of density ρ and
kinematic viscosity ν. Surface tension is neglected. The physics of this problem is thus
controlled by three main ingredients, namely rotation, gravity and viscosity. Taking
the cylinder’s radius as a length scale, the three associated time scales respectively
read TΩ = Ω−1, Tg = √R/g and Tν = R2/ν. Pertinent non-dimensional numbers can
be constructed by comparison between these time scales. The most important one is
obtained by comparing gravity and rotation, and yields the Froude number

Fr= a−1/2 Tg

TΩ
= ΩR√

gH
. (2.2)
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FIGURE 1. Typical free surface shapes: (a) Fr= 0, (b) Fr< 2, (c) Fr> 2.

Note that the aspect ratio a has been conveniently incorporated into this definition.
Under this form, the Froude number can also be interpreted as the ratio between the
characteristic velocity of the fluid and the surface wave velocity in the shallow-water
limit, so this choice will prove to be particularly convenient.

The third important parameter needed in the analysis can be constructed by
comparing the viscous time scale with the other effects. For instance, comparing
rotation and viscosity leads to the Ekman number

Ek= TΩ
Tν
= ν

R2Ω
. (2.3)

At equilibrium, the whole volume of fluid rotates rigidly with the solid walls; the
azimuthal velocity in the inertial frame thus corresponds to V(r) = Ωr. Neglecting
surface tension, the free surface shape is governed by the equilibrium between
centrifugal force and gravity, which leads to the famous parabola. Two regimes
should be considered for the equilibrium state (further called base flow) depending
on whether the Froude number is below or above the critical value Frc= 2. If Fr< 2,
the minimum water height remains positive and the water covers the entire bottom.
This situation will be referred to as the wet case. On the other hand, when Fr > 2
the fluid does not entirely cover the container bottom (see figure 1). In other words,
a circular dry region appears at the centre and this situation will thus be referred to
as the dry case. The equation for the free surface is given, in each case, by

Wet case (Fr< 2) : h(r)=H + Ω
2

2g

(
r2 − R2

2

)
≡ a

[
1+ Fr2

(
r2

2
− 1

4

)]
,

Dry case (Fr> 2) : h(r)= Ω
2

2g

(
r2 − R2

)+√Ω2HR2

g
≡ a

Fr2

2

(
r2 − rc

2
)
.

(2.4)

In each case, the second expression given here is non-dimensional (with R as a
length scale), and rc is the non-dimensional radius of the dry region defined by
rc=√1− 2/Fr. The pressure distribution corresponding to this base state is given as
P0(r, z)= Pa + ρg(h(r)− z), where Pa is the pressure at the free surface.

Finally, it should be noted that the equilibrium state does not depend upon the
viscosity of the fluid. Viscosity would only impact the rate at which the equilibrium
is reached.



2.2. Global stability equations
We consider, in the following, small perturbations of the base flow defined previously.
We thus expand velocity, pressure and fluid height as follows

[U, V,W, P] = [0, Ωr, 0, P0(r, z)] + [u(r, z), v(r, z),w(r, z), ρp(r, z)]eimθ−iωt, (2.5)
H(r)= h(r)+ η(r)eimθ−iωt. (2.6)

Here m is the azimuthal wavenumber and ω is the complex frequency of the wave.
Classically, we have ω = ωr + iωi, where ωr is the oscillation rate and ωi < 0 is
the damping rate. Note that the oscillation rate in the rotating frame corresponds
to ωr −mΩ .

The linearised equations for the perturbations then read

i(mΩ −ω)u− 2Ωv =−∂p
∂r
+ ν

(
1mu− u

r2
− 2imv

r2

)
, (2.7a)

i(mΩ −ω)v + 2Ωu=− im
r

p+ ν
(
1mv − v

r2
+ 2imu

r2

)
, (2.7b)

i(mΩ −ω)w=−∂p
∂z
+ ν1mw, (2.7c)

0= ∂u
∂r
+ u

r
+ im

r
v + ∂w

∂z
. (2.7d)

Here 1m is the Laplacian operator defined as

1m = ∂2

∂r2
+ 1

r
∂

∂r
− m2

r2
+ ∂2

∂z2
. (2.8)

To complete the set of equation (2.7), boundary conditions on both the free surface,
the side walls and the axis have to be imposed. The free surface requires special
attention as kinematic, dynamic and no-tangential stress boundary conditions should
be satisfied. These linearised conditions read, respectively,

i(mΩ −ω)η=w− h′(r)u, (2.9a)
n · (σ · n)+ ρgη= 0, (2.9b)

n× (σ · n)= 0, (2.9c)

at z= h(r). Here σ is the non-dimensional stress tensor, defined as σ/ρ = 2νD − pI ,
with D the deformation rate tensor given in cylindrical coordinates by

D =



∂u
∂r

1
2

(
∂v

∂r
+ im

r
u− v

r

)
1
2

(
∂w
∂r
+ ∂u
∂z

)
1
2

(
∂v

∂r
+ im

r
u− v

r

)
im
r
v + u

r
1
2

(
∂v

∂z
+ im

r
w
)

1
2

(
∂w
∂r
+ ∂u
∂z

)
1
2

(
∂v

∂z
+ im

r
w
)

∂w
∂z


, (2.10)

and I the identity matrix, n= nrer+ nzez is the outward normal at the free surface, and
primes (′) stand for r derivative. In addition, we apply either stress-free ((2.9c) along



with no-penetration) or no-slip (u= 0) boundary conditions on the cylinder side wall
and the bottom, along with regularity conditions at r = 0, whose specific expression
depends upon the azimuthal wavenumber m.

In the following, R and TΩ are chosen as the typical length scale and time scale
respectively. Non-dimensional equations are therefore obtained using the substitution
R≡ 1, H≡ a, Ω ≡ 1, g≡ a−1Fr−2, ν ≡Ek, ρ ≡ 1 in (2.7)–(2.9). Finally, λ denotes the
nondimensional frequency in the rotating frame, namely

λ= ω−mΩ
Ω

. (2.11)

The resolution of the linear eigenvalue problem (2.7)–(2.9) then formally consists of
computing λ as a function of the four parameters (m, Fr, Ek, a).

2.3. Numerical method

In the case where no-stress boundary conditions are applied at bottom and side walls,
and choosing R and TΩ as a characteristic length and time respectively, the set of
equations (2.7), (2.9a–c) can be written in the compact non-dimensional form

−iλu+ 2ez × u=−∇p+ Ek1mu for (r, z) ∈D, (2.12a)
∇ · u= 0 for (r, z) ∈D, (2.12b)

−iλσn + geu · n= 0 for (r, z) ∈ ∂Ds, (2.12c)
σ · n− σnn= 0 for (r, z) ∈ ∂D, (2.12d)
u · n= 0 for (r, z) ∈ ∂Dc ∪ ∂Db, (2.12e)

with ge = a−1Fr−2
√

1+ h′2 the equivalent acceleration resulting from gravity and
centrifugal components, σn = n · (σ · n) the normal stress component, and 1m the
vectorial Laplacian operator defined by

1m =


1mu− u

r2
− 2imv

r2

1mv − v

r2
+ 2imu

r2

1mw

 . (2.13)

In addition, D corresponds to the inner domain and ∂D to its boundary composed by
∂Ds, ∂Dc and ∂Db, the free surface at z=h(r) (defined by (2.4)), the cylinder wall and
the bottom wall, respectively. Note that (2.12c) combines both kinematic and dynamic
boundary conditions on the free surface ((2.9a) and (2.9b) respectively), which allows
one to eliminate η from formulation (2.12).

The set of equations (2.12) is now solved numerically using a finite-element
method. For this purpose, we introduce the test functions u∗, p∗ and σ ∗n associated
with the amplitudes u, p and σn respectively. The weak formulation is obtained
by multiplying (2.12a) by ū∗, (2.12b) by p̄∗, and (2.12c) by σ̄ ∗n (with the overbar
standing for complex conjugate), and integrating over the whole domain



∀(u∗, p∗, σ ∗n )

((−Ek1mu+∇p), u∗)+ (2ez × u, u∗)= iλ(u, u∗), (2.14a)
(∇ · u, p∗)= 0, (2.14b)

〈geu · n, σ ∗n 〉∂Ds = iλ〈σn, σ
∗
n 〉∂Ds, (2.14c)

with (· , ·) and 〈· , ·〉 the inner products defined respectively in the domain and on
the boundary by (a, b)= ∫

D
ab̄ dV and 〈a, b〉 = ∫

∂D
ab̄ dS. Following Verfurth (1991)

we use Green’s formula

((−Ek1mu+∇p), u∗)= 2Ek(D(u), D(u∗))− (p,∇ · u∗)− 〈σ · n, u∗〉, (2.15)

to transform (2.14a), which further allows one to impose no-stress condition (2.12d)
on both the solid walls and the free surface by substitution of σ · n= σnn in the last
term of (2.15). As a result, the weak formulation given by (2.14) can be set in the
matrix form
∀(u∗, p∗, σ ∗n ) 2Ek(D(u), D(u∗))+ (2ez × u, u∗) −(p,∇ · u∗) −〈σn, u∗ · n〉

(∇ · u, p∗) 0 0
〈geu · n, σ ∗n 〉∂Ds + 〈u · n, σ ∗n 〉∂Dc∪∂Db 0 0


= iλ

 (u, u∗)
0

〈σn, σ
∗
n 〉∂Ds

 , (2.16)

in which all the boundary conditions are included.
The above equation can be written in the form of a generalized eigenvalue problem

AX = λBX with the eigenvector X = [u; p; σn]T and the eigenvalue λ. Matrix A and
B are built using the finite-element software FreeFem++ (see Hecht 2012) and the
linear system is solved by means of a shift and invert method using a Krylov–Shur
type solver and the SLEPc library. Note that the method presented above can easily
be adapted to treat the problem with no-slip boundary conditions on the lateral and
bottom walls.

3. The inviscid problem: mathematical investigation
Before presenting the numerical solution of the global problem, we will first

investigate the structure of the inviscid problem mathematically. We first consider the
equations governing the global problem and show that they can be cast into a compact
form which is not suited to numerical solution, but very useful for classification of
wave solutions. We then focus on the particular case encountered when dependency
with respect to the vertical direction can be neglected. We show that, in this regime,
referred to as the shallow-water regime, the equations can be reduced to a single
differential equation suited to numerical solution and mathematical analysis.

3.1. Global problem: the Poincaré equation
In the inviscid case the problem can be stated entirely in terms of the pressure
component. For this purpose (2.7a,b) can be combined to express u, v, w and η as
functions of the pressure, leading to

u= i
λ2 − 4

(
2

m
r

p− λ∂p
∂r

)
, (3.1a)



v = 1
λ2 − 4

(
λ

m
r

p− 2
∂p
∂r

)
, (3.1b)

w=− i
λ

∂p
∂z
, (3.1c)

η= aFr2p(z= h(r)), (3.1d)

where (3.1d) comes from the boundary condition (2.9b) applied to the inviscid case.
Inserting expressions (3.1a–c) into the continuity equation leads to the following
equation, generally known as the Poincaré equation, which describes the flow in the
bulk

∂2p
∂r2
+ 1

r
∂p
∂r
− m2

r2
p+

(
λ2 − 4
λ2

)
∂2p
∂z2
≡1mp− 4

λ2

∂2p
∂z2
= 0 for (r, z) ∈D, (3.2)

where D denotes the inner domain, defined by 0< r<1 (or rc< r<1 for the dry case)
and 0< z< h(r). Boundary conditions at the free surface z= h(r) ((2.9a) and (3.1d))
and inviscid boundary conditions at r = 1 and z = 0 can also be expressed in terms
of the pressure variable, leading respectively to

∂p
∂z
− aFr2λ2p+ h′λ

λ2 − 4

(
2m
r

p− λ∂p
∂r

)
= 0 for z= h(r), (3.3)

λ
∂p
∂r
− 2mp= 0 for r= 1, (3.4)

where h(r) is given by (2.4) nondimensionally. The problem is completed by the
regularity condition at the axis (wet case only) and the no-penetration condition at
the wall, namely p(r)≈ rm for r≈ 0 and ∂p/∂z= 0 for z= 0.

In the general case, the set of boundary conditions associated with this problem
is particularly unpractical, due to the geometry of the domain, and not suited to
numerical solution. On the other hand, in the case where the rotation is weak and
the free surface remains nearly flat, the Poincaré equation can be solved analytically
through asymptotic expansions in terms of the Froude number. Such developments
will provide useful guides during the numerical exploration of the viscous problem,
but are not essential at the present stage, so the corresponding equations are reported
in appendix A. In the present section, we will restrict ourselves to a qualitative
discussion of the possible solutions according to the mathematical properties of the
Poincaré equation. The most important feature is that the nature of the equation
changes drastically depending upon the relative frequency with respect to the rotating
frame λ (see Greenspan 1990, for instance).

First, if |λ| > 2, the equation is elliptic. In this case, solutions with the form
of regular eigenmodes are generally expected to be found. Such solutions will be
identified as surface waves in what follows because the possibility of free surface
deformations is essential for their existence. These waves are driven by the normal
acceleration at the free surface, which is in the general case a combination of gravity
acceleration and centrifugal acceleration.

Second, if |λ|< 2, the Poincaré equation becomes hyperbolic. This case, in which
the absolute value of the relative frequency is less than twice the background rotation,
actually corresponds to the range of existence of inertial waves due to the restoring
action of the Coriolis acceleration. However, due to the hyperbolicity of the governing
equation, it is generally not possible to find regular eigenmode solutions which satisfy



the whole set of boundary conditions, except under very special circumstances. Instead,
the spectrum of the inviscid problem generally corresponds to a continuous set of
generalized eigenfunctions corresponding to singular inertial modes. The singularity
can be regularized by introducing a small amount of viscosity and the mode solutions
are then expected to exhibit a ray-like structure. This behaviour was investigated in
other configurations, such as spherical shells (Rieutord & Valdettaro 1997), and can
be expected to be encountered in the present case.

The drastic change of the nature of the solutions can be best understood
by considering Wentzel–Kramers–Brillouin–Jeffreys-like solutions p(r, z) ≈ exp
[i(krr + kzz)], where kr and kz are radial and vertical local wave numbers of large
amplitude. Substituting into the Poincaré equation leads, at leading order, to

k2
r +
(
λ2 − 4
λ2

)
k2

z = 0. (3.5)

Therefore, in the elliptic case, k2
r and k2

z are of opposite sign. So, if solutions
are oscillating in the radial direction (kr is real), they are necessarily evanescent
in the vertical direction and exponentially decaying away from the surface (kz is
imaginary). This description matches the expected structure of gravity waves. Another
possibility is for the eigenfunctions to be oscillating in the vertical direction (kz real),
and evanescent in the radial direction (kr imaginary). As we shall see, this second
possibility is also encountered for very strong rotations (see § 4). In the hyperbolic
case, on the other hand, k2

r and k2
z have the same sign, so one can expect solutions

with an oscillating behaviour in both radial and vertical directions (kr and kz real).
This property leads to the above-mentioned ray-like structure, with iso-phase surfaces
forming planar sheets inclined with respect to the vertical by an angle φ such that
tan φ = ±1/

√
4/λ2 − 1. Such rays can reflect along the boundaries of the domain,

but the reflections do not change the orientation, which is fixed by the frequency of
the mode. Note, finally, that the hyperbolic case also allows the existence of another
type of solution which is evanescent in both the radial and the vertical directions (kr
and kz imaginary). As we will see in next section, this kind of solution will also turn
out to be observed in some range of parameters.

Before closing this discussion, we have to mention that there exist special
geometries for which the Poincaré equation turns out to have regular solutions
in the hyperbolic case: one of them corresponds to a finite cylinder, as long as the
top and bottom boundaries remain flat disks. This situation is encountered in the
present case in the limit of very small rotation. In such a case, the inertial waves,
also called Kelvin modes, can be obtained in separated variable form, and their
characteristics have been tabulated, for instance, in Eloy, Le Gal & Le Dizès (2003).
However, as the rotation rate is increased and the free surface becomes concave, this
regular structure is expected to be lost. The gradual transition of the eigenmodes
from a regular structure to a singular ray-like structure will be investigated in the
numerical study of the viscous problem carried out in § 4.

Finally, one should note that the Poincaré equation degenerates when λ goes to zero.
This is actually associated with another family of solutions which are more easily
identified using the shallow-water approximation presented in the next section.

3.2. Shallow-water approximation
We now investigate a particular case of the inviscid problem, obtained when the
vertical variation of the dynamic pressure can be neglected, namely p(r, z) ≈ p(r),



and is therefore simply related to the height perturbation η. This situation is referred
to as the shallow-water approximation, and can be expected to remain valid for small
aspect ratio a. This case is not captured well by the Poincaré equation, but the
problem can be cast into a simpler form which is convenient for numerical resolution
and mathematical investigation. The discussion will allow a new family of waves
to be highlighted, namely Rossby waves, which are not easily anticipated from the
discussion of the previous section.

To derive the shallow-water equations, we first notice that, according to (3.1a–c), the
horizontal velocity components (u, v) are also functions of r only, and that the vertical
velocity component can be neglected. Thus we can write an evolution equation for the
free surface elevation η as a function of the horizontal divergence, namely

−iλη=−h(r)
[

1
r
∂ru
∂r
+ im

r
v

]
. (3.6)

Expressing all unknowns in terms of the η component leads to the following equation

η′′(r)+
(

1
r
+ aFr2r

h(r)

)
η′(r)+

(
aFr2Λ

h(r)
− m2

r2

)
η(r)= 0, (3.7)

with

Λ= λ2 − 4− 2m
λ
. (3.8)

Boundary conditions are (i) no penetration at the wall r = 1, and (ii) a regularity
condition at the axis r = 0 for the wet case, or a kinematic condition at r = rc for
the dry case. Conditions (i) and (ii) can be expressed in terms of η only and read

η′(1)− 2m
λ
η(1)= 0, (3.9a)

η(r)≈ rm for r≈ 0, or η′(rc)+Λη(rc)

rc
= 0. (3.9b,c)

This problem has been considered by Phillips (1965) in the case of an annular
tank with a parabolic free surface, and this is also similar to the case of a circular
basin with a flat free surface but non-flat bottom considered by LeBlond (1964)
and Greenspan (1990). The present problem actually admits an analytical solution in
terms of hyperbolic functions, and a number of interesting limits can be studied using
asymptotic methods. For sake of clarity, the details are reported in appendix A and
we restrict ourselves here to the discussion of the solutions in the low-Froude-number
limit, where the free surface deviates only weakly from the horizontal shape. This
case is particularly simple and provides a convenient starting point for the numerical
exploration of the next section. In this case (3.7) reduces to a Bessel equation of the
form

η′′(r)+ 1
r
η′(r)+

[
Fr2Λ− m2

r2

]
η(r)= 0. (3.10)

The solution is η(r)= Jm(
√

Fr2Λr), and the allowed frequencies are found by using
the boundary condition (3.9b,c). As detailed in appendix A, two classes of solutions
associated with different scalings of the frequency are found.



The first class of solutions corresponds to λ� 1, and is therefore met in the range
where the Poincaré equation is elliptic. In this case the leading-order solution is
λ ∼ ω/Ω ≈ Fr−1j′mn, with j′mn being the root number n of J′m. In dimensional terms
this means ω ≈ ±√gHk, with k = j′mn/R. As expected from the above discussion of
the Poincaré equation in the elliptic case, we recognize the classical formula for the
frequencies of gravity waves in shallow water.

The second class of solutions corresponds to λ� 1. Here the leading order is λ≈
−Fr22m/j2

mn, with jmn being zeros of the Bessel function Jm. In dimensional terms we
get ω−mΩ ≈−2mΩ3/(gHk2), with k= jmn/R. These solutions are actually associated
with a new family of solutions: Rossby waves. Such waves correspond to slow, quasi-
geostrophic motion driven by a spatial gradient of the potential vorticity. They are well
known in the geophysical context (Pedlosky 1982; Vallis 2006), where the variation of
potential vorticity is due to the zonal variation of the Coriolis parameter. In the present
situation, the potential vorticity is 2Ω/h(r) and its variation is due to the curvature
of the free surface.

4. Viscous problem: numerical exploration
This section is devoted to a numerical exploration of the waves. Because of the

singularity issue pointed out in § 3.1, we carry this study in the viscous case, with
small viscosity (in most cases, Ek = 10−4). We will use here stress-free conditions
along the walls. We justify this choice as follows. First, in this case the solutions will
generally not be affected by boundary layers, so the interpretation of their structure
and the classification of them is clearer. Second, this case is more suited to a
comparison with asymptotic approaches conducted in the inviscid case. We postpone
the exploration of viscous effects in the more realistic case of no-slip conditions
to § 5.

In the following, we first draw a general picture of the waves through inspection of
the ‘dispersion relations’ for a few values of m. This picture allows identification of
the three main classes of solutions, namely gravity, Rossby and inertial waves. These
three classes will then be successively described, and compared, whenever possible, to
predictions of the shallow-water approximation (§ 3.2 and appendix A) and asymptotic
predictions in the limit of weak rotation (appendix B). Then, we pay special attention
to the dry regime, corresponding to strong rotations, and describe additional types of
solutions found in this range. We finally detail the transition between wet and dry
regimes, which occurs at Fr≈ 2.

4.1. A general picture of numerical solutions

Global stability results using stress-free boundary conditions and Ek= 10−4 are shown
in figure 2. The evolution of the frequency λ of the different eigenmode solutions is
shown as a function of Fr for m= 2 and a= 0.5. A large range of Fr, including both
‘wet’ (Fr < 2) and ‘dry’ (Fr > 2) cases, is shown here, and the associated damping
rate is illustrated by means of grey levels, where the darker branches are the least
damped modes. The unwetting transition is clearly visible at Fr = 2, where most of
the branches are discontinuous.

The first point to notice is that all the obtained eigenmodes have a negative
growth rate, meaning that the solid body rotation is stable in the range of parameters
considered in this case. It turns out that investigations done for other values of the
parameters a and m lead to the same general picture, also with only stable solutions
(see figure 12 for m = 10 and a = 0.5, for instance). So, even though we do not
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FIGURE 2. Evolution of the eigenvalues with Fr for m= 2, a= 0.5, Ek = 10−4 and no-
stress boundary conditions on the walls. The dashed lines indicate the transitions between
hyperbolic and elliptic areas as predicted by the Poincaré equation (3.2).

have a rigorous demonstration of this point, we believe that our result allow us to
conclude that the solid-body rotation is a stable configuration with respect to modal
disturbances in the viscous case. This is in agreement with the historical argument of
Newton, which relies on the fact that, in the rotating frame, after a transient stage,
the fluid remains perfectly still.

Moreover, it is clear from figure 2 that, for low Fr at least, we recover a
classification including the three families of waves predicted by the discussion of
the Poincaré equation and the shallow-water solutions in the inviscid case, i.e. the
frequency ranges |λ| > 2, |λ| < 2 and λ ≈ 0 indeed correspond to particular sets of
solutions. Results are shown here with TΩ as the time scale for non-dimensional
frequencies. This choice implies that inertial waves remains nearly independent of Fr
(at least for moderate Fr) while the frequencies associated with gravity waves diverges
as Fr goes to zero. Using Tg allows one to visualize more clearly gravity-driven
solutions, as shown, for instance, in figure 4. The typical structures of the different
families of waves are shown in figure 3 for Fr = 0.5 and m = 2, for which the
deformation of the free surface is relatively small. In the following, each wave family
will be examined in detail using both the finite-element method and an asymptotic
study at low Froude number to get an insight into the structure of the different kinds
of waves, classify them and study their evolution with Fr. The wet case is examined
first, since it highlights the simplest configuration for which the three main families
of solutions are observed and easily recognized. After that, the high-Fr regime, which
roughly corresponds to the ‘dry’ case, will be examined in more detail, with specific
attention on the transition at Fr= 2.

4.2. The wet regime
4.2.1. Gravity waves

The low-Froude-number limit allows us to conduct an asymptotic analysis
considering that the free surface remains flat (see details in § B.1). In that case,
using appropriate expansions and scalings suited for the gravity waves, the Poincaré
equation reduces at leading order to a Laplace equation whose solutions are of the
form

p0(r, z)= cosh(kz)Jm(kr), (4.1)
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FIGURE 3. Structures of some eigenmodes obtained numerically for m = 2, a = 0.5,
Ek = 10−4, Fr = 0.5. The pressure component is shown with homogeneously distributed
levels, negative contours are dashed. (a) G0; λr = 4.290, λi = −0.001416; (b) G1; λr =
7.436, λi = −0.009232; (c) G2; λr = 9.043, λi = −0.02008; (d) G−0 ; λr = −5.201, λi =
−0.00239; (e) G−1 ; λr =−7.458, λi =−0.00949; (f ) G−2 ; λr =−9.035, λi =−0.0202; (g)
I11; λr = 1.408, λi = −0.008326; (h) I12; λr = 1.098, λi = −0.01326; (i) I21; λr = 1.785,
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FIGURE 4. (Colour online) Rescaled frequencies of the gravity waves as function of
the Froude number. (a) m = 2, a = 0.5: numerical results with Ek = 10−4 and no-stress
boundary conditions (plain lines); comparison with the asymptotic results at low Fr (blue
dashed curves): λ0+ λ1Fr/

√
2 with λ0 and λ1 from table 3 in appendix B. (b) m= 1, a=

0.1: numerical results with Ek=10−4 and no-stress boundary conditions (plain black lines);
comparison with general shallow-water solutions detailed in § A.1 (red dashed curves). In
both plots, the straight dashed lines starting from the origin indicate the hyperbolic/elliptic
region of Poincaré equation in the inviscid case.

with Jm the Bessel function of the first kind of order m and k given by the boundary
condition as k= j′mn, i.e. the nth root of J′m. The boundary condition at the free surface
then leads to the classical dispersion relation for gravity waves in finite depth, whose
dimensional form reads

ω0 =±
√

gk tanh(kH). (4.2)

Note that, in the case of thin layers, this solution becomes equivalent to the shallow-
water solutions found in the low-Froude-number limit, as discussed in § 3.2.

Figure 4(a) compares the evolution of the gravity wave frequencies (rescaled with
Tg here) as obtained by the global stability analysis to the asymptotic predictions (at
order 2). One can note that the asymptotic results give an excellent prediction for Fr6
1, especially for the set of retrograde waves with λ< 0. Also, the obtained solutions
lie in the elliptic region (at least while Fr remains moderate) and thus correspond to
regular solutions of the Poincaré equation. This is in agreement with the leading-order
structure of the pressure field given by (4.1) and the structure shown in figure 3 (a–c)
which describe a structure both oscillating along r and evanescent along z. The integer
n is chosen so as to correspond to the number of pressure nodes in the radial direction,
and we will name the gravity waves Gn after this integer, with a minus sign exponent
for retrograde waves (see figure 3a–f ).

A comparison with the shallow-water solutions is shown in figure 4(b) for moderate
a (m= 1 and a= 0.1 here). One can observe that, for this value of a, the agreement
between the two methods is remarkable for small n (say |n| < 2 here), as their
associated radial wavelength remains large compared to the water depth, a necessary
condition for the shallow-water approximation to hold. As |n| increases, the results
associated with both methods therefore become less accurate.

Finally, one can observe that, prior to dewetting (Fr < 2), some gravity branches
enter the hyperbolic area as Fr increases. For instance, this transition for G1 occurs
at Fr ≈ 1.1 for m = 2 and a = 0.5 (see figure 2a). The precise number of gravity
branches featuring such a behaviour is in fact dependent on a and m (see figure 4).
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FIGURE 5. Structure of the first gravity wave for various Fr, m=2, a=0.5 and Ek=10−4.
(a) G0, Fr= 1; λr = 2.029, λi=−0.001281; (b) G0, Fr= 1.5; λr = 1.337, λi=−0.002114;
(c) G0, Fr= 1.9; λr = 1.061, λi =−0.002173.

For instance, only G1 is observed to feature such behaviour in a shallower case with
a= 0.1 and for m= 1 (see figure 2b).

Figure 5 along with figure 3(a) show the evolution of the spatial structure of G0 for
a range of Fr, including the above-mentioned transition and for m= 2 and a= 0.5. It
can be seen that, as Fr increases, the structure of the wave tends to localize close
to the corner formed by the free surface and the outer wall. This corresponds to a
transition from an oscillatory trend in the radial direction to an evanescent structure
from the wall to the centre. Such eigenmodes are therefore associated with evanescent
behaviour in both directions, as expected from the Poincaré solution in the hyperbolic
region (see § 3.1). This structure corresponds to that of an edge wave, and has been
previously described by Ursell (1952), for instance. As such edge waves are also
systematically observed in the dry case, the discussion of this family is postponed
to § 3.1.

4.2.2. Rossby waves
We also start the investigation of the Rossby waves by inspection of the

low-Froude-number regime. In contrast to gravity waves, for which the free surface
can be considered as flat in this limit, inclusion of free surface variations is essential
here. Again the details of the analysis are reported in § B.2. It is found that, at
leading order, the velocity components satisfy geostrophic equilibrium, i.e. the Coriolis
acceleration is balanced by the pressure gradient. It is further shown that the pressure
component at leading order is independent of the vertical direction and reads

p0(r)= Jm(kr), (4.3)

with k2 = −2m/(aλ0), while the wall boundary condition leads to the frequency
selection

λ=−2m
j2
mn

Fr2 +O(Fr4), (4.4)

with jmn being the nth root of the Bessel function Jm. Note that this low-Froude-
number solution for the Rossby waves is the same as the one found using the shallow-
water approximation (see § 3.2). The next term in the expansion, of order Fr4, has also
been worked out and is given in § B.2. A comparison of this asymptotic prediction
(up to order Fr4) with the numerical results is shown in figure 6(a) for m = 2 and
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appendix B; (b) m= 1, a= 0.1: numerical results with Ek= 10−4 and no-stress boundary
conditions (plain black lines) and comparison with general shallow-water solutions detailed
in § A.1 (red dashed lines).

a = 0.5, where the rescaled frequencies λr/Fr2 are plotted as a function of Fr. As
observed, the asymptotic solutions collapse on numerical curves up to Fr ≈ 1.2 at
least. Note that, from the low-Froude-number expansion (4.4), the Rossby waves are
found to exhibit a slow retrograde motion in the rotating frame, which is a well-known
feature of atmospheric Rossby waves (see Vallis 2006, for instance). This trend is well
supported by numerical results, as shown in figure 6(a).

The spatial structures of some typical Rossby waves are shown in figure 3(m–o). In
the following, Rossby waves will be labelled using a single integer n, corresponding
to the number of nodes in the radial direction of the pressure field; figure 3 thus
represents Rossby waves n = 0, 1 and 2, further called R0, R1 and R2. In particular,
one can observe that the vertical independence of the structure (as displayed by
the pressure component) predicted by the asymptotic results is striking. Figure 7
displays the structure obtained for R0 at two values of Fr, which shows that the
vertical independence persists up to the unwetting point at least. This specific feature
allows one to describe Rossby waves using the shallow-water approximation for
non-asymptotically small values of a (see figure 6b for a= 0.1). This stems from the
key hypothesis in the shallow-water model presented in § 3.2, which precisely requires
that mode structures are vertically independent. The shallow-water approximation is
therefore a more useful guide to describe Rossby waves than the Poincaré equation.
In particular, the ray-like structure predicted by the latter is not observed in the range
of parameters considered here, in contrast to the case of inertial waves (see § 4.2.3).
This observation is in agreement with the geophysical field in which Rossby waves
are usually described with shallow-water models.

4.2.3. Inertial waves
An asymptotic analysis conducted in the inviscid case at low Fr for the inertial

waves is detailed in § B.3. In particular, separation of variables allows us to find
regular solutions in the case where the free surface remains flat. Such solutions are
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of the form

p0(r, z)= cos(kzz)Jm(krr), (4.5)

where kz and kr are vertical and radial wave numbers (both real), respectively. The
chosen solution (4.5) already satisfies the boundary condition at the bottom of the
tank, while boundary conditions imposed at the flat free surface and on the vertical
wall lead to two discretization conditions involving integers nz and nr (see appendix B
for details). These discretization conditions, along with the relation (3.5) between kz,
kr and λ, lead to the eigenmodes frequencies. In particular, it is found that there
is a discrete set of eigenvalues λnz,nr which fill the interval [−2, 2] densely. In the
following, inertial waves are labelled as Inznr and I−nznr

for cograde and retrograde
inertial waves, respectively. Again, the two integers are defined so as to correspond
to the number of pressure nodes of the solution in the vertical and radial directions,
respectively (see figure 3).

When viscosity is added, the dense set of singular inertial waves found in the
inviscid case is now unfolded in the complex plane (see the 3-D representation
of figure 8(a) for m = 2 and a = 0.5 and Fr < 1.3). All of the inviscid solutions
still exist, but modes having a complex structure generally correspond to a larger
damping rate. Therefore, only the least damped modes, which usually correspond to
small (nz, nr), could possibly play an important role in a viscous system. From the
numerical results, the spatial structures of these least damped modes can be extracted.
In particular, regular inertial waves corresponding to I11, I12 and I21 (resp. I−10, I−11
and I−20) are shown in figure 3 (g–i) (resp. j–l) for m = 2, a = 0.5 and Fr = 0.5.
One can observe that the structure of the waves is oscillatory in both radial and
vertical directions, as expected from the previous discussion of the Poincaré equation.
Moreover, the spatial structure is shown to be mostly regular for this value of Fr, and
indeed resembles the solution of the form (4.5). This comparison between numerical
results and asymptotic expansion is highlighted in figure 8(b), in which the frequency
λ obtained from numerical results for retrograde inertial waves (solid lines with grey
levels to indicate damping rate) is compared against asymptotic results (dotted blue
lines) as a function of Fr for m = 2 and a = 0.5. It is thus shown that the regular
solutions obtained from the asymptotic expansion match numerical results very well
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FIGURE 9. Structure of the inertial wave I12 for various Fr, m= 2, a= 0.5 and Ek= 10−4.
(a) I12, Fr = 1; λr = 1.114, λi =−0.01604; (b) I12, Fr = 1.5; λr = 1.198, λi =−0.03263;
(c) I12, Fr= 1.9; λr = 1.446, λi =−0.2741.

up to Fr= 0.7, at least for this set of parameters. Again, this agreement supports the
fact that the spatial structure of inertial waves shows regular patterns in this range of
Fr numbers.

As Fr is increased, the free surface departs substantially from a flat shape. The
regular structures of the mode previously described is replaced by patterns which
gradually evolve to more complex spatial structures (see figure 9 in which the inertial
wave I12 is tracked as a function of Fr). Separation of variables is no longer possible
and the dissipative ray-like structure associated with the hyperbolic nature of the
inviscid equations in complex geometries arises, as already discussed in § 3.1. Note
that the ray structures are not so clear in figure 9 due to the somewhat large value of
Ek. For this reason, examples of inertial modes structures are shown on figure 10 for
Ek = 10−7. For this value of the Ekman number, solutions clearly exhibit a ray-like
spatial structure and the angle between the rays and the rotation axis appears to be in
agreement with the predictions from the Poincaré equation (tan φ = ±1/

√
4/λ2 − 1,

see § 3.1). The spatial structure of two modes having eigenfrequencies which are
close in the complex plane is shown in figure 10(b,c), and it can be seen that these
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FIGURE 10. Example of inertial waves structures for m= 2, a= 0.5 and Ek= 10−7. (a)
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λr = 1.501, λi =−0.01550.

two modes indeed exhibit ray-structures having similar orientations. As Fr is further
increased, inertial waves slowly disappear as their damping is strongly increased (see
figure 8a, for instance). The physically relevant eigenmodes then become difficult to
track numerically, because their damping rates become comparable to those of the
spurious numerical modes often encountered in global stability studies.

Finally, note that inertial waves can interact with gravity waves when the Froude
number gets high enough to allow the latter to enter the hyperbolic region, and thus
become edge waves. Such interactions can be seen in figure 2, for instance, and are
possible if their respective complex frequencies are close enough. However, it has
been found that no instability occurs from these interactions. Here, interactions lead
to identity exchange between the two branches of solutions.

As viscosity tends to zero, the structure of the inertial modes is expected to
tend towards inviscid attractors which can be constructed using ray-tracing (Maas &
Harlander 2007). In a situation where the flow is periodically forced, the existence of
such attractors can lead to strong focusing of the energy, and possibly to an instability
due to nonlinear interactions with other secondary waves (Manders & Maas 2004;
Jouve & Ogilvie 2014). However, in the absence of forcing these modes are always
much more damped than waves of the two other families described previously. A
detailed investigation of the way in which the attractors are approached by the viscous
solutions, including scaling laws for the thickness of the shear layers and the damping
rate as function of the Eckman number, is clearly out of the scope of the present
paper, and left for future studies.

4.3. The dry regime
When Fr > 2, a dry area of non-dimensional radius rc appears at the centre of the
cylinder, as shown in figure 1. This transition is associated with the appearance of
a new ‘inner’ contact line at the bottom disk. This strong modification affects the
different wave families detailed in the previous section, as will be discussed in the
following. First, the gravity waves all tend to enter the hyperbolic range, and thus
become edge waves. The presence of the dry region also allows the existence of
a new class of solution, mostly driven by centrifugal acceleration, and thus called
centrifugal waves. Note finally that the Rossby waves have their equivalent in the dry
regime (see figure 2, for instance), and are still characterized by vertical independence
(see figure 11b). The nature of this family is therefore not clearly modified from one
regime to the other. For this reason, these waves will not be discussed in further detail
in the dry case.
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FIGURE 11. Example of structures in the dry regime for m= 2, a= 0.5, Ek= 10−4 and
Fr= 2.5. (a) G1; λr = 0.8107, λi =−0.001755; (b) R1; λr =−0.3261, λi =−0.01162; (c)
C−1 ; λr =−0.6727, λi =−0.002466.

4.3.1. Edge waves
Non-rotating tanks closed at one edge by a sloping beach are known to support

a particular type of gravity waves called edge waves. These waves are well known
in coastal dynamics, as they can be observed close to the shoreline. The first partial
description of these waves is due to Stokes (1846), who derived the dispersion
relation

ω2 = g⊥k sin(α), (4.6)

where α corresponds to the angle between the free surface and the sloping beach, g⊥
is the acceleration contribution perpendicular to the free surface (gravity in coastal
applications) and k the wavenumber in the direction along the edge. Solutions of
this dispersion relation are thus called Stokes edge waves. The derivation of Stokes
assumes a semi-infinite triangular domain of slope α; but as the waves get increasingly
localized as k is increased, this expression is expected to hold whatever the shape of
the beach away from the edge in the limit k� 1.

Ursell (1952) showed that these waves are actually the first of a more general class,
whose frequencies are still given by (4.6) but with α replaced by (2n+ 1)α, where n
is a positive integer such that (2n+ 1)α <π/2.

In § 4.2.1, we observed that, as the Froude number is increased, some of the gravity
wave branches tend to enter the hyperbolic range, and that their structure evolves
towards a strong localization at the upper corner of the fluid region (see the structure
of G0 in figure 5). The global results of figure 2 also show that other branches enter
the hyperbolic area for Fr > 2. We thus expect to be able to describe these waves
with the same approach as Stokes (1846) and Ursell (1952).

In the present case, the direction along the edge is the azimuthal direction, so the
wavenumber k appearing in (4.6) has to be replaced by m/R, and the condition that
the wave is localized at the edge actually implies m� 1. Under that assumption, the
free surface can be approximated as flat, with a slope α with respect to the lateral
wall given by tanα= 1/h′(R)≡ 1/(aFr2). The acceleration perpendicular to the surface
in (4.6) has to be replaced by the equivalent acceleration at the edge, i.e. g⊥= ge(R).
Finally, we account for the rotation by replacing the frequency ω in (4.6) by the
relative frequency ω −mΩ , and neglect all curvature effects. We are thus led to the
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FIGURE 12. Evolution of the eigenvalues with Fr for m = 10, a = 0.5, Ek = 10−4 and
no-stress boundary conditions on the walls. The circles correspond to the frequencies of
the couple of 2-D centrifugal waves given by (4.8) and crosses correspond to edge waves
obtained from dispersion relation (4.7) for n= 0, 1, 2.

following prediction for the frequencies of edge waves

(ω−mΩ)2 = ge(R)
m
R

sin[(2n+ 1)α], (4.7)

in which n is a positive integer satisfying (2n + 1)α 6 π/2. In particular, only one
solution is allowed for α ≈π/2 (i.e. for small Fr), whereas an increasing number of
solutions are obtained when α gets smaller (i.e. when Fr increases). The solution n=0
is the equivalent Stokes edge wave solution, which simply reads (ω−mΩ)2 = gm/R
(λ2

r = m/(aFr2) in non-dimensional form). The structure of this wave is depicted in
figure 11(a) in a dry case corresponding to a= 0.5 and Fr= 2.5. It can be seen from
the pressure component that the wave is indeed trapped at the upper edge.

Figure 12 compares the predictions of the model (4.7) with the global results for
m= 10, a high value where the edge wave model is expected to be most accurate. As
can be seen, the Stokes wave solutions (with n= 0) nicely fit G0 and G−0 in the case
a = 0.5 and m = 10. The edge waves with n = 1 and n = 2 are also displayed, and
are shown to be in good accordance with the next branches of gravity waves which
successively enter the hyperbolic region as Fr is increased.

4.3.2. Centrifugal waves
Another kind of wave that is not present prior to dewetting is now reported.

After the transition at Fr = Frc, an additional contact line appears at the bottom of
the tank, allowing a new family of wave solutions. As will be seen, the restoring
force associated with these waves corresponds to the centrifugal acceleration, and
we therefore call them centrifugal waves. This kind of wave is more classically
encountered in the case of a hollow core vortex in solid body rotation, which in
fact is equivalent to the present configuration with an additional top wall and in the
limit of infinite Froude number. This case will be studied further in § 6 (see also
appendix C), where a proper introduction of centrifugal waves is presented.

In this section we only report the results obtained for the 2-D centrifugal waves
which are of particular interest in the dry case. From the derivation reported in



appendix C, and considering that we are close to the dewetting point (rc
2m� 1), the

dispersion relation for 2-D centrifugal waves can be written as

λC± ≈ 1±√1+m. (4.8)

In dimensional form this reads ω ≈ (m + 1)Ω ± √gckc, with gc = rcΩ
2 the local

centrifugal acceleration at the inner contact line and kc = (m + 1)/rc an equivalent
radial wave number. This dispersion relation is analogous to that of classical surface
waves under the infinite depth approximation, and these waves therefore correspond
to surface waves driven by centrifugal acceleration. An example of such a centrifugal
wave is displayed in figure 11(c), where it can be seen that the wave is trapped close
to the inner contact line.

The prediction of those waves allows us to understand some important Fr-
independent features, as seen, for instance, in figure 12 for m= 10 and a= 0.5 in the
dry regime. In particular, open symbols in figure 12 correspond to the solution (4.8),
and it can be seen that these solutions are indeed associated with the appearance of
new waves at λr ≈ −2.3 and λr ≈ 4.3 in the global stability results. For this value
of m, both waves are found to be in the elliptic area, but (4.8) shows that 2-D
centrifugal waves can also exist in the hyperbolic region for smaller m.

4.4. Transition from wet to dry cases
Figure 2, among others, showed that many wave branches display a singular behaviour
with a change of slope at Fr=Frc=2. Such a singularity is not surprising, considering
that the dewetting transition sharply modifies the boundary condition at the inner part
of the domain. This singular behaviour can be observed on most of the gravity waves,
especially for small aspect ratios (see figure 4(b) for a= 0.1), and Rossby waves (see
figure 6). In order to characterize this transition, we have conducted an asymptotic
analysis, valid for |Fr − Frc| � 1, based on the shallow-water approximation. Details
are reproduced in § A.3. Here we summarize only the main predictions of this study:

(i) There is only one branch which remains regular at the wet–dry transition. For
Fr = 2 the frequency of this wave is denoted as λW = m/

√
2. The structure of

this wave is non-oscillatory in the radial direction.
(ii) All the other branches are singular, and belong to three families, which all follow

a law of the form

λ≈ λA +O(log |Fr− Frc|−2), (4.9)

where λA takes three possible values, noted λG+
A , (for cograde gravity waves), λG−

A ,
(for retrograde gravity waves), and λR

A (for Rossby waves). The structure of these
waves is oscillatory in the radial direction and localized in the vicinity of the
centre.

To illustrate this transition, the different branches obtained from shallow-water
solutions and numerical solutions are shown as a function of Fr for a = 0.1 and
m = 1 in figure 13. The results in this case fully confirm the predictions of the
asymptotic study. First, we observe that a single branch has a regular behaviour and
passes through λW for Fr = 2. This branch corresponds to the cograde gravity wave
with the simplest structure, which was termed G0 in § 4.2.1. Second, we observe that
all the other branches effectively have a common limit, which is either λG+

A , λG−
A , or

λR
A for the three families of waves. Finally, we observe that the approach towards this
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FIGURE 13. (Colour online) Dispersion curves obtained in the shallow-water regime for
m= 1, a= 0.1: shallow-water equation (dashed red lines), global stability approach with
Ek= 10−4 and no-stress boundary conditions on the walls (black). The horizontal dashed
lines correspond to the frequencies coming from the mathematical analysis at the transition
Fr= Frc (see discussion in text).

limit is very sharp, in accordance with the logarithmic behaviour predicted by the
asymptotic analysis.

Let us now briefly discuss the wet–dry transition at larger aspect ratios. For this,
we go back to the case (m= 2, a= 0.5) presented in figure 2. Although the transition
at Fr= 2 is not as sharp as previously described, the asymptotic predictions presented
above still capture part of the observed behaviour. However, although most of the
waves display a change of behaviour, with a steep slope reminiscent of the logarithmic
singularity, they do not tend to accumulate towards a single limit (λG+

A , λG−
A , λR

A) for
each family. Another difference is that, in contrast to the asymptotic prediction, there
is not a single branch which remains regular at the wet–dry transition. For instance, in
figure 2, four branches of gravity waves remain regular. One can explain this feature
by recalling that, in this range of Froude numbers, the gravity waves tend to become
edge waves localized in the vicinity of the upper corner, so the change in nature of the
boundary condition at the inner part of the domain has less effect on their structure.

5. Effect of the wall conditions

All the results shown until now have been obtained using no-stress boundary
conditions on the solid walls. This simplification allows one to have a clear view
of the wave structures in the bulk and to make proper comparisons with inviscid
analytical results. However, wall boundary layers are expected to affect the present
results, and it would be useful to know if these results remain relevant in a more
realistic case where no-slip conditions are considered. For this purpose, global stability
results are computed in the no-slip case using an analogous method as presented in
§ 2.3, but with Dirichlet boundary conditions on the bottom and side walls. Note that
the contact lines (upper and also inner for Fr > Frc) are considered pinned, i.e. the
triple line is anchored at the base state position in the present case.

Figure 14 shows the results obtained under the same conditions as for figure 2, but
for no-slip conditions on the walls. Comparison between figures 14 and 2 therefore
gives some indications regarding the effect of the no-slip condition. First, it seems
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FIGURE 14. Same as figure 2 (a= 0.5, m= 2) in the no-slip case.

clear that we obtain the same general picture regarding the evolution of the eigenmode
frequencies with the Froude number. The frequencies are in fact very close, because
the leading order is driven by the inviscid solution. However, in the no-slip case, an
additional damping is found due to the dissipative contributions in the wall boundary
layers associated with such a boundary condition.

It can be observed in figure 14 that the wave families are not affected in the same
way by this change of wall conditions. In particular, the damping rates of the inertial
waves are less affected than other families. This can be understood by considering
the structures of the waves as described in the previous section, leading in the case
of the inertial wave to a bulk dissipation, while wall effects are expected to be more
important for gravity and Rossby waves. The importance of bulk dissipation for
inertial waves has already been observed in previous studies, such as the case of a
fluid in a rotating cylinder (see, for instance, Eloy et al. 2003).

Finally, it can be noted that an influence of the Froude number on the damping
rate is clearly highlighted for the gravity waves. In particular, the damping increases
for increasing Fr for no-slip boundary conditions (figure 14), while this behaviour
was less obvious for the no-stress condition (figure 2) in the range of parameters
considered here. For instance, the damping rate of the mode G0 goes from |ωi| ≈ 0.02
for Fr ≈ 0.6 to less than 0.1 for Fr = 3. This trend can be attributed to a growth
of the wall surface in contact with the fluid with increasing Fr. This trend is not
observed for inertial waves which have a spatial structure which tends to a ray-like
pattern for increasing Fr. Most of the dissipation is then expected to take place in
these shear layers, the volume dissipation being once again the most important for
this wave family. Compared with Rossby waves, gravity waves tend to be concentrated
close to the outer contact line (edge waves). Hence, we suspect that the influence of Fr
when the no-slip condition is applied on the walls (and in particular on the cylinder)
will more strongly affect the structure of gravity waves.

The main conclusion of this section is that frequencies obtained in the no-stress
cases seem to match at first order with the no-slip case for the entire range of
Fr considered. Therefore, the results obtained in the previous section considering
no-stress boundary conditions remain relevant and of interest for more realistic
configurations. This observation is consistent with the fact that the restoring forces
involved with the different wave families found here are inviscid processes.



6. Effect of a top wall
Up to now, we have considered that the rotating container is high enough such that

the liquid never reaches the top of the vertical wall. We now consider the case where
the container has a finite height Ht. This situation leads to the introduction of an
additional geometrical parameter, namely at =Ht/R. A full description of this case is
clearly out of the scope of the present paper, so we will restrict the discussion here
to an illustration of the effect of the top wall for the single case a= 0.5, at = 1.5.

The results of the previous sections still hold up to the point where the free surface
reaches the top wall. Inspection shows that this case happens for a critical Froude
number Frct defined as

Frct = at

a
. (6.1)

Up to Frct, the mean shape of the free surface is still given by (2.4). For Fr>Frct,
the mean shape is now given by

h(r)= aFr2

2
(r2 − r2

c) for rc < r< rct, (6.2)

where rc and rct are the radii of the dry regions on the bottom and top plates, given
by

rc =
√

at − a
at
− Fr−2

at

a
, rct =

√
at − a

at
+ Fr−2

at

a
. (6.3a,b)

In the limit Fr ≈ ∞, where the gravity becomes negligible with respect to
the centrifugal acceleration, the free surface becomes vertical, and the situation
corresponds to a rotating fluid with a cylindrical hollow core of radius rcm=√1− a/at.
Interestingly, in this situation, one recovers the possibility of an analytical resolution
in separated form, and we therefore expect to find the existence of regular inertial
waves. This situation was actually investigated in previous works (Sun 1960; Miles
& Troesh 1961; Ibrahim 2005). We reproduce the details of the analytical treatment
in appendix C. Here we give only a summary of the predictions for this case:

(i) First, there exist two waves with a 2-D structure (independent of z) which are
driven by centrifugal acceleration at the free surface. These waves are the same
as previously encountered in § 4.3.2 when the top wall is not reached, and their
dimensionless frequency now reads

λ=K ±
√

K(K +m), with K = 1− r2m
cm

1+ r2m
cm

. (6.4)

Note that these waves may lie either in the hyperbolic or elliptic ranges, without
affecting the structure.

(ii) Second, among the waves with a 3-D structure, we can distinguish a set of waves
characterized by nz nodes in the vertical direction, and no nodes in the radial
direction. These waves are denoted here as C±nz

, and like the 2-D waves they may
lie either in the hyperbolic or elliptic range.

(iii) Third, the last kind of solutions consists of waves with nz nodes in the vertical
direction and nr nodes in the radial direction. These waves are called I±nznr

and
they always lie in the hyperbolic region.
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FIGURE 15. Sample result with a top wall (m = 2, a = 0.5, at = 1.5, Ek = 10−4).
The dashed lines correspond to ±2 and therefore delimit the inviscid range of existence
corresponding to inertial waves.

Note that, strictly speaking, all waves are equally influenced by centrifugal
acceleration at the free surface and Coriolis acceleration in the bulk. However, the
waves with no radial nodes have a structure mostly localized close to the free surface
and can be identified as surface waves driven by centrifugal acceleration, while the
other waves with a more complex structure are less influenced by the presence of the
free surface and can be related to the inertial waves encountered in § 4.2.3; hence the
denomination of the waves proposed above.

Figure 15 shows an example of the results found in Newton’s bucket with a top
wall for a = 0.5, at = 1.5, m = 2 and Ek = 10−4. Let us inspect the results in the
new ‘top’ regime for Fr > Frct. We clearly distinguish two main kinds of branches.
First, the darker branches, which form a regular set and can be followed down to the
transition at Frct, correspond to the centrifugal waves C±n . Note that for the set of
parameters considered, the waves C+0 , C+1 , C−0 , C−1 and C−2 belong to the hyperbolic
range, while the higher ones all belong to the elliptic range. The second set of
branches are the more numerous and more damped waves contained in the hyperbolic
range λ ∈ [−2, 2], and correspond to the inertial waves. Most of these branches tend
to disappear as the Froude number is decreased towards the transition at Frct. This
feature roughly mirrors the behaviour which was observed in the wet regime as the
Froude number is increased towards Frc. The explanation is the same: as the Froude
number is decreased, the domain occupied by the fluid departs from the rectangular
domain which allows a separated variable solution, and the singularity associated
with the Poincaré equation in the hyperbolic case reappears.

To illustrate the results further, we display in figure 16 the structure of three
different waves for a large Froude number, namely Fr= 6. The three waves displayed,
namely C−0 , C+2 and I−31, are in accordance with the predictions of the inviscid case
discussed above. We also show in table 1 a comparison of the frequencies predicted
in the inviscid case for Fr≈∞ and computed through the global approach for Fr= 6.
The comparison shows excellent agreement for this value of Fr, and also shows that
the inertial waves are substantially more damped than the centrifugal waves.

Finally, let us briefly discuss the reconnection between the various kinds of waves
at the transition between the ‘dry’ and ‘top’ regimes at Fr = Frct. We can see
that, although most branches display a slope discontinuity, the centrifugal branches



Wave Inviscid theory Global results
denomination (Fr=∞) (Fr= 6, Ek= 10−4)

C+0 1.3423 1.2819− 0.0024i
C+1 1.6854 1.7108− 0.0039i
C+2 2.2638 2.2559− 0.0072i
I+11 0.2272 0.2204− 0.0349i
I+21 0.4394 0.4325− 0.0380i

C−0 −0.5731 −0.5760− 0.0010i
C−1 −0.9320 −0.9291− 0.0020i
C−2 −1.5903 −1.5811− 0.0045i
I−11 −0.2384 −0.2379− 0.0408i
I−21 −0.4538 −0.4488− 0.0368i

TABLE 1. Waves in Newton’s bucket with a top wall: comparison between inviscid results
in the large-Froude number limit and global viscous results (a= 0.5, at = 1.5,m= 2).
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FIGURE 16. Structure of some waves in the top-wall case for m = 2, a = 0.5, at = 1.5,
Ek= 10−4, Fr= 6. (a) C−0 ; λr=−0.576, λi=−0.00101; (b) C+2 ; λr= 2.256, λi=−0.00716;
(c) I−31; λr =−0.644, λi =−0.0387.

smoothly reconnect with the surface waves which were discussed in § 4. As we have
seen, these surface waves were most easily interpreted as ‘gravity waves’ in the wet
regime, while some of them tended to acquire an ‘edge wave’ behaviour in the dry
regime. The connection confirms that all these waves – gravity, centrifugal and edge
– actually belong to the general class of surface waves. The connection between the
branch C−0 in the top regime and the branch C− in the dry regime, which had already
been interpreted as a centrifugal waves, is also clear. Finally, we note that the set of
branches corresponding to Rossby waves existing in the dry regime can be continued
in the top regime. As the Froude number is further increased these branches tend to
lose their identity and merge with the set of inertial waves.

7. Summary and conclusions
The solid body rotation of a free surface flow in a confined cylindrical tank has

been considered by means of global stability analysis in the viscous case and various
asymptotic methods. The stability of this configuration has been confirmed in the



viscous case to be in agreement with the famous bucket experiment in which the
free surface is perfectly still. However, the analysis unveils the complexity of such a
configuration due to the presence of different kinds of waves, namely surface waves
(gravity and centrifugal), inertial waves and Rossby waves, which can coexist in an
intricate way. In this paper we provide a comprehensive and coherent classification
of these waves for a large range of parameters, including wet cases and dry cases, a
description of the dewetting transition, and an extension where a top wall is included.

The need for such a classification of waves is rooted in recent studies related
to the rotating bottom experiment (fixed lateral wall), where symmetry breaking of
the free surface can be seen. Indeed, the flow existing in such an experiment has
been found to be described well at first order by a Rankine vortex (Bergmann et al.
2011), which therefore incorporates a central core in solid body rotation. Fabre &
Mougel (2014) showed, using a simple model composed of two fluid layers, that the
presence of the rigidly rotating region offers a possible explanation for the switching
phenomenon which can be seen in the rotating bottom experiment (Iga et al. 2014).
However, the present results suggest that many additional waves can interact when
the whole volume of fluid is considered, and details regarding the global stability of
the Rankine vortex will therefore be the object of further studies to complement the
preliminary results of Mougel et al. (2014).

Although the present study has addressed, as exhaustively as possible, the stability
of the flow in the viscous case and from a modal point of view, there are necessarily
a number of issues which are left aside and could be the object of future studies. First,
the effect of viscosity on the various families of waves has been investigated only in
a qualitative way, and could certainly be the object of a more thorough study, in order
to predict the damping rates of the modes due to viscous dissipation in the boundary
layers and within the thin shear layers constituting the inertial modes. Second, we
have restricted the discussion here to a description of the unforced case. Investigating
the response of the flow to a harmonic forcing is a different problem, which would
certainly justify a whole study on its own. In this case, due to the singularity of
the inviscid problem in the hyperbolic range, one can expect to observe a geometric
instability (Maas & Harlander 2007) due to the focussing of perturbations towards
the attractors of the singular modes. Finally, the present study has disregarded the
effects of surface tension. Such effects are expected to lead to two complications.
First, the parabolic shape of the free surface is no longer relevant, and one should
consider the actual equilibrium shape resulting from both rotation and capillary effects.
Second, surface tension is known to give rise to a new family of waves, namely
capillary waves, whose interactions with the other families of waves will certainly lead
to interesting results.

Appendix A. The shallow-water regime
A.1. General solutions for dry and wet cases

In both dry and wet cases, an appropriate change of variables can reduce (3.7) to a
hypergeometric differential equation (see (15.5.1) in Abramowitz & Stegun 1972). The
most convenient change of variables is as follows:

Z = 2Fr2r2

Fr2 − 4
in the wet case, (A 1a)

Z = r2

r2
c

in the dry case. (A 1b)



In both cases, the solution can be expressed in terms of hypergeometric functions
F (a, b; c; z) and the general solution involves two hypergeometric solutions, which
can be expressed in a variety of forms, all listed in Abramowitz & Stegun (1972,
§ 15.5). Here it is found that only one hypergeometric solution is needed. The reason
for that is case dependent. In the dry case, regularity, or equivalently (3.9b,c), at
r = 0 prohibits one of the two linearly independent solutions to the second-order
equation. In the dry case, it turns out that only one linear solution is needed, as it
straightforwardly satisfies boundary condition (3.9b,c) at r = rc. In the wet case, the
general solution is of the form

η(Z)= Z|m|/2F

(
1+ |m| +√M

2
,

1+ |m| −√M
2

; |m| + 1; Z
)
, (A 2)

while in the dry case, one finds

η(Z)= Z|m|/2F

(
1+ |m| +√M

2
,

1+ |m| −√M
2

; 1; 1− Z

)
, (A 3)

where we have introduced M = 1+m2 − 2Λ, and again, Λ= λ2 − 4− 2m/λ.
Using boundary condition (3.9b,c) for both the wet case and the dry case then leads

to the dispersion relations Dw(λ, m)= 0 and Dd(λ, m)= 0, respectively, which gives
an implicit solution for λ.

A.2. Asymptotic expansion for shallow-water solutions

Here we introduce h̄(r)= h(r)/a, the reduced height profile given by

h̄(r)= 1+ Fr2

2

(
r2 − 1

2

)
if Fr< 2, (A 4)

in the wet case and

h̄(r)= Fr2

2
(r2 − r2

c) if Fr> 2, (A 5)

in the dry case.
Using this notation (3.7) can be written as

η′′(r)+
(

1
r
+ Fr2r

h̄(r)

)
η′(r)+

(
Fr2Λ

h̄(r)
− m2

r2

)
η(r)= 0. (A 6)

This new formulation is slightly more convenient to derive the following asymptotic
expansions.

A.2.1. Asymptotic trends for Fr� 1
In the low-Froude-number limit, corresponding to the wet case, two kinds of

solution have to be considered: λ� 1 (Rossby waves) and λ� 1 (gravity waves). In
this limit (A 6) reduces to

η′′(r)+ 1
r
η′(r)+

(
Fr2Λ− m2

r2

)
η(r)= 0. (A 7)



The two solutions, Rossby waves and gravity waves, then correspond to the expansion
λ= λ0Fr2 +O(Fr4) and λ= λ0Fr−1 +O(1), where λ0 is order one, leading to

η′′(r)+ 1
r
η′(r)+

(
−m2

r2
− 2m
λ0

)
η(r)= 0, (A 8)

η′′(r)+ 1
r
η′(r)+

(
λ2

0 −
m2

r2

)
η(r)= 0. (A 9)

Solutions of (A 8) and (A 9) are of the form η = Jm(
√−2m/λ0r) and η = Jm(λ0r),

respectively. The inviscid boundary condition at r= 1 leads to the dispersion relations

Dw
R = Jm(

√−2m/λ0)= 0, i.e. λ0 =−2m
j2
mn

, (A 10)

for Rossby waves and

Dw
G =mJm(λ0)− λ0Jm+1(λ0)= 0, (A 11)

for gravity waves, respectively. Note that (A 10) is the leading-order solution derived
for Rossby waves in the small-Froude-limit (derived in appendix B).

A.3. Asymptotic trends for Fr≈ 2−

To investigate the wet–dry transition, we introduce Fr= 2− δ and consider the limit
δ� 1 with δ > 0. This case thus corresponds to approaching the transition from the
‘wet’ side. The mirror case Fr≈ 2+ with δ < 0 is very similar but is not detailed here.

The hypergeometric solution can be written in the form

η= x|m|F

(
m+ 1+√M

2
,

m+ 1−√M
2

; |m| + 1; −2r2

δ

)
, (A 12)

with

M =m2 + 1− 2Λ= 4m
λ
+ (m2 + 9)− 2λ2. (A 13)

As δ tends to zero, the argument in the hypergeometric solution becomes large, so
we can use the asymptotic forms corresponding to this case. The situation differs
according to the sign of M.

A.3.1. Case M> 0
In this case, the asymptotic behaviour is (Abramowitz & Stegun 1972, (15.3.7))

η≈ Ar
√

M−1, (A 14)

with A some arbitrary multiplicative factor. We introduce this behaviour into the
boundary condition for r= 1,

λ

(√
4m
λ
+ (m2 + 9)− 2λ2 − 1

)
− 2m= 0. (A 15)

For each m 6= 0, this equation has a single root, denoted λW = m
√

2/2. Values are
given in table 2. This branch is the only regular one in the limit Fr≈ 2.



m λW λG+
A λG−

A λR
A

0 — 3
√

2/2= 2.1213 −3
√

2/2 —
1
√

2/2= 0.7071 1+√2 −2 1−√2
2

√
2= 1.414 2.814 −2.1549 −0.6595

3 3
√

2/2 3.2899 −2.5842 −0.7057
4 2

√
2 3.8202 −3.1569 −0.6633

TABLE 2. Coefficients entering the asymptotic expressions of the waves for Fr≈ 2−.

A.3.2. Case M< 0
This case is encountered in three intervals, noted [−∞, λG−

A ], [λR
A, 0], [λG+

A , ∞],
where the λAs are the three roots of M = 0. The numerical values for these numbers
are given in table 2. The fact that M< 0 leads to an oscillating function η, and hence
the possibility for a family of waves in each of the intervals. In practice we found
that, as δ tends to zero, the branches accumulate toward the corresponding λA. Thus
we start with an expansion of the form λ = λA + λ1. We also write M = −β2, with
β2 = −(∂M/∂λ)λ1. Then the asymptotic expression for the hypergeometric function
leads to

η≈ A

(√
2r√
δ

)−1+iβ

+ c.c.≡ A
(

r√
δ

)−1

cos(β log(r/2
√
δ)), (A 16)

where c.c. stands for complex conjugate. Imposition of the boundary condition at r=1
leads to β log(δ)= nπ. Hence λ1 ∼ n2/(log δ)2.

Appendix B. The low-Froude-number regime
In this appendix we investigate the limit of weak rotation. As discussed in the main

text, in this case the domain occupied by the fluid reduces to a rectangular cylindrical
region, thus allowing a solution with separated variables for each of the three main
families of waves. Here we derive this solution using asymptotic developments in
powers of the Froude number, which are carried out up to second-order terms for
Rossby and inertial waves, and up to third-order terms for gravity waves. For such
developments, it turns out to be more convenient to use a different definition for the
Froude number, namely

F=Ω
√

R
g
= a1/2Fr. (B 1)

With this notation, the starting equations read

∂2p
∂r2
+ 1

r
∂p
∂r
− m2

r2
p+

(
λ2 − 4
λ2

)
∂2p
∂z2
≡1p− 4

λ2

∂2p
∂z2
= 0, (B 2)

∂p
∂z
− F2λ2p+ F2h′2λ

λ2 − 4

(
2m
r

p− λ∂p
∂r

)
= 0 for z= a+ F2h2(r), (B 3)

λ
∂p
∂r
− 2mp= 0 for r= 1, (B 4)

where h2(r)= r2/2− 1/4.



(m, n) λ0 λ1 λ2

(2, 0) 1.6670 −0.4837 0.0875
(2, 1) 2.5865 −0.0496 0.3692
(2, 2) 3.1573 −0.0210 0.3098

TABLE 3. Values of the coefficients in the expansion of gravity waves for a= 0.5.

B.1. Gravity surface waves
For this first family, the eigenvalues are expanded in the following form

λ= F−1λ0 + λ1 + Fλ2 + . . . . (B 5)

We also expand the eigenmode as

p= p0 + Fp1 + F2p2. (B 6)

The solution up to third order is derived in the following paragraphs. Numerical values
for λ0, λ1 and λ2 are given, in a few cases, in table 3.

B.1.1. Leading order
In this case the pressure equation reduces to the Laplace equation

1mp0 = 0 for (r, x) ∈D0, (B 7)

λ2
0p0 − ∂p0

∂z
= 0 for z= a, (B 8)

∂p0

∂r
= 0 for r= 1. (B 9)

A solution with separated variables, satisfying the boundary condition at the bottom,
is found as follows

p0(r, z)= cosh(kz)Jm(kr). (B 10)

The boundary condition at the wall r= 1 is J′m(k)= 0, which is satisfied for discrete
values of k defined by k= j′mn. Finally, the boundary equation at the free surface leads
to the classical dispersion relation for surface waves in its non-dimensional form

λ2
0 = k tanh(ka). (B 11)

Note that, in dimensional terms, the frequency has the classical form ω≈√gk tanh(kH).
We therefore recover the standard result for standing waves in a cylindrical cylinder,
given, for instance, in Ibrahim (2005).

B.1.2. Second order
At the next order, the equation and boundary conditions are as follows

1p1 = 0 for (r, z) ∈D0, (B 12)

λ2
0p1 + 2λ0λ1p0 − ∂p1

∂z
= 0 for z= a, (B 13)

λ0
∂p1

∂r
− 2mp0 = 0= 0 for r= 1. (B 14)



The solution is obtained by multiplying by p0, integrating over the whole domain and
using the Schwartz identity∫∫

g1f dS=
∫∫

f1g dS+
∫ a

0

(
f
∂g
∂r
− g

∂f
∂r

)
r=1

dz+
∫ 1

0

(
f
∂g
∂z
− g

∂f
∂z

)
z=a

r dr.

(B 15)

This results in

2m
λ0

∫ a

0
[p0(1, z)]2 dz+ 2λ0λ1

∫ 1

0
[p0(r, a)]2r dr= 0, (B 16)

and thus

λ1 = −m
λ2

0

Jm(k)2
∫ a

0
cosh(kz)2 dz

cosh(k)2
∫ 1

0
Jm(kr)2r dr

. (B 17)

The integrals appearing here can be evaluated in closed form (see Abramowitz &
Stegun 1972), leading to the final expression

λ1 = −m
k2 −m2

(
1+ ka

cosh(ka) sinh(ka)

)
. (B 18)

The solution p1 at second order is found as

p1(r, z)= 2mk
λ0(k2 −m2)

∂p0

∂k
≡ 2mk
λ0(k2 −m2)

(r cosh(kz)J′m(kr)+ z sinh(kz)Jm(kr)). (B 19)

B.1.3. Third order
At next order in F, we have

1p2 − 4
λ2

0

∂p2
0

∂z2
= 0 for (r, z) ∈D0, (B 20)

λ2
0p2 + 2λ0λ1p1 + (λ2

1 + 2λ0λ2)p0 − ∂p2

∂z
+ h′2

∂p0

∂r

+ h2

(
λ2

0
∂p0

∂z
− ∂

2p0

∂z2

)
= 0 for z= a, (B 21)

λ0
∂p2

∂r
+ λ1

∂p1

∂r
− 2mp1 = 0 for r= 1. (B 22)

Again we multiply by p0, and integrate over the domain to obtain

4
λ2

0

∫∫
p0
∂2p0

∂z2
r dr dz= 1

λ0

∫ a

0
p0

(
2mp1 − λ1

∂p1

∂r

)
dz+ 2λ0λ2

∫ 1

0
p2

0r dr

+
∫ 1

0

(
λ2

1p0 + 2λ0λ1p1 + h′2
∂p0

∂r
+ h2

(
λ2

0
∂p0

∂z
− ∂

2p0

∂z2

))
p0r dr. (B 23)

This expression yields λ2 as a function of known quantities. The expression can be
found in closed form, but does not simplify much, so we give only a numerical
solution for a few cases (see table 3).



B.2. The Rossby waves for ω≈m
In this case, Rossby waves come from the following form

λ= λR
0 Fr2 + λR

1 Fr4, (B 24)

or, in dimensional form,

ω=mΩ + λR
0
Ω3R2

gH
+ λR

1
Ω5R4

g2H2
. (B 25)

The pressure takes the following form

p= p0(r)+ Fr2p1(r)+ Fr4p2(r, z)+ Fr6p3(r, z)+ · · · . (B 26)

With this ansatz, the Poincaré equation and the boundary conditions lead to the
following expansions

− 4
λ2

0

∂2p0

∂z2
Fr−4 − 4

λ2
0

∂2p1

∂z2
Fr−2

+
(
1p0 − 4

λ2
0

∂2p2

∂z2

)
+
(
1p1 − 4

λ2
0

∂2p3

∂z2
+ 8λ1

λ3
0

∂2p2

∂z2

)
Fr2 + · · · = 0,

∂p0

∂z
Fr−2 − ∂p1

∂z
+
(
∂p2

∂z
− ah′2λ0

2
mp0

r

)
Fr2 +

(
∂p3

∂z
+ ah2

∂2p2

∂z2

− ah′2λ0

4

[
2mp1

r
− λ0

∂p0

∂r

]
− ah′2λ1

2
mp0

r
− aλ2

0p0

)
Fr4 + · · · = 0,

−2mp0 +
(
λ0
∂p0

∂r
− 2mp1

)
Fr2 + · · · = 0.



(B 27)

The two leading orders show that p0 and p1 are independent of the vertical direction
z (hence the form taken for the expansion).

In the following paragraphs we give analytical expressions for the terms λR
0 and λR

1 .
Numerical values for a few cases are given in table 4.

B.2.1. Leading-order frequency
To solve for the leading-order frequency λ0, we have to consider the third term in

the expansion (
1p0 − 4

λ2
0

∂2p2

∂z2

)
= 0, (B 28)(

∂p2

∂z
− ah′2λ0

2
mp0

r

)
= 0 for z= a, (B 29)

p0 = 0 for r= 1. (B 30)

We find that p2(r, z) is proportional to z2 and to p0, and that

p2 = λ0mz2

4
p0(r). (B 31)



(m, n) λ0 =−2m/j2
mn λ1

(1, 0) −0.13622 0.01648
(1, 1) −0.04063 −0.00091
(1, 2) −0.01932 −0.00151
(2, 0) −0.15166 0.01036
(2, 1) −0.05646 −0.00152
(2, 2) −0.02962 −0.00159
(3, 0) −0.146739 0.00823
(3, 1) −0.06297 −0.00150
(3, 2) −0.03542 −0.00177

TABLE 4. Numerical values for coefficients entering the asymptotic expansion of the
frequency of Rossby waves in low-Froude number limit.

Hence, finally, (
1p0 − 2m

λ0
p0

)
= 0. (B 32)

The solution is p0= Jm(kr), with k2=−2m/λ0. The boundary condition at r= 1 yields
k= jmn, and thus

λ0 =−2m
j2
mn

, (B 33)

which is actually identical to the result derived under the shallow-water approximation.

B.2.2. Next order
At next order, we get equations with the following form

1p1 − 4
λ2

0

∂2p3

∂z2
+ 8λ1

λ3
0

∂2p2

∂z2
= 0, (B 34)

1
a
∂p3

∂z
+ h2

∂2p2

∂z2
− h′2λ0

4

[
2mp1

r
− λ0

∂p0

∂r

]
− h′2λ1

2
mp0

r
− λ2

0p0 = 0 for z= a, (B 35)

λ0
∂p0

∂r
− 2mp1 = 0 for r= 1. (B 36)

The boundary condition yields p3 as a function of p0 and p1

p3 = z2

2

(
m
2

[
λ0p1 + λ1p0

]+ λ2
0

[
p0 − r

4
p′0
]
− λ0m

2
p0

)
. (B 37)

We substitute into (B 34), and obtain(
1p1 − 2m

λ0
p1

)
+ 2mλ1

λ2
0

p0 + r
∂p0

∂r
− 4p0 + 2mh2

λ0
p0, (B 38)

we multiply by rp0 and integrate, to finally get

λ1 =
λ2

0p′0(1)
2 − λ0

∫ 1

0
(2λ0m[rp′0 − 4p0] − 4m2h2p0)p0r dr

4m2
∫ 1

0
p2

0r dr
. (B 39)



It is interesting to remark that this expression does not depend upon a.

B.3. The inertial modes with ω≈ 1
For this family of waves we use the following expansion

λ= λ0 + F2λ1 (B 40)

and for the pressure

p= p0 + F2p1. (B 41)

In the following paragraphs we give analytical expressions for the terms λ0 and λ1.
Numerical values for a few cases are given in table 5.

B.3.1. Leading order

(
1m − 4

λ2
0

∂2

∂z2

)
p0 = 0 for (r, z) ∈D0, (B 42)

∂p0

∂z
= 0 for z= a, (B 43)

λ0
∂p0

∂r
− 2mp0 = 0 for r= 1. (B 44)

A solution with separated variables, satisfying the boundary condition at the bottom,
is readily found as

p0(r, z)= cos(kzz)Jm(krr), (B 45)

where kz is an axial wave number and kr a radial wave number defined as

k2
r = k2

z

(
4
λ2

0
− 1
)
. (B 46)

Such a solution is of oscillating form in both the radial and vertical directions if 1m>
0, i.e. −2< λ0 < 2, which is recognised as the classical range of existence of Kelvin
waves. Imposition of the boundary conditions at the bottom and at the edge lead to
two discretisation conditions, namely

sin(kza)= 0, with solutions kz = kzn1
= n1π/a, (B 47)

λ0krJ′m(kr)− 2mJm(kr)= 0, with solutions noted kr = krn2 . (B 48)

The relation between kr and kz finally yields the eigenmode frequencies. It is found
that there is a discrete set of eigenvalues ωm,n1,n2 which, for a given m, fill the
interval [(m − 2), (m + 2)] in a dense way. We can put the dispersion relation into
the following form

2kz|kr|√
k2

r + k2
z

J′m(kr)− 2mJm(kr)= 0, (B 49)

with

λ0 = sgn(kr)2k√
k2

r + k2
z

, (B 50)

with the convention that negative values of kr correspond to negative λ.



(m, n1, n2) kr λ0 λ1

(2, 1, 1) 6.256 1.4173 −0.07301
(2, 1, 2) 9.598 1.0954 0.01519
(2, 1, 3) 12.826 0.8798 0.05604
(2, 1, 4) 16.0164 0.7304 0.06163
(2, 2, 1) 6.343 1.7854 −0.00573
(2, 2, 2) 9.707 1.5827 0.04106

(2, 1, 0) −3.919 −1.6979 −0.02632
(2, 1,−1) −7.154 −1.3197 −0.08185
(2, 1,−2) −10.346 −1.0381 −0.1058
(2, 1,−3) −13.519 −0.8429 −0.1072
(2, 2, 0) −3.855 −1.9120 −0.02143
(2, 2,−1) −7.057 −1.7438 −0.05753

TABLE 5. Values of the coefficients in the expansion of inertial waves for a= 0.5.

B.3.2. Next order
At next order, the Poincaré equation and boundary conditions lead to(

1m − 4
λ2

0

∂2

∂z2

)
p1 +

(
8λ1

λ3
0

)
∂2p0

∂z2
= 0 for (r, z) ∈D0, (B 51)

∂p1

∂z
+ h2

∂2p0

∂z2
− λ2

0p0 + h′2λ0

λ2
0 − 4

(
2m
r

p0 − λ0
∂p0

∂r

)
= 0 for z= a, (B 52)

λ1
∂p0

∂r
+ λ0

∂p1

∂r
− 2mp1 = 0 for r= 1. (B 53)

We multiply by p0, integrate over the domain and use a few formulas to get

8λ1

λ3
0

∫∫
p0
∂2p0

∂z2
r dr dz− λ1

λ0

∫ a

0
p0
∂p0

∂r
dz

−
(

1− 4
λ2

0

) ∫ 1

0

(
h2
∂2p0

∂z2
− λ2

0p0 + h′2λ0

λ2
0 − 4

(
2m
r

p0 − λ0
∂p0

∂r

))
r dr= 0. (B 54)

This leads to

λ1 = 2λ0

a

×

∫ 1

0

(
[4− λ2

0][k2
z h2(r)+ λ2

0]Jm(krr)+ λ0

[
2m
r

Jm(krr)− λ0krJ′m(krr)
])

Jm(krr)r dr

krJ′m(kr)Jm(kr)− k2
z

∫ 1

0
Jm(krr)2r dr

.

(B 55)

Appendix C. The large-Froude-number limit in the top-hat case
In the case where the container is closed by a flat top hat and the Froude number

is very large, such that the gravitational acceleration becomes negligible compared to



the centrifugal acceleration, the free surface of the base flow becomes vertical, with
a cylindrical hollow core of radius rc. In this appendix we reproduce the analytical
solution of this case, which was initially worked out in the inviscid case in Miles &
Troesh (1961) and is also reproduced in Ibrahim (2005).

This case is governed by the Poincaré equation with no-penetration conditions at the
bottom (z = 0), top (z = Ht) and cylinder (r = R ≡ 1), but the free-surface boundary
condition (3.3) has to be replaced by

$ 2rc
dp
dr

∣∣∣∣
r=rc

+ [4(1−$ 2)+m$ 3]p(rc)= 0, (C 1)

where, following Ibrahim (2005), we use the notation $ =−2/λ.

C.1. The 2-D centrifugal waves
The 2-D case corresponds to waves with a structure which does not depend upon the
vertical direction. The solution is quite straightforward. The structure of the wave is

p= Arm + Br−m. (C 2)

Using the boundary conditions at r= rc and r= 1 and eliminating constants A and B
leads to

m$ 2 − 4$ − 4/K = 0, with K = 1− rc
2m

1+ rc
2m
. (C 3)

The roots of this equation are given by

$ = 2
m

(
1±√1+m/K

)
, (C 4)

which, after some rearranging, leads to (6.4) and (4.8) when rc
2m� 1.

C.2. 3-D waves, elliptic case
In this case the solution in separated form has the expression

p= [AIm(krr)+ BKm(krr)] cos(kzz), (C 5)

where the vertical wavenumber kz = nπ/H and the radial parameter kr are linked
together and to the frequency through k2

r = (1−$ 2)k2
z , and Im, Km correspond to the

modified Bessel functions of the first and second kind respectively. Imposition of the
boundary conditions at r= 1 and r= rc leads to the dispersion relation∣∣∣∣∣∣

krI′m(kr)+m$ Im(kr) krK′m(kr)+m$Km(kr)

$ 2krrcI′m(krrc) $ 2krrcK′m(krrc)

+[4(1−$ 2)+m$ 3]Im(krrc) +[4(1−$ 2)+m$ 3]Km(krrc)

∣∣∣∣∣∣= 0. (C 6)

Depending upon the parameters, this equation has either zero or one solution λ of
each sign. In the latter case the solution yields the waves C±n .



C.3. 3-D waves, hyperbolic case
In this case the solution in separated variable form has the expression

p= [AJm(k̄rr)+ BYm(k̄rr)] cos(kzz), (C 7)

where the vertical wavenumber kz = nπ/H and the radial wavenumber k̄r are linked
together and to the frequency through k̄2

r = ($ 2 − 1)k2
z , and Jm, Ym correspond to the

Bessel functions of the first and second kind respectively. Imposition of the boundary
conditions at r= 1 and r= rc leads to the dispersion relation∣∣∣∣∣∣∣

k̄rJ′m(k̄r)+m$ Jm(k̄r) k̄rY′m(k̄r)+m$Ym(k̄r)

$ 2k̄rrcJ′m(k̄rrc) $ 2k̄rrcY′m(k̄rrc)

+[4(1−$ 2)+m$ 3]Jm(k̄rrc) +[4(1−$ 2)+m$ 3]Ym(k̄rrc)

∣∣∣∣∣∣∣= 0. (C 8)

This dispersion relation can predict two kinds of waves. First, in the cases where
there are no solutions in the elliptic range, this equation may admit solutions with no
nodes in the radial direction. Such solutions correspond to the waves C±n in the case
where they belong to the hyperbolic zone. Second, this equation always admits a set
of solutions with nr radial nodes, nr > 1, which correspond to the inertial waves I±nznr

.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1972 Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables. Courier Dover.

BACH, B., LINNARTZ, E. C., VESTED, M. H., ANDERSEN, A. & BOHR, T. 2014 From Newton’s
bucket to rotating polygons: experiments on surface instabilities in swirling flows. J. Fluid
Mech. 759, 386–403.

BAUER, H. F. & EIDEL, W. 1997 Axisymmetric viscous liquid oscillations in a cylindrical container.
Forsch. Ing. Wes. 63, 189–201.

BERGMANN, R., TOPHØJ, L., HOMAN, T. A. M., HERSEN, P., ANDERSEN, A. & BOHR, T. 2011
Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679, 415–431.

BORRA, E. F. 1982 The liquid-mirror telescope as a viable astronomical tool. J. R. Astron. Soc.
Can. 76, 245–256.

ELOY, C., LE GAL, P. & LE DIZÈS, S. 2003 Elliptic and triangular instabilities in rotating cylinders.
J. Fluid Mech. 476, 357–388.

FABRE, D. & MOUGEL, J. 2014 Generation of three-dimensional patterns through wave interaction
in a model of free surface swirling flow. Fluid Dyn. Res. 46 (6), 061415.

GREENSPAN, H. P. 1969 The Theory of Rotating Fluids. Cambridge University Press.
HECHT, F. 2012 New development in freefem++. J. Numer. Math. 20 (3–4), 251–265.
HENDERSON, D. M. & MILES, J. W. 1994 Surface-wave damping in a circular cylinder with a

fixed contact line. J. Fluid Mech. 275, 285–299.
IBRAHIM, R. A. 2005 Liquid Sloshing Dynamics: Theory and Applications. Cambridge University

Press.
IGA, K., YOKOTA, S., WATANABE, S., IKEDA, T., NIINO, H. & MISAWA, N. 2014 Various phenomena

on a water vortex in a cylindrical tank over a rotating bottom. Fluid Dyn. Res. 46 (3), 031409.
JANSSON, T. R. N., HASPANG, M. P., JENSEN, K. H., HERSEN, P. & BOHR, T. 2006 Polygons on

a rotating fluid surface. Phys. Rev. Lett. 96, 174502.
JOUVE, L. & OGILVIE, G. I. 2014 Direct numerical simulations of an inertial wave attractor in

linear and nonlinear regimes. J. Fluid Mech. 745, 223–250.
LEBLOND, P. H. 1964 Planetary waves in a symmetrical polar basin. Tellus 16 (4), 503–512.
MAAS, L. R. M. & HARLANDER, U. 2007 Equatorial wave attractors and inertial oscillations.

J. Fluid Mech. 570, 47–67.



MANDERS, A. M. M. & MAAS, L. R. M 2004 On the three-dimensional structure of the inertial
wave field in a rectangular basin with one sloping boundary. Fluid Dyn. Res. 35, 1–21.

MARTEL, C., NICOLAS, J. A. & VEGA, J. M. 1998 Surface-wave damping in a brimful circular
cylinder. J. Fluid Mech. 360, 213–228.

MILES, J. W. 1964 Free-surface oscillations in a slowly rotating liquid. J. Fluid Mech. 18 (02),
187–194.

MILES, J. W. & TROESH, B. A. 1961 Surface oscillations of a rotating liquid. Trans. ASME J. Appl.
Mech. 28, 491–496.

MOUGEL, J., FABRE, D. & LACAZE, L. 2014 Waves and instabilities in rotating free surface flows.
Mech. Ind. 15, 107–112.

NEEFE, C. W. 1983 Spin casting of contact lenses. US Patent 4,416,837.
NEWTON, I. 1687 The Principia: Mathematical Principles of Natural Philosophy. University of

California Press; (reprint, 1999).
PEDLOSKY, J. 1982 Geophysical Fluid Dynamics. vol. 1, p. 636. Springer.
PHILLIPS, N. A. 1965 Elementary rossby waves. Tellus 17 (3), 295–301.
PONCET, S. & CHAUVE, M. P. 2007 Shear-layer instability in a rotating system. J. Flow Vis. Image

Process. 14 (1).
RIEUTORD, M. & VALDETTARO, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech.

341, 77–99.
STOKES, G. G. 1846 Report on recent researches in hydrodynamics. Brit. Assoc. Rep. 1, 1–20.
SUN, T. 1960 On fluid surface waves influenced by centrifugal force pressure. PMTPH 3, 90–96.
SUZUKI, T., IIMA, M. & HAYASE, Y. 2006 Surface switching of rotating fluid in a cylinder. Phys.

Fluids 18 (10), 101701.
TOPHØJ, L., MOUGEL, J., BOHR, T. & FABRE, D. 2013 Rotating polygon instability of a swirling

free surface flow. Phys. Rev. Lett. 110 (19), 194502.
URSELL, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214 (1116), 79–97.
VALLIS, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale

Circulation. Cambridge University Press.
VATISTAS, G. H. 1990 A note on liquid vortex sloshing and kelvin’s equilibria. J. Fluid Mech. 217,

241–248.
VERFURTH, R. 1991 Finite element approximation of incompressible Navier–Stokes equations with

slip boundary conditions 2. Numer. Math. 59, 615–635.


	garde_21_297
	Mougel_14405.pdf
	Waves in Newton's bucket
	Introduction
	Problem setting: geometry, parameters, and governing equations
	Geometry and parameters
	Global stability equations
	Numerical method

	The inviscid problem: mathematical investigation
	Global problem: the Poincaré equation
	Shallow-water approximation

	Viscous problem: numerical exploration
	A general picture of numerical solutions
	The wet regime
	Gravity waves
	Rossby waves
	Inertial waves

	The dry regime
	Edge waves
	Centrifugal waves

	Transition from wet to dry cases

	Effect of the wall conditions
	Effect of a top wall
	Summary and conclusions
	Appendix A. The shallow-water regime
	General solutions for dry and wet cases
	Asymptotic expansion for shallow-water solutions
	Asymptotic trends for Fr1

	Asymptotic trends for Fr 2-
	Case M>0
	Case M<0


	Appendix B. The low-Froude-number regime
	Gravity surface waves
	Leading order
	Second order
	Third order

	The Rossby waves for ωm 
	Leading-order frequency
	Next order

	The inertial modes with ω1 
	Leading order
	Next order


	Appendix C. The large-Froude-number limit in the top-hat case
	The 2-D centrifugal waves
	3-D waves, elliptic case
	3-D waves, hyperbolic case

	References



	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 
	75: 
	76: 
	77: 
	78: 
	79: 
	80: 
	81: 
	82: 
	83: 
	84: 
	85: 
	86: 
	87: 
	88: 
	89: 
	90: 
	91: 
	92: 
	93: 
	94: 
	95: 
	96: 
	97: 
	98: 
	99: 
	100: 
	101: 
	102: 
	103: 
	104: 
	105: 
	106: 
	107: 
	108: 
	109: 
	110: 
	111: 
	112: 
	113: 
	114: 
	115: 
	116: 
	117: 
	118: 
	119: 
	120: 
	121: 
	122: 
	123: 
	124: 
	125: 
	126: 
	127: 
	128: 
	129: 
	130: 
	131: 
	132: 
	133: 
	134: 
	135: 
	136: 
	137: 
	138: 
	139: 
	140: 
	141: 
	142: 
	143: 
	144: 
	145: 
	146: 
	147: 
	148: 
	149: 
	150: 
	151: 
	152: 
	153: 
	154: 
	155: 
	156: 
	157: 
	158: 
	159: 
	160: 
	161: 
	162: 
	163: 
	164: 
	165: 
	166: 
	167: 
	168: 
	169: 
	170: 
	171: 
	172: 
	173: 
	174: 
	175: 
	176: 
	177: 
	178: 
	179: 
	180: 
	181: 
	182: 
	183: 
	184: 
	185: 
	186: 
	187: 
	188: 
	189: 
	190: 
	191: 
	192: 
	193: 
	194: 
	195: 
	196: 
	197: 
	198: 
	199: 
	200: 
	201: 
	202: 
	203: 
	204: 
	205: 
	206: 
	207: 
	208: 
	209: 
	210: 
	211: 
	212: 
	213: 
	214: 
	215: 
	216: 
	217: 
	218: 
	219: 
	220: 
	221: 
	222: 
	223: 
	224: 
	225: 
	226: 
	227: 
	228: 
	229: 
	230: 
	231: 
	232: 
	233: 
	234: 
	235: 
	236: 
	237: 
	238: 
	239: 
	240: 
	241: 
	242: 
	243: 
	244: 
	245: 
	246: 
	247: 
	248: 
	249: 
	250: 
	251: 
	252: 
	253: 
	254: 
	255: 
	256: 
	257: 
	258: 
	259: 
	260: 
	261: 
	262: 
	263: 
	264: 
	265: 
	266: 
	267: 
	268: 
	269: 
	270: 
	271: 
	272: 
	273: 
	274: 
	275: 
	276: 
	277: 
	278: 
	279: 
	280: 
	281: 
	282: 
	283: 
	284: 
	285: 
	286: 
	287: 
	288: 
	289: 
	290: 
	291: 
	292: 
	293: 

	ikona: 
	211: 
	212: 
	214: 
	217: 
	218: 
	219: 
	220: 
	221: 
	222: 
	224: 
	225: 
	226: 
	227: 
	228: 
	229: 
	230: 
	231: 
	232: 
	233: 
	234: 
	235: 
	236: 
	238: 
	239: 
	240: 
	241: 
	242: 
	243: 
	244: 
	246: 
	248: 

	TooltipField: 


