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A variational data assimilation technique (4DVar) was used to reconstruct turbulent flows (Gronskis et al., 2013). The problem consists in
recovering a flow by modifying the initial and inflow conditions of a system composed of a DNS code coupled with some noisy and possibly
incomplete PIV measurements. In the present study the ability of the technique to reconstruct flow in gappy PIV data was investigated.

Dynamical model

Incompact3d A DNS/LES code to
solve incompressible flows with
quasi-spectral accuracy (see Laizet &
Lamballais, JCP 2009).

Configuration

Data: PIV cylinder wakes at Re=112
Test: artificial gap without velocity

x0 xin
DNS grid

Gap region ΩG

PIV grid, dxobs = 3dx

Control domain ΩC , fine grid

Assimilation domain ΩA, coarse grid

Weighted average to give ω in ΩA

Initial condition

uobsx (x, t0) uobsy (x, t0)

Initial condition in ΩG (IC)

1. Uniform stagnant flow

2. Velocity interpolation

Inflow condition

uk=0
x (xin, t) uk=0

y (xin, t)

I From PIV sequence with Taylor’s

hypothesis

Variational Data Assimilation

Problem: Recover a system’s state X obeying a dynamical model M, given
observations at discrete times separated by ∆tobs. This is formalized by the state
dynamics

∂tX (x, t) + M(X (x, t), η(t)) = 0 and X (x, t0) = X0(x) + ε(x) ,

where X0(x) is the initial state, η(t) and ε(x) are control variables.

Optimization problem

Minimization problem: dependence of the system’s state variable X on the control
variable γ,

X ≡ u(γ), γ = {ε(x), η(t)} ≡ {u(x, t0)− u0(x),u(xin, t)− uin(t)} .
Cost functional: deviations of the DNS values from the PIV observations weighted by
the accuracy of the observations, plus deviations of the control variable fields and their
background fields weighted by the accuracy of the backgrounds.

J(γ) =

∫ tN

t1

∫
ΩA

‖ ω(x, t) − ωobs(x, t)‖2
R dx ∆t∗dt

+

∫
ΩCobs

‖u(x, t0)− u0(x) ‖2
Qobs

dx

+

∫ tN

t0

∫
ΩCin

‖u(xin, t)− uin(t) ‖2
Qin

dx dt

DNS spatial average

initial condition

inflow condition

dxobs > dx

Gradient Evaluation on Discretized Model

Adjoint formulation: ∇J(γ) obtained by

1. Forward integration of dynamical system

2. Backward integration of adjoint dynamical model

−∂tλ(x, t) + (∂XM)∗ λ(x, t) = (∂XH)∗R−1(Y −H(X (x, t)))

λ(x, tf ) = 0

Build Adjoint Code through Automatic Differentiation (AD)

Results: Vorticity fields in the assimilation window

t · U/D 0 3 6.2 9.4 12.6

PIV

Interpolation

DNS

Assimilation

Influence of Initial Cond.

Lx/D=4, fobsD/U=6.2
Method’s accuracy did not depend
on the initial condition in the gap.

Influence of gap size

IC=1, fobsD/U=6.2
Method’s accuracy was strongly
related to the size of the gap.

Influence of obs. frequency

Lx/D=4, IC=1
Error decreased with increasing
observations frequency
Stobs = fobs D/U .

Conclusions

I A new method to reconstruct turbulent flows in gappy PIV data was introduced.
I Method’s accuracy did not depend on the initial condition in the gap.

I Method’s accuracy was strongly related to the size of the gap.

I Error decreased with increasing observations frequency Stobs. From Stobs=1.5 an

asymptotic state was reached, above Stobs=3 additional observations had less

effects.
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