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ABSTRACT. This paper presents the study of a multi-phase
induction system for metal disc heating. It proposes a complete
electrical and thermal modelling of the whole system in PSim
software, with a reduced simulation time. An optimisation
procedure allows us to calculate the optimal parameters for
calibrating the system  in order to obtain a uniform heating of
the  work  piece.  This  was  possible  from  the  knowldege  of  the
current density distribution extracted from the finite element
software Flux2D and from the impedance matrix that
describes the electrical behaviour of the three coils suuplied by
current source inverters. This studies also concern a first simple
current control method. As a result, the experimental thermal
distributions are in good agreement with simulated  ones.

I. INTRODUCTION

In comparison with other heating solutions, induction heating
offers a lot of advantages, such as fast and exact heating with
high power density, many control possibilities with the help
of power electronic. The operation of induction heating
devices  has  to  face  many  problems  that  cannot  be  fully  and
easily characterized by a mathematical formulation. Indeed,
interactions between the converter, the inductor and the work
piece to be heated, make the system complex, but it is
possible to separate these difficulties by discerning the two
main parts that constitute an induction heating system [1,2].
In order to improve the tuning facility and the flexibly, it
might be associated with an optimal control. But it requires
first a good representation that allows calibrating the whole
system. Induction heating systems are divided into two parts,
the power supply and the inductors. Few softwares allow
magneto thermal studies such as Flux 2D®, moreover they
are complex and time consuming [3,4]. To overcome these
drawbacks, a model of the complete system was developed
with [7], including the load thermal behaviour, power
inductors, switches and RMS control of the inductor currents.
The proposed simplified model relates to 3 phases transverse
flux induction heating. We successively present the electrical
model, the thermal model, the control scheme, the simulation
and experimental results we obtained and their improvements.

II. SYSTEM MODELLING: ELECTRICAL PART

The system consists of three inductor coils (Fig.1 & Fig2)
organized face to face in a transverse flux configuration and a

disk plate i.e. the load to be heated. This system can be
represented by a 4 phase electrical circuit including the
material to be heated (index 4), which is subject to a current
flow according to the induction heating principle, but with
zero voltage.

Fig. 1. Coils and work piece coupling

Fig. 2. Induction heating device coils

Equation 1 provides a matricidal description of the system
when the three coils are fed by currents I1, I2 an I3 while I4 is
the current flowing through the material to be heated.
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 (1)

- Mi,4: coupling terms between the inductors i and the material
to be heated (load)



- Ri , Li : self resistance and inductance for inductor i
- R4 and L4 : resistance and inductance for the disk plate
- Mij : mutual inductance between inductor i and j.

From the 4th line, it comes:
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which leads to a reduced 3x3 relationship, between [V] and
[I] with
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From (4) and (5), we can see that the presence of the material
to be heated increases the resistance of the diagonal terms and
creates a mutual resistance in impedance coupling terms. Of
course it is possible to run numerical simulations on dedicated
software such as Flux 2D , Flux 3D  or  Inca  3D . In fact,
these simulations are highly time consuming (3 weeks for a
given configuration) and as the inductors and the bus-bar
have a particular form, it is often not possible to fully
represent them in these programs. Consequently,
measurements will be necessary to obtain the real and

imaginary parts of the impedances including the coupling
terms. The different terms given in (6) calculated according to
a “pseudo-energy” method from V and I measurements,
details are given in [5].
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Fig. 3. Electrical model of the coupled inductors

Fig. 3 describes the arrangement of current-controlled voltage
sources and passive components used to simulate the
matricidal model (1), including the dissymmetry between Z12
and Z21 for  example.  For  example  on  phase  1,  R11 and L11
represent the self resistance and inductance while the other
terms are the coupling effects, i.e. 212 * IZ  and

313 * IZ respectively.
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Fig. 4. Current source and inverters



The whole system is supplied by a set of current source
inverters and a controlled current source, as depicted in Fig.
4.  It is important to notice that power electronics does not
work according to PWM principles but with only one pulse
per half-period, consequently, the control loops will have to
adjust the duty cycle [6] on each phase.

Fig.  5  shows  for  phases  1  and  2,  the  inverter  current
waveform and the current in the corresponding inductor. The
specific angles derive from an optimization procedure of the
heat profile in the plate that is described in [1]. Due to the LC
resonant circuit on each phase, the inductor currents are quite
sinusoidal despite square wave supply inverter currents, as it
can be seen in figures 6 and 7.

0.0K
-0.20K
-0.40K
-0.60K

0.20K
0.40K
0.60K

I1 Iond1I_ind_1 I_inv_1

I_ind_2 I_inv_2

936.00 936.20 936.40 936.60
Time (ms)

0.0
-100.00
-200.00
-300.00

100.00
200.00
300.00

0.0K
-0.20K
-0.40K
-0.60K

0.20K
0.40K
0.60K

I1 Iond1I_ind_1 I_inv_1

I_ind_2 I_inv_2

936.00 936.20 936.40 936.60
Time (ms)

0.0
-100.00
-200.00
-300.00

100.00
200.00
300.00

Fig. 5. Inverter and inductor waveforms pour phase 1 and 2

Fig. 6. FFT for inverter currents with a1=30°

Fig. 7. FFT for inductor currents

A particular attention should be paid to the capacitor values.
The theoretical calculation leads to [C1, C2, C3] = [388.4;
217.9; 133.6] (µF) which are implemented as [C1, C2, C3] =
[387; 221; 136] (µF) taking into account only normalized
capacitances. The first experimental results in Fig. 9 are not
satisfying as the phase lag j21 between currents I1 and  I2 is
52.3° instead of 39.9° and 57° instead of 45.3° for j31
between currents I1 and I3. This phenomenon is mainly due to
parametric dispersion on the capacitor values. Fig. 8 shows an
example of the capacitor parametric characterization that had
to be done. For example, the practical capacitance value of
the biggest capacitor was 43µF instead of 47 µF.

Fig. 8. Impedance diagram for a 47mF capacitor

A 33 mF capacitor is added on the first bank and the result is
described in Fig. 9 where the phase shifts are closer from their
references than before.
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Fig. 9. Standard current phase shifts

Fig. 10. Current phase shifts with an additional capacitor of 33mF on
bank 1

a j



The phase shift sensitivity versus capacitor values must be
studied  in  order  to  confirm  the  origin  of  the  phase  errors  in
Fig.  10.  Equations  (7)  come  from  the  circuit  in  Fig.  4  and
from the matricidal model (1), where Iinv1_f is the fundamental
of the inverter current on phase 1.
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These currents can be expressed in (8) from the knowledge of
the duty cycle and the shift angles for Iinv_i such as represented
on Fig 5. Because of the resonant circuit, only the
fundamental of the currents will be taken into account,
leading to analytic expressions of the inductor currents (9) in
relationship with the circuit parameters and especially with
the capacitor values.
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Then, the variations of the phase shifts between the inductor
currents can be plotted in Fig. 11.
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Fig. 11. Phase shift sensitivity versus separate capacitor variations

Moreover, the phase shifts due to the individual capacitor
variations are almost linear and can be added. The global
phase shift variation is almost equal to the sum of the phase
shifts due to separate variations, as it can be seen in Fig. 12 if
they are limited within a reduced variation domain around the
nominal values.
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Moreover, a frequency analysis, see Fig.13 can be computed
in order to highlight the current transfer ratio between the
inverter currents and the inductor currents, in magnitude and
phase, when the working frequency is subject to variations.
For example, it can be noticed on the magnitude plot, that the
resonant filter is rather selective, has an increasing effect at
the nominal frequency and attenuates the other frequency
components.
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III. SYSTEM MODELLING: THERMAL PART

The temperature is usually obtained by solving the heat
equation which takes into account either convection,
conduction in the material or radiation effects. The complete
thermal model which is fully described in [7], is based on the
non linear power density distribution created in the plate by
the 3 phases [3].  In practice it is impossible to measure the
induced currents in the work piece but an image of their
distribution in the material at each abscissa along the radius
can be obtained in Flux2D® software. Under the hypothesis
that the temperatures around the thermal measurement points
(thermocouples) are uniform as well as the resistivity rdisc
around the considered points, the power density is given by
(14).

)(RJDp idiscdiscRi
2

)( .r= (9)



Jdisc represents the total induced currents in the material at any
point i along the radius when rdisc is the resistivity. Fig. 14
and Fig. 15 show an example of the induced current
distribution extracted from Flux2D® under condition of 20°C
at 1500 Hz.
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The following formula shows the calculation of induced
currents that uses the features of induced current distribution
images in Fig. 3 and the real and imaginary parts of current
injected in the inductors.

( ) ( )( )∑
3

1=

-=
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kRikIkIikR IRfIRfj. (10)

where
- fKR(Ri) is the real  part of the image of induced

distribution current at the abscissa Ri,
- fKI(Ri) is the imaginary part of the image of induced

distribution current at the abscissa Ri,
- IkR : real part of the current Ik,
- IkI : imaginary part of the current Ik

Ten measurement points by thermocouples (R1 to R10) along
the radius of the disc plate are considered. The values of the
different induced current images, for the real part and the
imaginary part, are red at each measurement point, such as for

0.27m in Fig. 14. The, the temperature model derives from
(11).
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IV. CURRENT CONTROL

As far as we know, very few works have been done for the
control of this kind of coupled system [8], [9]. As a first step
in  our  study,  a  simplified  control  scheme  is  proposed
hereafter. According to figure 16 which describes it for one
phase, it includes a PI controller, a limiter, a cosine inverse
function block that leads to the firing angle of the
corresponding inverter. Besides, the current is sensed and
converter  into  its  RMS  value  with  the  help  of  a  square
function, a low-pass filter with 600Hz as the cut-off
frequency and a square root function.

Fig 16. Current control scheme

The PI controller is tuned according to pole placement
method, the closed-loop bandwidth is set to 600Hz (<1500
Hz)  as  in  open-loop.  Fig.  17  shows  the  transient  from  0  to
steady state on the inverter currents and on the inductor
currents. The reference RMS values are reached within few
supply periods.
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Fig. 17. Inverter and inductor current waveforms from 0 to steady state



The steady state duty cycles depend on the source current
value. The current on phase 1 is the highest, it could be
simpler to fix a1=0, that is to say full-wave, but this is not the
best solution as this duty cycle will be stuck to its lower limit.
Consequently, a better solution consist in increasing the
source current Is and for example, tune a=30° on the phase
that flows the highest current i.e. I1 (so a1=30°) that gives the
opportunity to cancel all 3rd harmonics in the inverter
currents and decrease the THD.

V. EXPERIMENTAL RESULTS

Fig.  18  shows  the  experimental  and  the  simulated
temperatures for the ten measurement points.  Several tests
were used to correlate simulations and experiments, which are
in good agreement with each other.
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Fig. 18. Simulated and experimental profile

The differences between the simulations and experiments are
quite acceptable because they are limited to 10% except in the
centre  of  the  disk  where  the  model  has  to  be  improved  and
other experiments have to be run on the testbench.

VI. CONCLUSION

This paper presents a simplified model that describes both the
power electronics and the thermal behaviour of our induction
heating system. The model has short computation time and
provides satisfying results that are close to experimental
results under the same conditions. It takes into account either
convection, conduction or radiation. The sensitivity versus the

capacitor values was put in evidence and an additional
capacitor leads to a significant improvement. However, the
model must be improved for better accuracy, especially in the
centre of the disc where thermal conduction seems to be more
important on the experimental profile. A first and simple
control scheme only on the RMS currents, gave rather good
performance and future works will include decoupling effects
in the control loops and the control of the phase shifts
between the inductor currents.
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