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A COMMENTARY ON TEICHMÜLLER’S PAPER

EXTREMALE QUASIKONFORME ABBILDUNGEN

UND QUADRATISCHE DIFFERENTIALE

VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

Abstract. We provide a commentary on Teichmüller’s paper Ex-
tremale quasikonforme Abbildungen und quadratische Differentiale

(Extremal quasiconformal mappings of closed oriented Riemann
surfaces), Abh. Preuss. Akad. Wiss., Math.-Naturw. Kl. 1940,
No.22, 1-197 (1940). The paper is quoted in several works, al-
though it was read by very few people. Some of the results it
contains were rediscovered later on and published without any ref-
erence to Teichmüller. In this commentary, we highlight the main
results and the main ideas contained in that paper and we describe
some of the important developments they gave rise to.

The final version of this paper, together with the English trans-
lation of Teichmüller’s paper, will apper in Volume V of the Hand-
book of Teichmüller theory (European Mathematical Society Pub-
lishing House, 2015).
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1. Introduction to Teichmüller’s paper

The paper [35], published in 1939, is the most quoted article by Te-
ichmüller although, like the rest of his papers, it was read by very few
people. It contains the foundations of what we call now the classical
Teichmüller theory. The present notes are intended to be a sort of
a reading guide for that paper. In order to understand its logic, and
especially to see what the author proves and what he admits without
proof, the paper has to be read completely. Indeed, some of the results
are first referred to as “conjectures,” but they are proved later on in the
paper. Some of them are proved in subsequent papers. For example,
the proof of the important Existence Theorem for extremal quasicon-
formal mappings is given in [32], published in 1943. For the present
commentary, we have used the English translation by G. Théret which
appears in the present volume.

We start with a list of major ideas contained in this paper.

(1) A topology and a metric on Teichmüller and moduli spaces,
with a formula for the dimensions of these spaces which coin-
cides with Riemann’s count of moduli. This is a solution to
the so-called Riemann moduli problem, which asks for a precise
meaning of Riemann’s statement that there are 3g−3 “moduli”
for a closed Riemann surface of genus g ≥ 2.
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(2) The idea of marking Riemann surfaces by mapping classes (home-
omorphisms defined up to homotopy) from a fixed topological
surface to a varying Riemann surface, in order to overcome
problems caused by the singularities of moduli space.

(3) The introduction of a cover of Riemann’s moduli space which
is nonsingular, on which the mapping class group acts prop-
erly discontinuously. This is the space called now Teichmüller
space. It is the space of equivalence classes of marked Riemann
surfaces. The Riemann moduli space appears as a quotient of
Teichmüller space by the action of the mapping class group.

(4) The use of quasiconformal mappings as a tool for understanding
conformal mappings and for the study of moduli of Riemann
surfaces, and not only as a generalization of the notion of con-
formal mappings. In other words, in Teichmüller’s works, quasi-
conformality is not a notion of non-conformality but rather a
tool for constructing a conformal structure for which this map
is conformal.

(5) The use of holomorphic quadratic differentials, their trajectory
structure and the singular flat metric they induce on the surface
as a new essential tool in the theory of moduli.

(6) The introduction of the Teichmüller metric, the proof that this
metric is Finsler and the study of its infinitesimal norm and its
geodesics.

(7) The study of the infinitesimal theory of quasiconformal map-
pings, and a thorough study of the partial differential equations
which they satisfy.

(8) The translation of problems concerning conformal structures on
surfaces into problems concerning Riemannian metrics, and the
use of these metrics to solve problems in the theory of conformal
mappings.

(9) The introduction of an equivalence relation on the set of Bel-
trami differentials and the identification of the space of equiv-
alence classes as the tangent space to Teichmüller space at a
point. This contains at the same time the idea of an almost-
complex structure on the tangent space to Teichmüller space
and it is at the basis of the theory of variation of higher-dimensional
complex manifolds developed by Kodaira and Spencer.

(10) The identification of the tangent space at a point of Teichmüller
space with the topological dual of the space of holomorphic
quadratic differentials.

(11) The introduction and the study of Teichmüller discs (which
Teichmüller calls “complex geodesics”).

(12) The comparison between the length of closed geodesics and the
quasiconformal dilatation of a map between hyperbolic surfaces
(rediscovered by Sorvali and by Wolpert).
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(13) A precise use of the method of continuity in the setting of the
moduli problem, into which Poincaré, Klein and others had
bumped over a long period of time. In Teichmüller’s setting,
the method is applied (as it should be) to maps between objects
which are known to be manifolds of the same dimension.

(14) The question of whether there is a Hermitian metric on Te-
ichmüller space.

(15) A study of convexity properties of the Teichmüller metric and
the question of studying totally geodesic subspaces for that met-
ric.

(16) The translation of Nielsen’s realization problem into a question
of finding a fixed point of the action of a finite subgroup of the
mapping class group on Teichmüller space, and the appeal to
the convexity properties for the solution. This is the approach
that Kerckhoff used in the solution of the problem [21].

(17) The introduction of the theory of non-reduced Teichmüller spaces,
as a theory where each point on the boundary of a surface (or
on a union of arcs on this boundary), is considered as a dis-
tinguished point. In particular, he considers the non-reduced
Teichmüller space of the disc (the universal Teichmüller space).

(18) The idea of a new metric defined on a Riemann surface, where
the distance between two points is the logarithm of the least
quasiconformal constant (or the “dilatation quotient”) of a self-
map of the surface sending one point to the other.

(19) The study of boundary maps of quasiconformal homeomor-
phisms of the disc.

For a more global view of Teichmüller’s contribution on moduli of
Riemann surfaces, the reader is also referred to his other papers [39],
[37], [41], [32], [34], [40] and the corresponding commentaries [14], [5],
[11], [2], [10], [3], as well as the survey papers [1], [19], [4].

Concerning Teichmüller’s style, we quote Ahlfors and Gehring, from
the preface to Teichmüller’s Collected works [42]: “Teichmüller’s style
was unorthodox, to say the least. He himself was well aware of the
difference between a proof and an intuitive reasoning, but his manner
of presentation makes it difficult to follow the frequent shifts from one
mode to another.” One can also be reminded here of the fact, recalled
by Abikoff in [1], that the style of the journal Deutsche Mathematik in
which most of Teichmüller’s articles appeared was to concentrate on
general ideas and not on technical details. This was supposed to be a
certain idea of “German mathematics,” in the tradition of Riemann and
Klein; see [10]. Abikoff in [1] writes: “The tradition of Deutsche Math-
ematik is one of heuristic argument and contempt for formal proof.”
He adds that he learned from a conversation with Herbert Busemann
that “Teichmüller manifested those traits early in his career but when
pressed could offer a formal proof.”
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Several results in the paper [35] are given with only sketchs of proofs,
and are stated as “conjectures.”1 Regarding this fact, let us quote Te-
ichmüller, from the introduction of his later paper [32], where he talks
about the paper which we are commenting here: “In 1939, it was a risk
to publish a lengthy article entirely built on conjectures. I had studied
the topic thoroughly, was convinced of the truth of my conjectures and
I did not want to keep back from the public the beautiful connections
and perspectives that I had arrived at. Moreover, I wanted to encour-
age attempts for proofs. I acknowledge the reproaches, that have been
made to me from various sides, even today, as justifiable but only in the
sense that an unscrupulous imitation of my procedure would certainly
lead to a barbarization of our mathematical literature. But I never had
any doubts about the correctness of my article, and I am glad now to
be able to actually prove its main part.”

The setting of Teichmüller’s paper is that of general surfaces, ori-
entable or not, with boundary, or without boundary and with or with-
out distinguished points in the interior or on the boundary.

We have divided the commentary into sections which follow the or-
dering of the various sections of the paper [35] (although the sections
of the paper [35] are not numbered).

Chapter 17 of Volume VI of the present Handbook contains com-
ments by Grötzsch on this paper of Teichmüller, edited by R. Kühnau
[25].

Acknowledgements.—The authors would like to thank Melkana Brakalova-
Trevithick for reading the manuscript and making corrections.

2. Introduction

Teichmüller’s introduction is unusual in the sense that it contains
no explicit statement of any result, and no outline of the paper. At
the beginning of this introduction, the author says that he will examine
“the behavior of conformal invariants under quasiconformal mappings”
and that this leads to the problem of “finding the maps that devi-
ate the least from conformality under certain additional conditions.”
We recall in this respect that a quasiconformal mapping in the sense
of Teichmüller is a one-to-one mapping (he adds: with certain dif-
ferentiablity properties) whose dilatation quotient is bounded. The
dilatation quotient, at a point where the mapping is continuously dif-
ferentiable, is defined as the ratio of the big to the small axis of an
infinitesimal ellipse which is the image of an infinitesimal circle at that
point. The dilatation quotient of the mapping is the supremum over

1The word “conjecture,” in this setting, sometimes means a claim which is not
proved immediately, but which is proved later in the paper. For instance, a conjec-
ture is made in § 100, and § 101 starts with: “This extremely insufficiently grounded
conjecture shall now be proved.”



6 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

the surface of these dilatation quotients (whenever they are defined).
Teichmüller gives a formula for the dilatation quotient in terms of the
partial derivaties of the mapping at a point where it is continuously
differentiable. More precisely, for such a mapping from the (x, y)-plane
to the (u, v)-plane, the quasiconformal ratio D is given by

D = |K|+
√
K2 − 1 = earccos |K|,

where

K =
1

2

u2
x + u2

y + v2x + v2y
uxvy − vxuy

.

Teichmüller announces a solution of the problem of finding extremal
mappings, that is, mappings that deviate the least from conformality,
but he declares that he will not be able to provide rigorous proofs.
He then writes that this solution of the problem will use the notion
of a quadratic differential. We recall that a meromorphic quadratic
differential on a Riemann surface is an object which is written in a
local coordinate z as Q(z)dz2, where Q is a meromorphic function,
and where under a change of coordinates, from a coordinate z to a
coordinate z′, the corresponding functions Q(z) and Q̃(z′) satisfy:

Q̃(z′) = Q(z)

(

dz

dz′

)2

.

The relation between meromorphic quadratic differentials and the
extremal problem under consideration is indeed one of the major el-
ements in this paper. Teichmüller associates a quadratic differential
to an extremal problem between two Riemann surfaces. In particu-
lar, Teichmüller shows that the trajectory structure of this quadratic
differential gives the direction of stretching of the best quasiconformal
map between the two surfaces. The metric on the Riemann surface
induced by the quadratic differential also plays an important role in
Teichmüller’s solution of the extremal problem.

The rest of the introduction is very broad, without being precise. The
author essentially says that he will “compute the number of conformal
invariants” by using the Riemann-Roch theorem, and he mentions the
scope of the tools involved: from computations with infinitely small
quantities to uniformization theory, from the length-area method to
the domain invariance theorem, from integration of partial differential
equations to Galois theory. He warns the reader over and over again
that the main result will not be proved, and he justifies this fact by
saying that “proving means reversing the train of thought.” This ex-
pression will be used once more in § 115. At the end of the introduction,
it is impossible for the reader to know with precision what is proved
in the paper and what is sketched without proof. As we already men-
tioned, the details of the proof of one of the main results, the famous
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Teichmüller Existence Theorem, will be provided a few years later, in
[32].

3. Examples of conformal invariants

The title of this section is explicit enough. The author exhibits com-
plete systems of conformal invariants for some special surfaces. In § 2,
he considers doubly connected domains in the plane (surfaces homeo-
morphic to annuli). Such a surface has only one conformal invariant,
the modulus of the annulus that is conformally equivalent to it. He
gives the group of biholomorphisms of this domain. This group has
one continuous parameter. It is generated by rotations and an inver-
sion. In § 3, Teichmüller considers three examples of surfaces. The first
example is a simply connected domain. Such a domain has no con-
formal invariant, since by the Riemann Mapping Theorem, any simply
connected domain, provided it is not the entire complex plane, can be
mapped conformally onto the unit disk. The second example is a sim-
ply connected domain with one distinguished inner point. As in the
previous case, such a domain has no conformal invariant. The third
example is a simply connected domain with two distinguished points in
the interior. It has one conformal invariant, the Green function. In § 4,
Teichmüller first considers the case of a triangle, i.e. a simply connected
domain with three distinguished points on the boundary. He recalls
that such a domain has no conformal invariant. A quadrilateral, that
is, a simply connected domain with four (ordered) distinguished points
on the boundary, has one conformal invariant, which Teichmüller calls
a characteristic conformal invariant. He defines it as the cross ratio of
the four ordered points. It is the number λ obtained by mapping the
domain conformally onto the upper half-space while mapping the four
points in the given order to the points 0, 1, λ,∞. In § 5, he considers
the case of the torus. This subsection is interesting because the notion
of Teichmüller space (in the usual sense) appears for the first time.
Indeed, Teichmüller recalls that a torus is determined by a period, an
element of the upper half-plane H, and that two tori are biholomor-
phic if and only if their periods differ by an element of SL(2,Z). He
recalls that the conformal invariant in this case is the modular function
of the given complex torus. He then says that it is better to consider
the period instead of the modular function. A marking by a pair of
simple closed curves is also considered. This is called a canonical cut
in § 50. Thus, he considers the Teichmüller space of the torus. He
proves that this space is the hyperbolic plane H. We also note that
it is the first time where the term “deformation” appears. In § 6, Te-
ichmüller considers a doubly connected domain with two distinguished
points on the boundary. He shows that in this case there are exactly
two conformal invariants, distinguishing between the cases where the
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two distinguished points belong to the same boundary component or
not.

In conclusion, this section is a kind of introduction to the notion of
conformal invariant. The Teichmüller space of the torus will be more
thoroughly examined in Sections 10 and 29. Conformal invariants will
be used later on in establishing the “dimension formula,” Equation (7)
below.

4. Non-orientable regions

In § 7 and § 8, Teichmüller defines, through two examples, the no-
tion of conformal invariant for “non-orientable regions.” Such an object
is invariant by a conformal mapping. In this respect it is important
to note that according to Teichmüller’s definition, a conformal map-
ping (even in the orientable case) preserves only the angles, but not
necessarily the orientation. Such a mapping is also defined in the non-
orientabe case. In § 7, he considers the case of the Möbius band. The
conformal invariant of such a surface is the outer radius of its 2-sheeted
unbranched covering, which is an annulus. In § 8, he considers the
projective plane RP2 (which he calls the elliptic plane) with two dis-
tinguished points. Using the sphere in R3 as a 2-sheeted covering of
this surface, he shows that there exists in this case only one conformal
invariant, the shortest length (with respect to the spherical metric)
between the corresponding distinguished points on the sphere.

Thus, in these two examples of non-orientable surfaces, the prob-
lem of finding the conformal invariants is lifted to the oriented double
cover. This idea will be used to solve the main problem of extremality
(Problem 16.1 below); see § 21 and 25.

5. Finite Riemann surfaces

In § 9 and § 10, Teichmüller recalls the notion of a Riemann surface.
He uses the expression “Riemannische Mannigfaltkeit” for such a sur-
face. He gives the classical definition of a surface, as a two-dimensional
manifold which admits a triangulation. In accordance with the con-
vention already mentioned, the transition maps are not necessarily
holomorphic but they may be anti-holomorphic. Teichmüller consid-
ers surfaces of topological finite type (i.e. whose fundamental group is
finitely generated), and he calls them “finite Riemann surfaces.” They
may be bordered or not, planar or not, orientable or not. Surfaces of
infinite topological type (those whose fundamental group is infinitely
generated) are not considered. Note that according to Teichmüller’s
convention, a “finite Riemann surface” has no distinguished points.
Surfaces with distinguished points will be considered in the next sec-
tion, and they are given a special name.
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6. The notion of a principal region

Teichmüller continues giving definitions, while considering examples.
He introduces the notion of a principal region.2 This is a finite Rie-
mann surface in which h ≥ 0 inner points and k ≥ 0 boundary points
are distinguished. He defines the notion of a mapping between princi-
pal regions that take distinguished points to distinguished points. He
mentions that surfaces with punctures are not considered because they
can be treated as surfaces with distinguished inner points.

Teichmüller announces in § 12 a forthcoming work in which distin-
guished points are not fixed but are moved infinitely close to each other.
This is an idea of degeneration of Riemann surfaces. In § 13, he denotes
by Rσ the space we call today the Riemann moduli space.3 The expo-
nent σ refers here to the number of conformal invariants. Teichmüller
writes about this space:

We shall admit the following statement without proof:
when one identifies conformally equivalent principal re-
gions, principal regions of fixed topological type form
a topological manifold which is on a small scale homeo-
morphic to the σ-dimensional Euclidean space and hence
can be described as the space Rσ.

The conformal invariants of the principal region are
then precisely the functions on Rσ. Hence there are, on
a small scale, precisely σ independent conformal invari-
ants.

It is known that the moduli space has the structure of an orbifold,4

that is, a space with a special kind of local singularities (quotiens of
actions of finite groups). The singularities are due to the existence of
finite order elements in the mapping class group acting on Teichmüller
space. In a subsequent paper [40], Teichmüller points out explicitly

2In [37], Teichmüller, explains his choice of the name “principal region,” while
putting it in a much wider content. He writes: “I have already encountered in
various fields this concept: An object A (here, a principal region) which is only
determined if an object A1 (here, a manifold) is first given, and then an object A2

(here, the distinguished points) is defined using A1. Similarly: in algebra, A1, a
cyclic field extension of a fixed field, A2: generators of the Galois group, A: cyclic
normal field.” He refers to this example in [36]. In the same paper, [37], Teichmüller
introduces the notion of map between principal regions, which is adapted to this
general setting.

3Note the use of the supersript σ in Rσ, instead of indexing by the genus, number
of boundary components, orientability, etc. as we usually do today. Teichmüller’s
notation highlights the dimension, which is an important element in his work, but
it does not make a distinction between the various moduli (and Teichmüller) spaces
of equal dimensions.

4This is Thurston’s terminology.



10 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

that there are singularities in Rσ.5 After Section 15 of the paper un-
der consideration, Teichmüller will consider a covering space of Rσ,
denoted by Rσ, which corresponds to the Teichmüller space in the case
of oriented surfaces. This is a covering of Rσ with no singularities.6

7. Characteristic numbers

Teichmüller starts this section by giving the dimension formula for
moduli space. The proof of this formula is postponed to § 112. The
formula is the following:

(1) σ − ρ = 6g − 6 + 3γ + 3n+ 2h+ k.

The left hand side denotes conformal objects, and the right hand side
topological objects. Precisely, the letters denote the following:

• g is the number of handles,
• γ is the number of crosscaps,
• n is the number of boundary curves,
• h is the number of distinguished inner points,
• k is the number of distinguished boundary points,
• ρ is the number of parameters of the (countinuous) group of
conformal mappings of the principal region onto itself,

• σ is the dimension of the space of all classes of conformally
equivalent principal regions which are topologically equivalent
to the given principal region. This is Riemann’s “number of
moduli.”

Teichmüller recalls the notion of algebraic genus , and introduces the
notion of reduced dimension. These notions take into account the non-
orientability of the surface. The algebraic genus of a surface was defined
by Klein in his study of automorphisms of orientable and non-orientable
Riemann surfaces, with or without boundary. For a non-orientable
surface, the algebraic genus is the genus of its orientable double cover.
The reduced dimension of a non-orientable surface or a surface with
boundary is also defined in terms of a double cover. The result that
Teichmüller states is that for bordered or non-orientable surface, the
reduced dimension τ is equal to σ, and for a closed orientable surface,
the reduced dimension τ is equal to σ/2.

The notions of algebraic genus and reduced dimension play an im-
portant role in the proof of Equation (10) in the case of non-orientable
surfaces or bordered surfaces. To prove Formula (1), Teichmüller uses
the Riemann-Roch theorem and shows that σ (resp. ρ) corresponds to

5Cf. the English translation of [40], in Volume IV of this Handbook, p. 788:
“It turns out that R contains certain singular manifolds. But we will construct a
covering space R without singularities.”

6We recall by the way that Riemann’s moduli space has a finite covering which
is non-singular, or, equivalently, that the mapping class group has a torsion-free
subgroup of finite index.
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the dimension of the subspace of the space of meromorphic quadratic
differentials (resp. inverse differentials).7 See Sections 13 and 21 for
the corresponding definitions. An inverse differential on a Riemann
surfaces is a section of the tangent bundle, that is, a vecor field.

We note that Formula (1) is more elegant than the one that is usually
given today (in which one makes a distinction between the cases of the
torus and the other cases) since it applies to any genus ≥ 0 and to
any number of boundary components. More importantly, the formula,
as it is stated here, bears some strong resemblance to the Riemann-
Roch formula, and in fact, it may be considered as a “global Riemann-
Roch formula” where, on the left hand side, σ is the dimension of a
moduli space which is a global version of the vector space of quadratic
differentials, and ρ is the dimension of a continuous group of conformal
maps of the surface, which is a global version of the vector space of
tangent vectors. The right hand side involves topological data.

8. The statement of the problem

This section is important for the rest of the paper. Teichmüller uses
quasiconformal mappings to define what we call today the Teichmüller
distance. He also states that this distance is Finsler. At this point, he
does not introduce Teichmüller space, but he rather continues to work
on Riemann’s moduli space. Let us give some more details.

In § 15, an analytic formula is given for the dilatation quotient at a
point for maps between two domains of the complex plane. The result
is said to be equal to the ratio of the great axis to the small axis of an
infinitesimal ellipse which is the image of an infinitesimal circle at the
given point. The logarithm of the dilatation quotient is a measure of
the deviation of the map from being conformal.

In § 16, considering conformal invariants as functions from Rσ to the
reals, Teichmüller formulates the following problem:

Problem 8.1. Consider a fixed principal region. Let J be a conformal
invariant considered as a function on Rσ, and let C > 1 be given. What
values does J assume for those principal regions onto which the given
principal region can be quasiconformally mapped so that the dilatation
quotient is everywhere ≤ C?

Thus, instead of searching for conformal invariants, Teichmüller searchs
now for the behaviour of invariants under quasiconformal mapppings
of bounded dilatation quotient, and for precise estimates on this be-
havior in terms of this dilatation quotient. He then states the following
equivalent form of Problem 8.1:

7“Inverse differentials” are also called “reciprocal differentials.” The German
word is “reziproken Differenziale.” We chose the first translation, which is the one
used by Ahlfors.
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Problem 8.2. Let P be an element of Rσ and C > 1 a given number.
We map in all possible ways the principal region represented by P
quasiconformally onto another principal region of the same type so
that the upper bound of the dilatation quotients is ≤ C, respectively
< C, and we represent the obtained principal region by a point Q of
Rσ. Give a description of the set UC (P ), respectively UC (P ), of the
points Q so obtained.

The definition of the set UC (P ) is given after the introduction of a
distance (the Teichmüller distance), in § 18. The precise definition is
the following:

Definition 8.3. Let two principal regions be given, represented by
two points P and Q of Rσ. For a quasiconformal mapping from this
principal region onto another, let C be the upper bound on the surface
of the dilatation quotients. We set the logarithm of the lower bound of
all these C to be the distance [PQ] between the two points or between
the principal regions.

Using this definition, the set UC is:

UC (P ) = {Q ∈ Rσ | [PQ] < C} .
Teichmüller shows that [··] is a distance.8 The collection of sets

{UC (P ) | C ≥ 0, P ∈ Rσ}
forms a system of neighborhoods which equips Rσ with a topology.

In § 19, Teichmüller claims that he will show that (Rσ, [..]) is Finsler.
In fact, he will show that the metric space (Rσ, [··]) is Finsler. (Recall
that Rσ is Teichmüller space.) He proposes the following problem,
which is analogous to Problem 8.2, but which concerns mappings in-
stead of spaces.

Problem 8.4. Given two planar principal regions represented through
the points P and Q of Rσ, determine all the extremal quasiconformal
mappings whose dilatation quotient is everywhere ≤ e[PQ].

An extremal mapping will be a map whose quasiconformal dilatation
attains the infimum. Problem 8.4 suggests the study of the following
two questions:

• the existence of extremal mappings;
• the description of a geodesic segment between P and Q.

The aim of the next four sections is to solve Problem 8.4 in particular
cases.

8We note that the separation property for this metric, that is, the fact that if
the quasiconformal constant is equal to 1 then the map us conformal, in the more
general setting where the quasiconformal dilatation is a distribution, is a corollary
of the so-called Weyl Lemma.
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9. Examples of bordered orientable principal regions

In this section, Teichmüller gives explicitly the Teichmüller distance
and the extremal mapping between some special surfaces, namely, those
studied in Section 2. For that, he uses the conformal invariants that
he already determined in Section 3.

In § 20, he deals with quadrilaterals. He gives a proof of Grötzsch’s
theorem9 for quasiconformal mappings between rectangles, cf. [17],
which solves Problem 8.4 in that special case. The precise statement
of this theorem, stated in Teichmüller’s paper, is the following:

Theorem 9.1. If we map the rectangle 0 < Re (ζ) < a, 0 < Im (ζ) < b
onto the rectangle 0 < Re (ζ ′) < a′, 0 < Im (ζ ′) < b′, such that the
vertices ζ = 0, a, a + ib, ib are sent to ζ ′ = 0, a′, a′ + ib′, ib′ and the
dilatation quotient is everywhere ≤ C, then b

a
≤ C b′

a′
. Equality holds

only for an affine mapping.

The method of proof is usually called the length-area method.10

9Camillo Herbert Grötzsch (1902-1993) is the founder of the theory of quasicon-
formal mappings. (It is admitted that Ahlfors and Lavrentiev are also founders
of this theory, but the work of Grötzsch on this subject precedes their works.)
Grötzsch did his PhD under Paul Koebe in Leipzig in 1929. He is also well known
for his work on graph theory. Reiner Kühnau, who did his PhD under Grötzsch,
wrote two long reviews on his work, cf. [23] and [24]. Teichmüller has always
acknowledged the importance of Grötzsch’s work in his research involving quasi-
conformal mappings. In [37], where Grötzsch’s work is mentioned several times,
Teichmüller writes: “Much of what is discussed here is already contained in the
works of Grötzsch, but mostly hidden or specialized in typical cases and in a differ-
ent terminology.” We refer the reader to Chapter 17 of Volume VI of this Handbook,
by R. Kühnau [25].

10In his Collected Works [8] Vol. 1 (p. 1), talking about his first two published
papers on asymptotic values of entire functions of finite order, Ahlfors comments
on the origin of this method. He writes: “The salient feature of the proof is the use
of what is now called the length-area method. The early history of this method is
obscure, but I knew it from and was inspired by its application in the well-known
textbook of Hurwitz-Courant to the boundary correspondence in conformal map-
ping. None of us [Ahlfors is talking about Nevanlinna and himself] was aware that
only months earlier H. Grötzsch had published two important papers on extremal
problems in conformal mapping in which the same method is used in a more sophis-
ticated manner. My only priority, if I can claim one, is to have used the method on
a problem that is not originally stated in terms of conformal mapping. The method
that Grötzsch and I used is a precursor of the method of extremal length [...] In
my thesis [6] the lemma on conformal mapping has become the main theorem in
the form of a strong and explicit inequality or distorsion theorem for the conformal
mapping from a general strip domain to a parallel strip, together with a weaker
inequality in the opposite direction. [...] A more precise form of the first inequal-
ity was later given by O. Teichmüller.” (Ahlfors refers here to Teichmüller’s paper
[39].)
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The result implies that for two quadrilaterals P and Q of moduli mP

and mQ respectively, we have

[PQ] = | log (mP )− log (mQ) |
ñ and also

UC (P ) =

{

Q | 1

C
mP < mQ < CmP

}

.

This also gives, using Teichmüller’s notation, that R1 = R∗
+.

In § 21, Teichmüller solves the same problem for a doubly connected
domain (called a ring domain in the translation). As we already noted,
the conformal type of such a domain is determined by one parameter
called the modulus M . Teichmüller proves the following.

Proposition 9.2. For a quasiconformal mapping of a ring domain with
modulus M onto a ring domain with modulus M ′, we have M ′ ≤ CM .

Here, the value C is the upper bound of the dilatation quotient.
Teichmüller also gives the extremal mapping (therefore the Teichmüller
distance) and the description of the moduli space of annuli, R1. Like
the moduli space of quadrilaterals, the moduli space of annuli can be
identified with R∗

+. This is not a surprise. Indeed, in § 20, Teichmüller
shows that the moduli problem for annuli is equivalent to the one for
quadrilaterals.

In § 23, Teichmüller determines the moduli space of simply connected
domains with two distinguished points in their interior. He also com-
putes the Teichmüller distance between two such domains. One inter-
esting feature of the solution is the use of ramified covering theory, a
device that allows him to reduce the question to a question already
solved, namely, that of moduli of doubly connected domains. We shall
see that this use of covering theory is much more general. The Grötzsch
ring function µ(r) appears in this section. This function (the modulus
of the ring domain obtained by cutting the unit disk along the seg-
ment [0, r] (0 < r < 1), is considered in Grötzsch’s paper [16] and
Teichmüller’s paper [39]). See also Teichmüller’s paper [34] and the
commentary [10] in the same volume for a study of such a domain.
The Grötzsch function plays an important role in the development of
the theory of quasiconformal mappings.

In § 24, Teichmüller considers simply connected domains with two
distinguished points on their boundary and one in their interior. In
mapping conformally such a domain onto a disk, the interior point can
be sent to 0 and one of the two boundary points to 1. The image of
the second boundary point is a conformal invariant of such a domain.
Like in the previous case, Teichmüller uses the covering map z 7→ z2 to
reduce the problem to a question already solved, namely, that of moduli
of quadrilaterals. He determines the extremal mapping (and therefore
the Teichmüller distance) and the corresponding moduli space. The
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idea of using the covering z 7→ z2 to solve an extremal problem is also
used in Teichmüller’s subsequent paper [34]; see also the commentary
[10].

To conclude this section, let us make a few remarks on these exam-
ples. In all these cases, the moduli space is identified with R

∗
+. This

agrees with the dimension count given in Section 7, since the automor-
phism groups of the corresponding regions are trivial. We also remark
that the Teichmüller distance is shown to be equal to the absolute value
of the logarithm of ratios of numbers depending on corresponding con-
formal invariants. This fact is related to the Kerckhoff formula which
gives the Teichmüller distance as a supremum of ratios of extremal
lengths(see [20]). Finally, in the last two subsections (§ 23 and § 24),
there appear functions which play the role of quadratic differentials.
These functions are used to solve directly the problem, i.e without
using covering theory.

10. The torus

In this section, Teichmüller solves completely Problem 8.4 in the
case where the surface is a torus. In fact, he solves this problem by
considering Teichmüller space and not the moduli space. He also shows
that all the previous examples can be deduced from the case of the
torus.

In § 25, he considers the two primitive periods w1 and w2 associated
with a torus, and their quotient ratio ω = w1

w2

. He calls this quotient

(which can be assumed to have positive imaginary part) the “charac-
teristic conformal invariant” of the torus. By passing to the universal
covering space, he shows:

Proposition 10.1. Let T1 and T2 be two tori of period ratios ω1 and
ω2 respectively. Let f : T1 → T2 be a quasiconformal mapping whose
quasiconformal dilatation is bounded by C. Then

1

C
Im (ω1) ≤ Im (ω2) ≤ CIm (ω1) ,

with equality if and only if its lift f̃ : C → C is an affine map.

In § 26, he shows:

Proposition 10.2. The lower limit for the logarithms of all upper
bounds for dilatation quotients of the mapping from a torus with period
ratio ω onto a torus with period ratio ω′ is equal to the non-Euclidean
distance between ω and ω′ in the upper half-plane.

Thus, the Teichmüller metric of the torus is the hyperbolic metric
on the upper half-plane. This was already stated in Section 3. The
present section contains new material.

In § 27, he shows that Poblem 8.4 for the sphere with four distin-
guished points can be reduced to the case of the torus. This is done
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by taking the two-sheeted branched covering with branching at the
four distinguished points. He shows that the moduli space of such a
space with respect to the Teichmüller metric is identified with unit disc
equipped with its hyperbolic metric. He concludes by saying that the
moduli space is a complete differential geometric space.

In § 28, he proves what we call now the Teichmüller existence and
uniqueness theorems, in the case of the torus.

In § 29, he shows that all the examples from Section 9 can be deduced
from the torus case. In fact, it suffices to consider the annulus, since all
other examples are deduced from that case. For this, he uses a doubling
process along two boundary components, which gives the torus. This
doubling process will be thoroughly used in Section 22.

11. Examples of non-orientable principal regions

In this section Teichmüller considers three different non-orientable
surfaces: the Möbius band, the projective plane with two distinguished
points, and the Klein bottle. He solves, for these surfaces, the two
problems that he solved in the preceding two sections for the special
orientable surfaces, that is, the problem of finding the conformal in-
variants and the problem stated in Section 8.

In § 30, he considers the Möbius band. By using its two-sheeted
covering (an annulus), he gets the Teichmüller distance.

In § 31, he considers the projective plane with two distinguished
points. He shows that this case can be reduced to the case of the
sphere with four distinguished points.

In § 32, he considers the Klein bottle and he lifts the problem to a
problem concerning the case of the torus. The torus is the two-sheeted
orientation covering of the Klein bottle.

These three examples are special cases of the fact that one deals with
non-orientable surfaces by passing to the orientation double cover. This
will be thoroughly used in Section 22.

12. A wrong track

In § 33, Teichmüller explains why the method used in the preceding
sections does not work in the case of an annulus with two distinguished
points belonging to different boundary components. He will solve the
problem in this case in § 131 (Section 26).

In § 34, he gives some hints to how to generalize the above examples.
For example, he says that for closed oriented surfaces, we have to con-
sider their universal covering which is in this case the non-euclidean
plane. This is where hyperbolic geometry enters into this theory.

The result of § 35 can be considered (using today’s terminology)
as a comparison between the Teichmüller distance and the so-called
Thurston metric. The author establishes an inequality on the effect of a
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quasiconformal mapping conjugating two groups of hyperbolic transfor-
mations of the non-Euclidean plane. He obtains an inequality involving
the dilatation quotient of the quasiconformal mapping and the dilata-
tions of corresponding hyperbolic transformations, or, equivalently, the
lengths of corresponding closed geodesics in the quotient surfaces. In
this way, Teichmüller proves what we call today the Wolpert inequality.
The proof is the same as in [31] and [44] where the authors indepen-
dently redicovered this formula. A question on the topologies defined
by these two metrics is addressed, and Teichmüller says: “I am not
able to answer this question.”

13. Extremal quasiconformal mappings

In this short section, some important notions are introduced in a
heuristic way, namely, the two foliations associated with a quadratic
differential (the horizontal and the vertical foliation) and the notion of
Teichmüller geodesic.

In § 36, Teichmüller argues that the quasiconformal dilatation of an
extremal mapping is constant. He says however that “this should not
be any proof whatsoever, rather only a heuristic consideration.”

In § 37, he asks explicitly: “which direction fields are associated with
extremal quasiconformal mappings?”

In § 38, he defines the notion of locally extremal quasiconformal map-
ping as follows:

Definition 13.1. A quasiconformal mapping is called locally extremal
if its dilatation quotient is a constant = K and if there is, for each point
p in the open set where the mapping is defined, a simply connected
neighborhood U with the following property: the mapping is defined
in U and on the boundary of U and each mapping which agrees in the
complement of U with the given one and whose dilatation quotient is
≤ K, has constant dilatation quotient K.

In § 39, Teichmüller introduces the notion of geodesic segment with
respect to the Teichmüller distance. This is obtained by using the same
pair of transverse foliations on the surface, and varying the dilatation
constant.

14. The Riemann-Roch theorem

This section makes a link, through the space of holomorphic qua-
dratic differentials, between the Riemann-Roch theorem and the di-
mension formula for the Riemann moduli space, for closed orientable
surfaces.11 Teichmüller proves that the complex dimension of the latter

11In the paper [37], a generalized version of the Riemann-Roch theorem is ob-
tained, which includes special data at the distinguished points.



18 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

is equal to 3g − 3. In § 40, he rewrites the dimension formula only for
closed surfaces. Using his notation, this formula is:

σ − ρ = 6 (g − 1) .

In § 41, he recalls the notion of divisor, prime divisor (associated with
a point) and principal divisor (associated with a meromorphic func-
tion) on a closed surface. He uses the multiplicative notation for the
combination of divisors . Prime divisors generate a free abelian group.
He introduces the notion of divisor class, an element of the divisor
class group, the group of divisors quotiented by the normal subgroup
of principal divisors.

In § 42, he introduces the notion of n-dimensional differential dζn, de-
scribing the behaviour with respect to coordinate change which makes
this notion invariant. In the holomorphic local coordinate t, an n-
dimensional differential dζn has the form dζn = g(t)dtn where g(t) is a
(local) holomorphic function of t. The invariance property says that if
t′ is another holomorphic local coordinate, and if the differential has the
form g′(t)dt′n in this coordinate, then at the overlap of the coordinates
we have

g(t) = g′(t′)

(

dt′

dt

)n

.

For n = 1, one gets the usual notion of (meromorphic) differential form,
and for n = 2 the notion of quadratic differential. The behavior at the
distinguished points will be specified.

To each n-dimensional differential is associated a divisor. The space
of holomorphic n-differentials is denoted by Mn.

In § 43, Teichmüller defines the notions of degree of a divisor and of
integral divisor. This is needed in the statement of the Riemann-Roch
theorem, which he applies to the case of n-dimensional differentials. In
§ 44, he considers the 2-dimensional differentials, i.e quadratic differ-
entials and (−1)-dimensional differentials. He calls the latter inverse
differentials. He gives the (complex) dimension of the spaces of such
differentials, which is equal to σ and ρ respectively. Thus, using his
notation, we have, for closed orientable surfaces without distinguished
points,

2 dim (M2) = σ

and

2 dim

(

1

M

)

= ρ.

Teichmüller says that he first noticed these dimension formulae for
very particular cases and then he conjectured the rest to get the general
dimension formula: “As soon as I knew the values of σ given in § 40,
I noticed that they were also equal to 2dim(M2). Then, I conjectured
the relationship; this is what the following discussion is going to be
about.”
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Thus, it is from meditating upon the Riemann-Roch theorem that
Teichmüller obtained the idea of the dimension formula for Teichmüller
space. The formula will be proved in Section 21.

15. A conjecture

In this section, Teichmüller states the relation between the space of
quadratic differentials and the value σ, and he proves that ρ is equal to
twice the complex dimension of the space of inverse differentials. From
the latter, he announces what we call today the Teichmüller theorem
(see the statement in our comments on § 46 below).

In § 45, the notion of infinitesimally conformal self-mapping of a Rie-
mann surface F is introduced. This is a mapping which “moves every
point only infinitesimally.” The author starts by noting that under an
infinitesimally conformal self-mapping, a point with local holomorphic
coordinates z moves to a point with coordinates z+ ǫg(z), where ǫ is a
constant which is an “infinitely small quantity,” and g(z) is a field of
inverse differentials, that is, a vector field.

After explaining why ρ is equal to “the maximal number of (real)
linearly independent infinitesimally conformal mappings,” he shows the
following:

Proposition 15.1. Let F be a closed surface. The infinitesimally con-
formal mappings of F onto itself correspond bijectively to everywhere
finite inverse differentials.

Teichmüller’s next purpose is to investigate the question of which
vector fields correspond to extremal infinitesimal conformal mappings.

In § 46, he conjectures the relation between extremal quasiconformal
mappings and quadratic differentials. He recalls that an extremal qua-
siconformal mapping provides a constant K and a direction field and
he states the following, which he calls “the conjecture”:

Theorem 15.2. Let dζ2 be a nonzero everywhere finite quadratic dif-
ferential on F. Let us assign to every point of F the direction where dζ2

is positive. Then, all extremal quasiconformal mappings are described
through the direction fields thus obtained and through arbitrary constant
dilatation quotients K ≥ 1.

This conjecture, which is a form of Teichmüller’s theorem, will be
proved later. It involves the notion of vertical foliation associated with
a quadratic differential. For a neighborhood of a non-zero point of
dζ2, the author introduces normal coordinates and the local expression
of the Teichmüller mapping. He proves that this mapping is locally
extremal in the sense of Definition 13.1 and admits (temporarily) that
it is also an extremal quasiconformal mapping. He announces that he
will prove this in Section 27. He will be concerned with the proof of
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Theorem 15.2 throughout the rest of the paper. Finally, he shows,
based on this therem, that σ = 2dim (M2).

In § 47, Teichmüller shows how a quadratic differential determines
a field of directions. He considers the expression of a quadratic dif-
ferential in the neighborhood of a zero and shows that around such a
point the mapping, previously introduced, (the so-called “Teichmüller
mapping”) is, again, locally extremal.

In § 48, he considers the case where the quadratic differential has
poles. Poles are necessarily of order 1. To get a locally extremal map-
ping, he notes that one has to consider “the pole as a distinguished
point of the principal region.”

In conclusion, given a quadratic differential, Teichmüller introduces
a mapping (the “Teichmüller mapping”) whose direction field is exactly
the vertical foliation of a quadratic differential, and he shows that this
map is a locally extremal mapping.

The preceding sections can be considered as a kind of introduction to
the results that will follow. So far, several objects have been introduced
from a heuristic point of view. The main result of this paper, namely,
the so-called Teichmüller theorem, will be treated next.

16. Topological determination of principal regions

This section is devoted to the introduction of the Teichmüller space,
which the author calls “space of topologically determined principal re-
gions.” Teichmüller states the main problem from this new point of
view. We shall quote this problem below.

In § 49, he introduces the notion of amarked surface. The term defor-
mation is defined precisely and corresponds to the notion already used
from a heuristic point of view in Section 10. Teichmüller denotes by
Rσ the space of marked surfaces and observes that there is a canonical
map from Rσ to Rσ. In fact, he explains that

Rσ = Rσ/MCG (h0)

where h0 is a fixed principal region and MCG (h0) denotes its mapping
class group. He will give more details about this group in Section 28.

In § 50, he proves, using the new definition of R2, that the Te-
ichmüller space of the torus coincides with the space determined in
Section 10. In other words, it is the upper half-plane. He writes: “It
is not R2 (σ = 2!), but rather the covering space R2 that appears to
be mapped bijectively onto the upper ω-half-space.” He notes that the
Teichmüller space (or the space of topologically determined principal
regions) was already studied, in some special cases, in Sections 8, 9 and
11.

In § 51, he explains that the problems formulated in Section 8 can
be considered as problems concerning the space Rσ.



A COMMENTARY ON TEICHMÜLLER’S PAPER 21

In § 52, he reformulates Problem 8.4 in the setting of topologically
determined principal regions. The problem is now stated as follows:

Problem 16.1. Let principal region of a certain type be fixed. One
shall give a set of quasiconformal mappings, each with constant dilata-
tion quotient, from some principal region of this type onto another. One
shall prove that every mapping of this set is extremal quasiconformal,
in the sense that for any mapping between the same principal regions
obtained by deforming it, the maximum of its dilatation quotient is
bigger, or equal only if the new comparison mapping is obtained by
composing the former mapping which comes from our set with a con-
formal mapping. Finally, one shall show that any topological mapping
from one principal region of the type considered onto another can be
deformed to a mapping from this set.

Thus, the problem now is to associate with any fixed Riemann surface
a set of quasiconformal mappings from that surface onto the other
Riemann surfaces of the same type, such that:

(1) each of these maps is extremal in the sense of having the small-
est dilatation among all maps in its homotopy class;

(2) these representatives are unique up to composition with confor-
mal maps;

(3) any topological self-mapping of a Riemann surface is homotopic
to a map in this class.

This is a formulation of what became later known as the Teichmüller
theorem.

Teichmüller states that this result will also allow the computation of
distances between points in the moduli space.

17. Definition of principal regions through metrics

This is the first technical section of the paper and, in fact, the paper
remains technical until Section 26. The idea in this section is to trans-
late problems concerning Riemann surfaces into problems concerning
Riemannian metrics. This is one of the most important sections in the
paper, because Teichmüller sets here the tools for the results he will
prove in the following sections.

In § 53, he explains how a sufficiently regular homeomorphism from a
fixed surface h0 onto another Riemann surface h induces a Riemannian
metric ds2 on h0 which is well defined up to multiplication by a scalar
function. The Riemannian metric is written, in the tradition of Gauss,
as

ds2 = λ(Edx2 + 2Fdxdy +Gdy2),

with λ denoting a scalar function. The smoothness of the Riemannian
metric depends on the smoothness of the homeomorphism which we
started with, and it is not specified.
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Teichmüller shows how the Riemannian metric stems naturally from
the conformal point of view. He starts with a fixed principal region h0
and a homeomorphism onto another Riemann surface h. If z = x+ iy
is a holomorphic local coordinate around a point in h0 and z′ = x′+ iy′

a holomorphic local coordinate around the image point in h, then, z′,
as a function of z, in general, does not satisfy the Cauchy-Riemann
equations. However, one can write:

|dz′|2 = dx′2 + dy′2 = Edx2 + 2Fdxdy +Gdy2,

where E, F,G are expressed as follows, in terms of the partial deriva-
tives of x′ and y′ with respect to x and y:

E =

(

∂x′

∂x

)2

+

(

∂y′

∂x

)2

,

F =
∂x′

∂x

∂x′

∂y
+

∂y′

∂x

∂y′

∂y
,

and

G =

(

∂x′

∂y

)2

+

(

∂y′

∂y

)2

.

A class of metrics of the form

ds2 = λ|dz′|2 = λ(Edx2 + 2Fdxdy +Gdy2),

with λ a positive function, is then naturally considered on h0. This
class of metrics is invariant under change of the local parameter z. Te-
ichmüller recalls that conversely, the Riemann surface h together with
its marking is uniquely determined by a metric ds2 on h0, which is well
defined up to the scalar factor. In the smooth case, this result is due to
Gauss, and it is equivalent to the existence of the so-called isothermal
coordinates. More precisely, Gauss’ result says that any oriented sur-
face equipped with a (smooth) Riemannian metric g admits a unique
complex structure with local parameters z such that the metric can be
written as g(z)|dz|2, with g(z) a positive smooth function defined in
the local charts.

In the absence of smoothness, some regularity conditions are needed,
and Teichmüller does not specify them. He will specify them in [32].

The representation of conformal structures by Riemannian metrics
will be very important later on in the paper, in particular, in the dis-
cussion of the infinitesimal theory of quasiconformal mappings.

In § 54, Teichmüller defines the equivalence relation between marked
Riemann surfaces seen as equivalence classes of Riemannian metrics.
This point of view is shown to be equivalent to the one of Riemanniann
metrics on a fixed surface (the base surface). The equivalence relation
leads to a definition of the space Rσ as a space of equivalence classes of
Riemannian metrics, where the equivalence is defined by pull-back by
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a map homotopic to the identity. The homeomorphisms that are used
are termed “sufficiently regular.”

Teichmüller says that one difficulty concerning the topology of the
spaces Rσ and Rσ and which was latent since § 13 is now solved since
one can say that two elements of such a space are close if corresponding
metrics are close.

In § 55, he studies the effect of quasiconformal mappings on the met-
rics. He gives a new formulation of the existence problem for quasicon-
formal mappings, namely, finding the best quasiconformal mapping (an
extremal one) homotopic to the identity, in terms of the deformations
of the metrics. He sets the following new problem on the existence of
extremal quasiconformal mappings:

Problem 17.1. Let two “arbitrary”12 metrics ds21 and ds22 on the prin-
cipal region H0 be given. Determine a mapping A from H0 onto itself
which can be deformed to the identity such that the maximum of the
dilatation quotient D for the pair of metrics ds21, ds

2
2 is smallest.

Two equivalent ways of defining the space Rσ show that this problem
is equivalent to Problem 8.4. Through Problem 17.1, Teichmüller intro-
duces the notion of dilatation quotient relative to a pair of Riemannian
metrics. He gives the definition in the two following subsections. One
problem is now to compute the dilatation quotient in terms of the
coefficients E, F,G of the two metrics.

In § 56, he gives a formula for the dilatation quotient between two
Riemann surfaces in terms of the coefficients of the Riemannian metrics
and he notes that with this formula one can recover the generic formula
for quasiconformal dilatation in terms of complex local parameters,
established in § 15.

The formula is given by

∆ =
√
EG− F 2; K =

E +G

2∆
;D = K +

√
K2 − 1.

This is found by a computation, using linear algebra.
In § 57, he summarizes the previous paragraphs and he gives the

following precise form of the problem studied:

Problem 17.2. Let a principal region H be given. One must find a
set of metrics on it, of the form

ds2 = Edx2+2Fdxdy+Gdy2, (z = x+ iy is the local coordinate on H)

with the following three properties:

(1) If one computes for an arbitrary metric ds2 = Edx2+2Fdxdy+
Gdy2 a “dilatation quotient” D from the formulae

∆ =
√
EG− F 2; K =

E +G

2∆
;D = K +

√
K2 − 1,

12Teichmüller puts the word “arbitrary” in quotation marks.
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then the metrics of the set have constant dilatation quotient,
i.e. D =const.

(2) When there exists, for a metric ds2, a mapping A from H onto
itself which can be deformed to the identity and for which
ds2 (A (p)) belongs to this set and has constant dilatation quo-
tient K, then the maximum of the dilatation quotients of ds2

is itself ≥ K with equality if and only if ds2 (A (p)) = ds2 (p)
holds.

(3) To an “arbitrary” metric ds2 there always exists such an A.

Let us make some brief comments on this problem. Item (1) explains
how to define, for a given Riemannian metric, the associated dilatation
quotient. Item (2) implies that if there exists a map homotopic to the
identity such that the dilatation quotient of its associated metric is
constant, then the map is extremal. Item (3) says that there always
exists an extremal map. Teichmüller adds that in the case of oriented
closed surfaces, the quadratic differentials studied in Section 15 provide
examples of conformal metrics with constant dilatation.

In § 58, Teichmüller focuses on the link between a Riemannian metric
and what he already introduced under the name “direction field” (a
singular foliation on the surface). For this, he considers a Riemannian
metric ds2 on a principal region H, and using complex coordinates z
on H he rewrites (locally) this metric as

(2) ds2 = Λ|dz|2 + Re
(

Hdz2
)

,

where Λ is a positive function and H a complex function, the two
functions being determined by the coefficients E, F and G. From (2),
one can write the dilatation quotient in terms of Λ and |H|. Teichmüller
adds that the direction field is determined by the condition Hdz2 > 0.
Thus, a metric ds2 gives a dilatation quotient and a direction field
and conversely, a dilatation quotient and a direction field determine a
metric ds2.

In § 59, Teichmüller studies the behaviour of Λ and H under a (con-
formal or anticonformal) change of coordinates. First, he considers only
a direct (conformal) coordinate change. He finds that the expressions
Λ|dz|2 and Hdz2 are invariant. (Note that the latter is a quadratic
differential, but not necessarily holomorphic.) He then introduces the
quotient

(3) q =
Hdz2

Λ|dz|2 ,

which is invariant. Its conjugate q is what we call today a Beltrami
differential. Furthermore, the dilatation quotient associated with the
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metric ds2 is expressed in terms of q by:

(4) D =

√

1 + |q|
1− |q| .

This equality is an analogue of the relation between the dilatation
quotient and what is known today as the Beltrami coefficient. The last
fact will be explained in the next section.

Teichmüller then makes similar considerations for anti-holomorphic
coordinate changes.

In § 60, he gives explicitly, for a closed orientable surface, the values
of H , Λ and q, in the case where the metric is given by a holomorphic
(he says “everywhere finite” ; cf. § 44) quadratic differential and a
constant K ≥ 1. He declares that this case is of particular interest.
Indeed, we shall see that this will solve the problem addressed in § 57.

18. Infinitesimal quasiconformal mappings

In this section, Teichmüller introduces the notion of infinitesimal
quasiconformal mapping. Such a mapping is given by a vector field on
the surface. With this notion, he establishes a new extremal problem,
in § 66. This problem will lead him to solve an equation in Section 20
(Equation (6) below). This equation is a form of the Beltrami equation.
He will also determine the tangent space of the Teichmüller space.

In § 61 and § 62, Teichmüller determines, with the previous notation,
the expression of a metric after an infinitesimal perturbation. He fixes
a metric ds2 and he gives an expression for the parameters q and D
of the metric ds2 + δds2. These parameters are given by a function
B which “describes the infinitesimal quasiconformal mapping.” The
function B alone determines the new metric obtained. As B depends
on local coordinates, Teichmüller rather considers the expression B dz2

|dz|2

which does not depend on coordinates. Eventually, B will be seen to
represent a tangent vector to Teichmüller space (in his notation, a point
of Lσ).

In § 63, he studies how an infinitesimal mapping changes the func-
tion B, identifying a metric ds2(x) with ds2 (A(x)). He notes that the
mapping A is given in local coordinates by a complex function w such
that w

dz
does not depend on the change of coordinates. He adds some

hypotheses on w when he considers principal regions with non-empty
boundary and/or with distinguished points. He writes:

We thus obtain the most general infinitesimal mapping
from H onto itself with the help of a local function w
which still depends upon the parameter choice so that w

dz

vanishes at the distinguished inner and boundary points
and is real along the boundary curves.
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In § 64, he determines the function which characterizes the infinites-
imal metric obtained by an infinitesimal mapping A. He denotes this
function by B∗ and he shows that

B∗ = B + wx + iwy.

He then defines a new equivalence relation on metrics obtained by an
infinitesimal perturbation of a given metric. Explicitly, he writes:

As a result we put in the same class all the B dz2

|dz|2
on H

that arise from each other through the modification

B∗ = B + wx + iwy,

where w
dz

must satisfy the conditions collected at the
end of § 63. This yields the problem of finding in each
of these classes a B dz2

|dz|2
with the smallest possible max-

imum for |B|.
He notes that these families correspond bijectively to a small neighbor-
hood of a point in the Teichmüller space Rσ. He adds that the space
of classes of B dz2

|dz|2
forms a “linear manifold” (that is, a vector space)

of rank σ. This fact will be proved in Sections 20 and 24. This is the
vector space he denotes by Lσ.

In § 65, he shows that the expression (wx + iwy)
dz2

|dz|2
does not depend

on coordinate changes.
In § 66, he returns to the space Lσ and defines a norm on it, denoted

by ‖·‖. He admits that this norm separates points; he will show this in
Sections 20 (for the closed surface case) and 24 (for the general case).
The most interesting fact in this section is the statement of a new
problem, which could be considered as equivalent to Problem 17.1 but
from an infinitesimal point of view. The problem, as he states it, is the
following:

Problem 18.1. Let a principal region H be given. To find a set of
invariant B dz2

|dz|2
on it which has the following properties:

(1) for all B dz2

|dz|2
in this set, |B| is invariant;

(2) if B∗ dz2

|dz|2
∼ B dz2

|dz|2
and B dz2

|dz|2
belongs to this set, then

max |B∗| ≥ |B|,

with equality only in the case where B∗ dz2

|dz|2
= B dz2

|dz|2
;

(3) to each invariantB∗ dz2

|dz|2
there is a B dz2

|dz|2
in the set withB∗ dz2

|dz|2
∼

B dz2

|dz|2
.

Through this new problem, Teichmüller introduces the notion of “ex-
tremal infinitesimal quasiconformal mapping.” At the end of this sub-
section, he announces that the solution of Problem 18.1, for closed
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surfaces, is determined by regular quadratic differentials. This will be
proved in the following three sections.

19. Extremal infinitesimal quasiconformal mappings

In this section, and until Section 20, the author considers only the
case of closed oriented surfaces. He shows that the set

{

c
dζ2

|dζ |2 , c > 0 and dζ2 is a regular quadratic differential

}

satisfies the first two properties of the statement of Problem 18.1. The
third property will be shown in Sections 19 and 20.

In § 67, he considers the case where B dz2

|dz|2
∼ 0. In this case, the

equation to be solved is:

(5) B = wx + iwy,

which he transforms into

Bx − iBy = wxx + iwyy,

which bears some formal analogy with the Poisson equation. This
analogy will be mentioned again in § 76, but Teichmüller says that the
usual theory developed for the solution of the Poisson equation is not
useful in the present context.

The exact solutions of Equation (5) will be the topic of Section 20.
In § 68, he introduces the following new definition.

Definition 19.1. The differential form B dz2

|dz|2
is said to be locally ex-

tremal if |B| is constant and at every point p where B dz2

|dz|2
is defined,

there is a simply connected uniformizing neighborhood U which is
mapped onto the plane through z, with the following properties: B (z)
is defined inside and on the boundary of U and if w vanishes outside U
and |B + wx + iwy| ≤ |B| holds all over U, then |B + wx + iwy| = |B|.

Definition 19.1 is some kind of definition of locally extremal infini-
tesimal quasiconformal mapping.

In § 69, Teichmüller shows, using an idea introduced in § 68, that dz2

|dz|2

is locally extremal. He writes: “In this proof as in the whole paper, we
have renounced to be precise about assumptions.”

In § 70, he proves the following proposition.

Proposition 19.2. If f (z) is analytic and different from 0 and ∞,
then

f (z)

|f (z) |
dz2

|dz|2
is locally extremal.

Through Proposition 19.2, we start to see the link with holomor-
phic quadratic differentials. This link is more explicit in the following
subsection. In § 71, he obtains
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Proposition 19.3. If f (z) is regular analytic, then f(z)
|f(z)|

dz2

|dz|2
is locally

extremal. In particular for a non-zero, everywhere finite quadratic dif-
ferential dζ2 and a constant c > 0,

c
dζ2

|dζ |2

is always locally extremal.

The property of being “everywhere finite” allows a quadratic differ-
ential to have zeros or poles of order at most one. Teichmüller writes
the following:

We can actually carry over the proof given in § 70 un-
changed if the analytic function f(z) has zeros. On the
other hand, for a first-order pole, difficulties arise in the
partial integration and, for a pole of higher order, all
integrals diverge even more.

In § 72 and § 73, Teichmüller shows in “a heuristic manner” that if
B dz2

|dz|2
is locally extremal, then there exists an everywhere finite qua-

dratic differential dζ2 and c > 0 such that

B
dz2

|dz|2 = c
dζ2

|dζ |2 .

In § 74 and § 75, he shows the following:

Proposition 19.4. Let dζ2 be an everywhere finite quadratic differen-

tial and c > 0. Then c dζ2

|dζ|2
is locally extremal.

Using Proposition 19.4, he shows that the set
{

c
dζ2

|dζ |2 , c > 0 and dζ2 is a regular quadratic differential

}

satisfies Properties (1) and (2) of Problem 18.1.
In § 76, the goal is to prove that the previous set also satisfies Prop-

erty (3) of Problem 18.1. For this, due to the linear aspect of the space
Lσ, Teichmüller wishes to give a necessary condition for an element to
be equivalent to 0. He states:

Theorem 19.5. If B dz2

|dz|2
is invariant and

∫

B
dz

dz2
dζ2 = 0

for any everywhere finite quadratic differential dζ2 on F, then there is
an invariant w

dz
with

(6) B = wx + iwy.
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In Teichmüller’s notation, dz is an infinitesimal area form. In more

conventional terms, dz = 1
2i
dz ∧ dz.

Teichmüller proves the converse of this theorem, in order to show
Property 19.4. He says about Theorem 19.5: “I have originally taken
this proposition as a postulate, then proceeded further and, much later,
looked for a proof of it.” The proof of this theorem, which is the key

of Teichmüller’s theorem, will be established in the following section.

20. The equality wx + iwy = B

As previously mentioned, the aim of this section is to show Theorem
19.5. Teichmüller divides this section into three parts in which he shows
the theorem in the cases of the Riemann sphere, of the torus and of
closed hyperbolic surfaces respectively.

From § 77 to § 80, he considers the Riemann sphere. There is no
everywhere finite quadratic differential on this surface, but he shows a
related result, namely, he produces a solution w to the equation

wx + iwy = B,

assuming that the function B on the sphere is sufficiently regular near
0 and ∞. Moreover, he shows that w is uniquely determined if we
suppose that w vanishes at 0, 1 and ∞.

Using his notation, the function w is given by

(7) w (z) =
1

2π

∫

CP1

W (z, z0)B (z0) dz0

where the integral is taken over the sphere and where W (z, z0) is the
kernel

W (z, z0) =
z (z − 1)

z0 (z0 − 1) (z − z0)
.

Moreover, the function w(z) is unique, assuming that the inverse

differential w(z)
dz

vanishes at 0, 1,∞.
From § 81 to § 83, he gives a proof of Theorem 19.5 in the case of

the torus. He passes to the universal cover, which is the plane. If u is
a holomorphic coordinate in the plane, then an everywhere finite qua-
dratic differential is of the form adu2, with a a complex number (since
the complex dimension of the space M2 is one), and an everywhere
finite inverse differential is of the form a

du
, with a again a complex

number (the complex dimension of the space 1
M

is also one). He finds
a solution which bears some similarities with the one of the sphere de-
cribed above, and where the integration is over a period parallelogram
in the universal cover. Here, B is an invariant differential, which is
periodic with periods w1 and w2 associated with the torus, and such
that

∫ ∫

B(u) du = 0,
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the integration being again over a fundamental domain (a period par-
allelogram).

The solution w of (6) is then given as an integral of a kernel, as in
the previous case, and it involves the Weierstrass ζ-function associated
with the periods w1, w2. This is a rational function in u, with first order
poles at mw1 + nw2 (m and n integers), and equivariant in w1 and w2,
that is, satisfying

ζ(u+ wi) = ζ(u) + ηi
for i = 1, 2.

This equivariance, the kernel, and the integral solution have their
analogues in the case of closed oriented surfaces of genus g ≥ 2, where
the universal cover is the hyperbolic plane. This is treated in § 84 to
§ 87. Teichmüller proves the theorem using Poincaré series. To be
more precise, he considers the universal covering D of the surface F

and its associated Fuchsian group G, he lifts the function B to the disk
(he denotes this lift again by B) and he considers the function

w (η) =
1

2π

∫

D

1

η − η0
B (η0) dη0 ,

the integration being again over a fundamental domain. He shows
that this function satisfies the condition to descend on the surface and
satisfies Equation (6).13

We recall that at this point, Teichmüller does not solve Problem
18.1. He just poves Theorem 19.5.

21. The linear metric space Lσ of the classes of

infinitesimal quasiconformal mappings

The main aim of this section is to finish the solution of Problem
18.1 by using Theorem 19.5. We recall that if B dz2

|dz|2
is extremal in the

sense of Definition 19.1, then there exists an everywhere finite quadratic

differential dζ2 and c > 0 such that B dz2

|dz|2
= c dζ2

|dζ|2
. To prove Property

(3) of Problem 18.1, Teichmüller shows that the space Lσ introduced
in Section 17 is a vector space of real dimension σ. He also proves what
he already announced in Section 17, namely, that ‖ · ‖ is a norm on Lσ.

In § 88, he gives a characterization of the class of B dz2

|dz|2
. Indeed,

Theorem 19.5 implies that if B∗ dz2

|dz|2
∼ B dz2

|dz|2
, then

(8) ∀1 ≤ µ ≤ τ,

∫

F

B∗ (z)
dζ2µ
dz2

dz =

∫

F

B (z)
dζ2µ
dz2

dz

where τ is the complex dimension of the space of everywhere finite qua-
dratic differentials and

(

dζ2µ
)

1≤µ≤τ
is a basis of this space. He considers

a pairing between Beltrami forms and quadratic differentials. Equality

13This kind of approach is called “coset enumeration” or “telescoping sum cor-
responding to a group action.” It was later developed by Hejhal and Wolpert.
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(8) allows to associate, for each class of B dz2

|dz|2
, 3g−3 complex numbers

(kµ)1≤µ≤τ
. He says that the natural question is whether the converse

is true. The response is given by the following proposition which will
be proved in the two subsequent subsections.

Proposition 21.1. Given any τ complex numbers k1, k2, · · · , kτ , there
always exists one and only one class of invariants B dz2

|dz|2
.

In fact, Teichmüller will prove more. With this property, it is clear
that Lσ is a real vector space of dimension 6g− 6 (it is even, naturally,
a complex vector space of dimension 3g − 3).

In § 89 and § 90, Teichmüller proves Proposition 21.1. He shows
that for each (kµ)1≤µ≤τ

there exists a unique c > 0 and a quadratic

differential dζ2 such that c dζ2

|dζ|2
gives (kµ)1≤µ≤τ

. Thus, Property (3) of

Problem 18.1 is proved and therefore, the whole problem is solved.
In § 91, Teichmüller recalls briefly the definition of ‖ · ‖ on Lσ and

he proves that this is a norm. He also shows that for a vector t =
(kµ)1≤µ≤3g−3 and a complex number a, we have ‖a · t‖ = |a| · ‖t‖.
With this in mind, he asks whether this norm comes from a Hermitian
structure. We quote his question:

[..] I know about these linear metric spaces nothing
more. In particular, it is completely uncertain whether
there exists for instance a Hermitian matrix (hµν) =

(hνµ) such that

‖k‖=
√

∑

µ,ν

kµhµνkν .

22. Doubling

In this section, Teichmüller considers the cases of oriented bordered
Riemann surfaces and non-orientable Riemann surfaces. He defines the
associated doubled surfaces. These are closed Riemann surfaces with
genus depending on the original surfaces. He introduces the notions of
meromorphic functions, n-differentials and divisors on bordered non-
orientable Riemann surfaces. These notions will be useful to establish
the Riemann-Roch theorem for such surfaces, equipped with distin-
guished points. The theorem plays an important role in the next sec-
tion, where the dimension formula announced in Section 7, Equation
(1), is proved.

In § 92, Teichmüller explains how to define the double of a bordered
or of a non-orientable Riemann surface. For a bordered surface M, he
defines the associated mirror surface M. This is a bordered Riemann
surface obtained by composing every local coordinate of M by complex
conjugation. To get the doubled surface, M and M are glued along
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their boundary components. Teichmüller denotes this surface by F.
We shall denote it here by Md.

For a non-orientable surface M, its 2-sheeted cover is likewise con-
sidered. It is a surface which has twice the number of boundary com-
ponents than M.

In § 93, Teichmüller recalls the notion of algebraic genus for bor-
dered or non-orientable Riemann surfaces. This is the genus of the
corresponding doubled surface. Let us recall the formula.

Let M be a surface (bordered or non-orientable) whose topological
data are (g, γ, n), using the notation of Section 7. Then, Md is a closed
surface whose genus is equal to

(9) G = 2g + γ + n− 1.

This quantity G is called the algebraic genus of M.
In § 94, Teichmüller defines divisors on M and their associated de-

grees. He uses a particular normalisation in order to associate a divisor
to Md with the same degree. To be more precise, he assumes that the
integer associated with an inner point is even.

In § 95, he defines functions onM. He uses the term function instead
ofmeromorphic function. Meromorphic functions are real along bound-
ary components. For bordered Riemann surfaces, he defines functions
as follows:

Functions on the oriented bordered finite Riemann sur-
face M are exactly the functions f that are, up to poles,
regular analytic in M and that are real on the boundary
of M.

In the non-orientable case, the definition is:

Functions f defined on non-orientable finite surfaces M
which depend on the choice of parameters so that f is
invariant under direct conformal parameter transforma-
tions but goes to f̄ under indirect conformal transfor-
mations, which up to poles depend analytically on local
parameters and which are real on the boundary, are ex-
actly the functions on M.

Functions on M correspond bijectively to symmetric functions on Md.
They form a field on R, or according to his terms, a real algebraic
function field. This is in the tradition of Riemann, who identified a
Riemann surface with the field of meromorphic function that it carries.

In § 96, Teichmüller defines for n ∈ Z, n-differentials on the general
surface M and for n = −1 (resp. n = 2) he calls them inverse dif-
ferentials (resp. quadratic differentials). Differentials have to be real
on the boundary components. He recalls how an n-differential defines
a divisor on M and he also explains the bijective correspondance be-
tween differentials on M and symmetric differentials on Md. By his
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normalisation for a divisor on M, associated degrees are equal. As a
consequence, the degree of any n-differential (n ≥ 0) is equal to

2n (G− 1) .

In § 97, by the doubling process, he proves the Riemann-Roch theo-
rem for divisors on M.

In § 98, he considers arbitrary topological types of surfaces (i.e with
inner or boundary distinguished points) and proves, using the notation
of Section 7, the following version of the Riemann-Roch theorem which
is analogous to the dimension formula he gives in § 14:

The difference between the maximal number of real-
linearly independent quadratic differentials that have at
most first-order poles at the distinguished points and
the maximal number of real-linearly independent every-
where finite inverse differentials that vanish at the dis-
tinguished points is always equal to

(10) −6 + 6g + 3γ + 2h + k.

The next three sections contain a proof of the dimension formula and
solve Problem 18.1 in the general case.

23. Regular quadratic differentials and inverse

differentials of a principal region

This section follows the same idea as Section 19. The author justifies
the link between ρ and the real dimension of everywhere finite recip-
rocal differentials. He shows that the space of quadratic differentials
satisfies the first two properties of Problem 18.1.

In § 99, he considers the vector space of regular inverse differentials,
that is, inverse differentials vanishing at the distinguished points. He
establishes the link between the real dimension of this vector space and
the value ρ.

In § 100, he recalls when B dz2

|dz|2
and B∗ dz2

|dz|2
are equivalent and he

says that the main aim is to find in each class the one with the smallest
norm. He solves Problem 18.1 in some particular cases (doubly con-
nected domains, quadrilaterals, sphere with four distinguished points).
The solutions are given by quadratic differentials with conditions on
the boundary and at distinguished points. These conditions lead to
the definition of a general regular quadratic differential, which is an
everywhere finite quadratic differential “apart from possible first order
poles at the distinguished points.” He states the following theorem:

Theorem 23.1. The set
{

c
dζ2

|dζ |2 , c ≥ 0 and dζ2is a regular quadratic differential

}

solves Problem 18.1.
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This theorem will be completely proved in Section 24. In § 101,
Teichmüller proves, with the same method as in § 74, that the previous
set satisfies the first two properties of Problem 18.1.

24. The equation wx + iwy = B for arbitrary principal

region

This section is devoted to the proof of a theorem analogous to The-
orem 19.5. This theorem leads to the solution of the third property of
Problem 18.1 in the case of bordered or non-orientable surfaces with
distinguished points. The idea is simple. The author starts by proving
the theorem (Theorem 24.1 below) in the case of closed surfaces with
distinguished points. After that, to treat the most general surfaces, he
considers the corresponding doubles. By symmetrization, he gets the
general solution.

In § 102, Teichmüller establishes the following analogue of Theorem
19.5:

Theorem 24.1. If B dz2

|dz|2
is invariant up to complex conjugation and

if

(11)

∫

M

Re

(

B
dζ2

dz2

)

dz = 0

for all regular quadratic differentials dζ2 of the principal region H, then
there exists a regular inverse differential w

dz
such that

(12) B = wx + iwy.

The theorem was already proved for closed oriented surfaces without
distinguished points. The author provides arguments for the proof
in the case of the punctured torus, and for a sphere with one, two
or three distinguished points. He explains that we have to solve the
corresponding equation in the absence of distinguished points and then
use the general form of the solution, which is unique up to constants.
Furthermore, these constants may be chosen in order for the solution
w to vanish at the distinguished points. Therefore, he gets a regular
inverse differential.

In § 103, he proves Theorem 24.1 for the sphere with four distin-
guished points. For this, he uses a two-sheeted covering space (i.e a
torus) ramified at four distinguished points and he obtains an inverse
differential on it. He modifies this differential so that it descends to the
sphere with four distinguished points and he checks that it vanishes at
these points.

In § 104, he considers the most general case of a hyperbolic closed
surface with distinguished points. He lifts the problem to the universal
covering, and he recalls the form of the solution w. This solution
uses Poincaré series. He proves that it vanishes at the distinguished
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points. At this step, he proves Theorem 24.1 for closed surfaces with
distinguished points.

In § 106, he considers bordered and non-orientable surfaces. Let M
be such a surface with h inner distinguished points and k boundary
points. Thus, the corresponding double Md has 2h + k distinguished
points. Teichmüller transfers the problem on M to a problem on the
double. The invariant B dz2

|dz|2
gives a symmetric invariant function on

the double. By Equation (11), Teichmüller gets all the conditions to
find a solution w. He modifies this solution in order to obtain a sym-
metric regular inverse differential and, therefore, a solution to Equation
(12). Theorem 24.1 is now proved.

In § 107, he gives explicitly the solution of (12) in the case of a simply
connected domain. He uses a solution already given in § 80.

25. The dimension of the linear metric space Lσ

In this section, Teichmüller finishes the solution of Problem 18.1.
For this need, he proves that (Lσ, ‖ · ‖) is a real normed vector space
of dimension σ. The poof follows the scheme of Section 21.

In § 108, he remarks that, according to Theorem 24.1 (§ 88), a class

of invariants B dz2

|dz|2
is characterized by a vector (kµ)1≤µ≤σ

∈ Rσ. Unlike

in § 88, he sets, for an invariant B dz2

|dz|2
, and 1 ≤ µ ≤ σ,

(13) kµ =

∫

M

Re

(

B
dζ2µ
dz2

)

dz ,

where (dζµ)1≤µ≤σ
is a basis of the real vector space of regular quadratic

differentials. Thus, he shows that Lσ is a real vector space. In § 109,
he proves the following:

Proposition 25.1. Let t ∈ Rσ − {0}. Then, there exists a unique
c > 0 and a unique regular quadratic differential dζ2 of norm 1 such
that c · dζ2 determines (by Formula (13)) the vector t.

He notes that with this proposition, Property (3) of Problem 18.1 is
proved and therefore this problem is solved. We also see that the space
Lσ is a real vector space of dimension σ. He also checks that the norm
‖ · ‖ is indeed a norm.

In § 110, he shows that Lσ is a complex vector space when M is a
closed oriented surface with h distinguished points.

In § 111, he finishes the proof of the dimension formula

σ − ρ = −6 + 6g + 3γ + 3n+ 2h+ k.

It remains to prove that Teichmüller space is a manifold of dimension
σ. This will be done in the following section.

In § 112, the author gives a heuristic way to prove the dimension
formula. Following an idea of Klein, he establishes this formula by
induction on the number of distinguished points.



36 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

26. Passing to finite mappings. Rσ as a Finsler space

This section may be seen as the most important section of this arti-
cle. Teichmüller establishes what we call today Teichmüller’s theorems.
For this, he makes the link between extremal infinitesimal quasiconfor-
mal mappings and extremal quasiconformal mappings and he shows
that the Teichmüller space with respect to the Teichmüller metric is
a Finsler space. He also constructs isometric embeddings of the unit
disk into Teichmüller space.

In § 113, he considers an extremal mapping f : H → H′ where H

and H′ are principal regions and a metric ds2 on H, associated with f ,
written in complex coordinates as

ds2 = Λ|dz|2 + Re
(

Hdz2
)

.

We recall that the direction field of f is given by the conditionHdz2 > 0

and its quasiconformal dilatation is
√

Λ+|H|
Λ−|H|

.

Teichmüller considers the family of metrics

ds2t = Λ|dz|2 + t · Re
(

Hdz2
)

(0 ≤ t ≤ 1) ;

whose associated quasiconformal mappings, denoted by ft, are ex-
tremal. (This is justified in § 39.) He notes that for t ∼ 0, ft becomes
an infinitesimal extremal quasiconformal mappings. Thus, by the pre-
vious section, there exists c > 0 and a regular quadratic differential dζ2

such that

(14) ds2 = λ
(

|dζ2|+ cRe
(

dζ2
))

.

The conjecture on quasiconformal mappings is now equivalent to the
fact that the extremal (finite) quasiconformal mappings are always
given by metrics of the form (14) where dζ2 is a quadratic differen-
tial, λ a positive function and c a positive constant. Concerning this
passage, Teichmüller says: “This conjecture is based on nothing.”14

In § 114, he formulates his previous observation as the following the-
orem.

Theorem 26.1. Every extremal quasiconformal mapping from some
topologically fixed principal region H to some principal region H′ of the
same fixed topological type corresponds to a metric of the form

(15) ds2 = λ
(

|dζ2|+ cRe
(

dζ2
))

.

Here dζ2 is a regular quadratic differential on the principal region H, c
is a positive constant which must incidentally be taken < 1 and λ is a
variable positive factor.

14The equivalence between (uniquely) extremal mappings in a class and
(uniquely) extremal in the corresponding infinitesimal class, in the general case,
was obtained later on by works of Hamilton, Krushkal’, Reich, and Strebel.



A COMMENTARY ON TEICHMÜLLER’S PAPER 37

This theorem is a form of the Teichmüller existence theorem. By
a clever rewriting of (15), he observes that the corresponding metric
determines (up to a conformal mapping) a mapping in the coordinates
given by dζ2:

(16) ζ 7→ KRe (ζ) + iIm (ζ) .

In other words, the metric determines the Teichmüller mapping.
In § 115, Teichmüller declares that the mappings in (16) are extremal.

This will be proved in Section 27. These mappings solve partially
Problem 16.1 and also the equivalent Problem 17.1. At this step, it
solves it “partially” because the author does not give any proof of the
fact that “every topological mapping from a principal region H onto
some other principal region H′ can be deformed into a mapping” of a
form given in (16). He says that he will give a proof, but it is not clear
whether a proof is contained in the present paper.

In § 116, Teichmüller introduces a new metric which is a length met-
ric. For this he makes use in an essential way of the structure of the
vector space Lσ. He denotes this new metric by {·, ·} and he explains
why this metric induces on Rσ the structure of a Finsler space. In
§ 117, he proves:

Theorem 26.2. Let P and Q be two points in Rσ. Then

{P,Q} = [PQ] .

In § 119, he defines rays and shows that they are geodesics. Today,
we call these rays Teichmüller rays. He also says that from the point
P , there emanates exactly one geodesic in every direction of Rσ.

In § 120, he proves

Theorem 26.3. The geodesic rays corresponding to dζ2 and −dζ2 and
that emanate from a point P coalesce into one single geodesic line.

In § 121, he considers the space Rσ for closed oriented surfaces with
possibly distinguished points. Given an element P of Rσ, a complex
number ϕ and K ≥ 1, he considers the element P (K,ϕ) of Rσ whose
direction is e−iϕdζ2 and at distance logK from P . The target principal
region is denoted by h(K,ϕ). It is describd by the metric

|dζ2|+ K2 − 1

K2 + 1
Re−iϕdζ2.

He considers logK and ϕ as “geodesic polar coordinates” and the sur-
face defined by all these P (K,ϕ) as a complex geodesic. Such a surface
is called today a Teichmüller disc. In the special case where the sur-
face h is a marked torus with no distinguished point (§ 26 to 28), the
whole space R2 is a “unique complex geodesic.” Equipped with the
Teichmüler metric, this space R2 is the hyperbolic plane (of constant
curvature −1). More generally, Teichmüller establishes the following:
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Theorem 26.4. Any complex geodesic is isometric to the hyperbolic
plane.

In § 122, he proves that Rσ with respect to [·, ·] is uniquely geodesic.
He uses for this the Teichmüller existence theorem (which he did not
completely prove yet).

In § 123, he uses polar coordinates in order to justify:

Theorem 26.5 (Existence and uniqueness of geodesics between any
two points). Between any two points of Rσ passes a unique geodesic,
and this geodesic is distance minimizing (not only locally).

This implies:

Theorem 26.6. The space Rσ of classes of conformally equivalent
topologically fixed principal regions of a given type is homeomorphic
to a σ-dimensional Euclidean space.

This theorem is related to the assertion made in § 13. It is probable
that the reason of the use of Rσ there, instead of Rσ, was to avoid
introducing more definitions and notation. Theorem 26.6 is sometimes
called the Teichmüller theorem.

27. Simple cases

In § 124 the author considers special cases of Theorem 26.6. These
cases are classified according to Klein’s notion of algebraic genus and
reduced dimension which were discussed in § 14. In § 124, he recalls
Klein’s classification of surfaces according to their algebraic genus.
For each nonpositive integer G, he gives the number of bordered/non-
orientable surfaces having algebraic genus G. (For closed surfaces, the
number is 1.)

There are 12 cases corresponding to the value τ = 1, and he shows
explicitly that in these cases σ has the announced value. These are
cases where the quadratic differential dζ2 can be given explicitly.

In § 128, he considers 11 special cases where τ = 2. He considers the
torus as a two-fold covering of the sphere ramified over four points. He
declares: “The structure of the linear space Lσ is still not known to me
for τ > 1.”

In § 129 he considers the extremal quasiconformal mappings between
pentagons, that is, principal regions with five distinguished points on
the boundary. In this case, he can take explicit parameters by con-
sidering as a pentagon the upper half-plane with distinguished points
r1, r2, r3, r4,∞ and mapping it to the L-shaped Figure 1. By conven-
tion, the vertices are only the ones with acute angles (equal to π/2).
The space of regular quadratic differentials on such a principal region is
of real dimension two, with possibly simple poles at the distinguished
points. On such a pentagon, a map

(17) ζ ′ = Kζ + iη
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can be applied. Mapping again to the upper half-plane, the map in-
duced by (17) is claimed to be extremal quasiconformal. Teichmüller
treats completely the case of a pentagon in [41].

At the end of § 129, Teichmüller writes: “It is advisable to carry out
simpler examples of the same type before giving the general proof (in
§§ 132-140).”

0 a

a+ ib1a1 + ib1

a1 + ibib

Figure 1. Hexagon

In § 130, he compares the dimension of the space of hexagons (with
sides parallel to the axis and with five distinguished pointing-out ver-
tices) and the dimension of the Teichmüller space of a principal region
given by the upper half-plane with five distinguished points on the
real axis. Figure 1 is again used. The space of hexagons is three-
dimensional. Two one-parameter families of hexagons inside this pa-
rameter space are highlighted. One of them consists of Teichmüller
geodesics. The author discusses the behavior at infinity of these geodesics.
He also interprets the space of hexagons as a fiber bundle such that
each fiber corresponds to a Teichmüller geodesic and each point in the
base space corresponds to the two ends of a Teichmüller geodesic.

Two spaces R2 and S2 are obtained by identification of points on the
same curve. There is a contact transformation between the two spaces
R2 and S2 (a transformation carrying lines to lines). Then follows a
discussion of convergence of points to infinity.

In § 131, he studies ring domains (annuli) with one distinguished
boundary point on each boundary curve. These surfaces were already
considered in §§ 3 and 33. An application of the Schwarz reflection
principle leads to the torus.

28. Proof of the extremality property

In this section, Teichmüller gives a proof of two important results,
namely,



40 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

• that Teichmüller maps are extremal in their homotopy classes;
• that if a map, in the homotopy class of a Teichmüller map,
has the same quasiconformal dilatation, then it is equal to the
Teichmüller map up to composition by a conformal map.

The proof is long, and takes from § 132 to § 140. It is inspired by the
case of the torus (given in § 28) but the technical details in the general
case are much more involved. The proof uses geometry, topology and
analysis. It makes use of the metric on the universal cover induced
by the quadratic differential defining the Teichmüller map, the Hopf-
Rinow theorem applied to the geodesics of that metric, the Gauss-
Bonnet theorem for polygons with piecewise geodesic boundary, and
other important tools.

In § 135, Teichmüller proves the following rigidity result for the action
of a conformal mapping on quadratic differentials:

Proposition 28.1. A conformal mapping of a closed orientable Rie-
mann surface which can be deformed to the identity can only multiply
every quadratic differential by a constant of norm one.

In § 136, he considers surfaces with boundary.
The results proved here are the so-called Teichmüller’s uniqueness

theorem. Teichmüller’s proof has been reproduced with more details
by several authors, including Ahlfors and Bers.15

29. Conformal mappings of a principal region onto itself

In § 141, Teichmüller proves the following:

Proposition 29.1. A conformal self-mapping of a closed orientable
Riemann surface which can be deformed to the identity can be deformed
to the identity through conformal maps.

In particular, for genus > 1, since there are no holomorphic contin-
uous deformations, the map itself is the identity. In other words he
proves the following:

Proposition 29.2. A conformal self-mapping of a closed orientable
Riemann surface of genus > 1 which is homotopic to the identity is the
identity.

15Ahlfors, in his comments on his paper On quasi-conformal mappings [7] in his
Collected Works [8] (Vol. 1, p. 1), writes: “A complete proof of the uniqueness
part of Teichmüller’s theorem was included. Like all other known proofs of the
uniqueness it was modeled on Teichmüller’s own proof, which used uniformization
and the length-area method. Where Teichmüller was sketchy I tried to be more
precise.” Bers, in his paper [12] also gives a proof of uniquess, and he writes about
it (p. 108): “We merely re-word Teichmüller’s own argument, making sure that it
applies also to the more general definition of quasiconformality used here.”
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The proof uses the action on quadratic differentials.16 Teichmüller’s
proof is based on the fact that when H is a closed surface of genus
g ≥ 2, the conformal mapping acts nontrivially on the homology group
H1(H,Z) (or equivalently, on the space of holomorphic 1-forms). 17

In § 142, he introduces the mapping class group, denoted by F, of a
principal region H. He explains that the definition of F only depends
on the topology of H, and the result in § 141 implies that the quotient
group R|C (where R is the conformal automorphism group of H and C

is the subgroup of R of conformal mappings homotopic to the identity)
can be seen as a subgroup of F. Note that R|C is finite, by the famous
Hurwitz Theorem.

In § 143, Teichmüller considers the action of the mapping class group
F on the Teichmüller space Rσ and shows that this action preserves the
Teichmüller metric. He also defines the quotient group F|N′, where N′

is the group of elements in F that act trivially on Rσ. The quotient of
Rσ under F is the moduli space Rσ. Teichmüller states that F|N′ acts
on Rσ properly discontinuously.

In § 144, he shows that when H is a torus, F|R′ is identified with the
classical modular group PSL(2,Z). He points out that F|N′ contains
non-trivial elliptic elements.

In § 145, Teichmüller considers closed surfaces of genus two. In this
case, each principal region H is hyperelliptic and H is represented by
a two-sheeted branched covering of the Riemann sphere. From here,
he shows that the extremal quasiconformal mapping between any two
principal regions commutes with their involutions. This implies that
N′ is isomorphic to Z2.

Given a pair of principal regions H and H′, let K (rep. K ′) be a
conformal automorphism of H (rep. H′) such that K and K ′ agree as
elements of the mapping class group. Denote the extremal quasiconfor-
mal mapping between H and H′ by E (here it is assumed that E arises
from a regular quadratic differential and from a dilatation constant).
In § 146, Teichmüller proves that the initial regular quadratic differen-
tial of E is invariant under K. Conversely, he shows that any regular
quadratic differential on H that is invariant under K arises in this way.
As a corollary, he obtains the interesting result that if an element of
the mapping class group leaves two distinct points in Rσ fixed, then it
fixes the Teichmüller geodesic (even the complex Teichmüller geodesic)
through these two points.

In § 147, Teichmüller introduces the notion of geodesic manifold in
Rσ. In modern terms, this is a totally geodesic subset of Rσ, endowed
with the Teichmüller metric. It follows that the subset of Rσ fixed by an
element of F (if not empty) is a geodesic manifold, and the intersection

16Teichmüller’s result was extended to an arbitrary quasiconformal self-mapping,
see [15].

17Such an argument dates back to Hurwitz [18].
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of geodesic manifolds is again a geodesic manifold. The dimension of
the geodesic manifold fixed by a subgroup U of R|C is equal to maximal
rank of linearly independent U-invariant regular quadratic differentials.
Teichmüller asks the question of computing the dimension algebraically.

In § 148, Teichmüller asks whether any finite subgroup U of F can
be realized as a subgroup of R|C which acts on some principal domain
H conformally. This is the famous Nielsen Realization Problem, which
was solved by Kerckhoff in 1983 [21].

In § 149, Teichmüller uses quasiconformal mappings to prove that
given a topological self-mapping S of H such that S2 is homotopic to
the identity, there exists a topological self-mapping of order two in
the homotopy class of S. Then he explains that the Nielsen Realiza-
tion Problem for a finite subgroup U of F is equivalent the problem of
whether U has a fixed point in Teichmüller space.

From § 150 to § 152, Teichmüller illustrates the preceding general
discussion by considering a hyperelliptic surface of genus g > 1 and
a topological self-mappings G satisfying G2 = 1 (G is called a distin-
guished mapping). In § 150, he shows that G can be realized by some F
of order two, which is conformal on some hyperelliptic principal region
H (H is a two-sheet covering of the Riemann sphere, with 2g + 2 ram-
ification points, and F acts on H by exchanging the sheets). Then he
computes the dimension of the geodesic manifold fixed under F . (Here
F is considered as an element of the mapping class group F.)

In § 151, he shows that any two homotopic distinguished mappings
are conjugate by a topological mapping homotopic to the identity.

In § 152, Teichmüller discusses the number of conjugacy classes of
G in F. As shown in § 150, this number is equal to the number of
distinguished classes, and it is also equal to the index of [F,NG], where
NG is the normalizer of G in F. He gives a geometric interpretation
of NG in terms of the branched cover over the Riemann sphere. At
the end of § 152, he proposes the following three related topological
problems:

(1) Prove the result of § 151 in a purely topological way.
(2) Prove in a purely topological way that in the case g = 2,

[F,NG] = 1 (as shown in § 145).
(3) Compute the index [F,NG] for general g > 1.

In § 153, Teichmüller considers branched coverings between finite
Riemann surfaces. He defines the notion of normal covering18 between
finite Riemann surfaces. Then he mentions that a covering between
finite Riemann surfaces, say f : M → M∗, is normal if and only if f
induces a Galois extension from the meromorphic function field M(M∗)
to M(M). Moreover, the Galois group is isomorphic to the covering
transformation group in a natural manner.

18This is also known as Galois coverings.
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In § 154, Teichmüller defines the notion of normal covering between
principal regions. He then checks that for a normal covering from H

to H∗, with normal covering transformation group S, the regular qua-
dratic differentials on H∗ are exactly the regular quadratic differentials
on H that are invariant by S.

The result in § 155 is a sequel to § 154: The normal covering gives
rise to a submanifold R∗ which is isometrically embedded as a geodesic
manifold and group-invariant.

In § 156, Teichmüller applies the above discussion to study the action
of conformal self-mappings infinitesimally, that is, he works on the
cotangent space of Rσ.

In § 157, he gives an example of a locally extremal quasiconformal
mapping between tori which is not globally extremal. The existence of
such a mapping for general surfaces is conjectured in § 73.

In § 158, Teichmüller asks the following question: is there a torus in
3-dimensional Euclidean space whose period ratio is not purely imagi-
nary?19 He uses a heuristic argument to motivate an answer.

30. Generalization

In § 159, Teichmüller considers generalizations of the questions on
quasiconformal mappings raised in the previous sections to the case
where the surface is the unit disc with the boundary fixed pointwise.
He declares that one shall extend to a quasiconformal mapping of the
disc a “sufficiently regular” topological mapping from the circle |z| = 1
onto itself, and a few lines later, that “certain regularity assumptions
on the boudary must definitely be made whose appropriate formulation
is a problem in itself.”20 The theory outlined in this paragraph is that
of the “non-reduced” Teichmüller space. He mentions that “this is
as if all boundary points were distinguished.” He discusses the role of
quadratic differentials in this setting and the regularity properties at
the boundary that are needed. He then makes the following assertion,
which remained an open question for a long time:

Whenever a given boundary mapping can be extended
to a quasiconformal mapping, then it can also be ex-
tended to an extremal quasiconformal mapping. It has
the indicated form and

∫∫

|z|<1

dζ

converges. If
∫∫

dζ converges, dζ2 corresponds for each

K ≥ 1 to such a boundary mapping.

19That is, the torus can be realized as C/ < z 7→ z + 1, z 7→ z + τ >, with
Imτ > 0.

20By a result of Ahlfors and Beurling in [9], the regularity assumption is that
the homeomorphism has to be a quasisymmetric map.
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In the case of the unit disc, we can consider a holomorphic function
instead of quadratic differential. We know now that there exist ex-
tremal mappings given by a constant K and a quadratic differential
dζ2 satisfying

∫∫

|z|<1

dζ = +∞.

Moreover, there also exist extremal mappings which are not given by a
holomorphic function and whose associated Beltrami coefficient is not
of constant absolute value. For these results, we refer the reader to [13]
(see also [30]) and also to [29] for a global survey on this theory.

Teichmüller says that his aim is to stimulate further research on these
questions.

He also considers arbitrary bordered principal regions with distin-
guished arcs on the boundary, that is, such that every point of such
an arc is considered as a distinguished point. Let us note by the way
that his later paper [34] deals with a problem that belongs to this set-
ting. More precisely, he considers there the problem of minimazing the
quasiconformal dilatation for quasiconformal maps from the unit disc
to itself which keep the boundary pointwise fixed and send 0 to −x
(0 < x < 1). Cf. also the commentary [10] and Section 5.5.5 of [29].

Remark 30.1. For a long time, the general form of extremal maps in
the non-reduced theory was unknown. Indeed, it follows from work of
Strebel that the Teichmüller extremal quasiconformal mappings f are
also extremal in this setting. We recall here that these are quasicon-
formal maps whose associated Beltrami form µf is of the form

k · ϕ

|ϕ| ,

where 0 < k < 1 and ϕ : D → D is holomorphic and integrable on
D. As Reich writes in his survey [29], Teichmüller suggested that all

the extremal maps, for a certain boundary condition, are of this type.
It was Strebel who constructed an extremal map which is “almost”
of a Teichmüller type, that is, its Beltrami form is of the given type
except that the associated holomorphic function is not integrable. A
major advancement was made by V. Božin, N. Lakić, V. Marković and
M. Mateljević who showed in [13] that there exist extremal mappings
(and even, uniquely extremal) which are not of Teichmüller’s type, of
finite or infinite norm.

31. A metric

This section contains only § 160. As in the previous section, Te-
ichmüller continues to explain some problems. He says that if we take a
principal region h with ρ = 0 (negative Euler characteristic) and a vari-
able point p on h, then the set of pairs (h, p) defines a two-dimensional
manifold. He also declares that there exists a Finsler metric on this
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manifold, where the distance between two points (h, p) and (h′, p′) is de-
fined by considering all the quasiconformal self-mappings of h sending
p to p′, and taking the logarithm of the infimum of the quasiconformal
dilatations of these maps. We know now that this question is related
to the theory of the Bers fiber space and the forgetful map. Indeed,
in the case where the principal region h is hyperbolic without bound-
ary, the metric space that Teichmüller considers is the Bers fiber of h.
Kra proved in [22] that if the surface is not of exceptional type, then
this two-dimensionnal manifold is not a Teichmüller disc (this result
was also proved by Nag in [26]). Moreover, Kra proved that the Te-
ichmüller distance on the fiber is not the hyperbolic one. Nevertheless,
as Teichmüller recalls, this problem in the case of the sphere with three
distinguished points was already solved in § 27, where the metric ob-
tained is the hyperbolic metric. In fact, using the forgetful map, this
fact is trivial because the fiber is the Teichmüller space of the sphere
minus four points, which is exactly the hyperbolic disc. Teichmüller
says that one can make a similar definition for distinguished points on
the boundary. The question of studying this metric is presented as an
open problem. The question is considered again in his paper [34], cf.
also the commentary [10].

32. An estimate

In § 161, Teichmüller writes: “We still have to deal with a question
only researchers in the field should find some interest in. It concerns
the proper development of the Grötzsch-Ahlfors method.” He considers
the problem of finding a coarse lower bound for the maximal dilatation
of a quasiconformal mapping between two given hexagons with distin-
guished pointing-out vertices. This lower bound is given in terms of
side-lengths of the hexagons (see § 163), by using a lemma provided in
§ 162. The lemma in § 162 is an improvement of the Grötzsch-Ahlfors
length-area method. It gives a lower bound for the dilatation in terms
of the average intersection number between the image of a horizontal
strip with a vertical strip. Note that a more precise lower bound is
given in § 129.

33. An extremal problem for conformal mappings

This section starts at § 164. Teichmüller addresses the following
question: Why do we study quasiconformal mappings? He declares:
“Initially, quasiconformal mappings undoubtly appeared just as a gen-
eralization of conformal mappings.” He mentions the early work of
Tissot21 on the drawing of geographical maps, and works of Picard and
Ahlfors. He says that these authors proved theorems on these mappings

21Nicolas Auguste Tissot (1824-1897) is a famous cartographer, who also taught

mathematics at the École Polytechnique.



46 VINCENT ALBERGE, ATHANASE PAPADOPOULOS AND WEIXU SU

which were direct generalizations of theorems on conformal mappings.
They were nevertheless interested in conformal mappings, and their
results, he says, “taught us to understand in what way the hypothesis
of conformality restricts the behavior of a mapping.” He adds (§ 165):
“This view is outdated. Today quasiconformal mappings are systemat-
ically used in studying conformal mappings.” In particular, the fact of
approximating a conformal mapping by a sequence of quasiconformal
ones with dilatation quotients converging to 1 is not the essential part
of the theory. Rather, it is important to construct, in the study of
conformal mappings from a Riemann surface A to a Riemann surface
B, an explicit quasiconformal mapping from B onto another Riemann
surface C which is related to B, and to study the triple (A,B,C).
He elaborates on this and he mentions applications to the so-called
type problem. This expression designates the problem of determining
whether a simply connected Riemann surface A can be mapped holo-
morphically onto the plane or onto the unit disc, that is, the problem
of determining whether the surface is “parabolic” or “hyperbolic.” The
idea is based on the fact that if a quasiconformal mapping can be con-
structed from A onto the plane (respectively the unit disc), then A can
be mapped holomorphically onto the plane (respectively the unit disc).
Teichmüller mentions Picard’s theorem in this theory. This question is
also related to Nevanlinna’s theory.22 Teichmüller mentions works of
other of his contemporary mathematicians.23 Then he states that his
“extremal problem for quasiconformal mappings and its solution can
lead to heuristic methods for solving extremal problems about con-
formal mappings whose nature was initially completely different.” He
then returns to some results he already discussed in the present paper,
in particular the “Grötzsch-Ahlfors method,” and he declares: “Some

22Rolf Nevanlinna (1895-1980) was one of Teichmüller’s teachers at Göttingen.
In the preface to his book Analytic functions [28], Nevanlinna writes: “The present
monograph on analytic functions coincides to a large extent with the presentation
of the modern theory of single-value analytic functions given in my earlier works
“Le théorème de Picard-Borel et la théorie des fonctions méromorphes” [27] and
“Eindeutige analytische Funktionen” [28]. In Section XII, titled The type of a

Riemann surface, Nevanlinna mentions a question on the type problem answered
by Teichmüller in his paper [39] (p. 312 of the English edition).

23Teichmüller refers to the paper “Zum Umkehrproblem der
Wertvertelungslehre” [43], by E. Ullrich and to the habilitationsschrift of H.
Wittich. In the first work, the author studies a new class of Riemann surfaces
called “surfaces with finitely many periodic ends.” He proves the existence
of meromorphic functions which have prescribed rational valued deficiency of
ramification index at finitely many points, and sum 2. In the second work, the
author uses quasi-conformal mappings in his study of value-distribution theory,
that is, the theory (also called Nevanlinna’s theory) whose aim is to count the
number of times a holomorphic function f(z) assumes a certain value as z grows
in size. This theory is a wide generalization of the classical Picard theorem.
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connection between the extremal problems of conformal or quasicon-
formal mappings and quadratic differentials can also be noticed in the
work of Grötzsch.” He concludes his paper with the announcement of
further results in future papers, in particular, detailed proofs of results
announced in the present paper.

The interested reader may find several other of Teichmüller’s papers
translated and commented on in this Handbook.
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Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung. In
Handbook of Teichmüller theory (A. Papadopoulos, ed.), Volume VI, EMS
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Ber. Verh. Sächsisch. Akad. Wiss. Leipzig, Math.-Naturwiss. Kl., 84 (1932),
114–120.
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méromorphes. Gauthier-Villars, Paris, 1929.
[28] R. Nevanlinna, Eindeutige analytische Funktionen, Grundlehren der mathe-

matischen Wissenschaften, Vol. 46. 1st. ed. Berlin: Springer 1936, 2nd ed.
1953, English translation of the second German edition by Phillip Emig: An-
alytic functions. Die Grundlehren der mathematischen Wissenschaften. Vol.
162. Berlin-Heidelberg-New York: Springer-Verlag, 1970.

[29] E. Reich, Extremal quasiconformal mappings of the disk. In Handbook of com-

plex analysis: Geometric function theory (R. Kühnau, ed.), Volume I, Elsevier
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