
HAL Id: hal-01222021
https://hal.science/hal-01222021

Submitted on 29 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete Parameters in Petri Nets
Nicolas David, Claude Jard, Didier Lime, Olivier Henri Roux

To cite this version:
Nicolas David, Claude Jard, Didier Lime, Olivier Henri Roux. Discrete Parameters in Petri Nets.
Application and Theory of Petri Nets and Concurrency, 36th International Conference, PETRI NETS
2015, Jun 2015, Bruxelles, Belgium. pp.137-156, �10.1007/978-3-319-19488-2_7�. �hal-01222021�

https://hal.science/hal-01222021
https://hal.archives-ouvertes.fr

Discrete Parameters in Petri Nets∗

Nicolas David1, Claude Jard1, Didier Lime2, and Olivier H. Roux2

1 University of Nantes, LINA
nicolas.david1@univ-nantes.fr

claude.jard@univ-nantes.fr
2 École Centrale de Nantes, IRCCyN

didier.lime@ec-nantes.fr

olivier-h.roux@irccyn.ec-nantes.fr

Abstract. With the aim of significantly increasing the modeling capa-
bility of Petri nets, we suggest that models involve parameters to repre-
sent the weights of arcs, or the number of tokens in places. We consider
the property of coverability of markings. Two general questions arise:
“Is there a parameter value for which the property is satisfied?” and
“Does the property hold for all possible values of the parameters?”. We
show that these issues are undecidable in the general case. Therefore, we
also define subclasses of parameterised networks, depending on whether
the parameters are used on places, input or output arcs of transitions.
For some subclasses, we prove that certain problems become decidable,
making these subclasses more usable in practice.

Keywords: Petri net, Parameters, Coverability

1 Introduction

The introduction of parameters in models aims to improve genericity. It also
allows the designer to leave unspecified aspects, such as those related to the
modeling of the environment. This increase in modeling power usually results in
greater complexity in the analysis and verification of the model. Beyond verifi-
cation of properties, the existence of parameters opens the way to very relevant
issues in design, such as the computation of the parameters values ensuring
satisfaction of the expected properties.

We chose to explore the subject on concurrent models whose archetype is that
of Petri nets. We consider discrete parameterisation of markings (the number of
tokens in the places of the net) or weight of arcs connecting the input or output
places to transitions. We call these Petri nets parameterised nets or PPNs.

We consider the general properties of coverability and, to a lesser extent,
reachability (that are often the basis for the verification of more specific prop-
erties).

First issues are:

∗Work partially supported by ANR project PACS (ANR-14-CE28-0002) and Pays
de la Loire research project AFSEC.

2 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

– Is there a value of the parameters such that the property is satisfied?
– Is the property satisfied for all possible values of the parameters?

Given the modeling power offered by PPNs, we first study the decidability
of these issues. Since in the general case, they are undecidable, we then examine
decidable subclasses.

Related work. There is not much work on Petri nets with parameters. One ex-
ample is regular model checking [3] for algorithmic verification of several classes
of infinite-state systems whose configurations can be modeled as words over a
finite alphabet. The main idea is to use regular languages as the representa-
tion of sets of configurations, and finite-state transducers to describe transition
relations. This is only possible for particular examples including parameterised
systems consisting of an arbitrary number of homogeneous finite-state processes
connected in a regular topology, and systems that operate on linear data struc-
tures. Parameters are also introduced in models such as predicate Petri nets [8],
in the aim to have more concise models, in particular to take into account sym-
metries in the model [4]. Domains of values are generally finite. Parameterised
verification on timed systems has also been studied in several papers since its
introduction by Alur et al. in [1]. Parameterisation of time uses continuous pa-
rameters. In this paper, we focus on discrete parameters on untimed Petri nets.

The remainder of the paper is structured as follows: Section 2 re-visites the
semantics of Petri Nets and introduces discrete parameters in Petri Nets. Sec-
tion 3 presents the undecidability results. Section 4 introduces subclasses of our
parameterised models. Section 5 answers decidability results over those sub-
classes and underlines issues encountered with reachability. Section 6 concludes
and points to future work.

2 Definitions

Notations

N is the set of natural numbers. N∗ is the set of positive natural numbers and
Nω is the classic union N ∪ {ω} where for each n ∈ N, n + ω = ω, ω − n = ω,
n < ω and ω ≤ ω. Z is the set of integers. Let X be a finite set. 2X denotes
the powerset of X and |X| the size of X. Let V ⊆ N, a V-valuation for X is
a function from X to V . We therefore denote V Xthe set of V-valuations on X.
Given an alphabet Σ, we denote as Σε the union Σ ∪ {ε} where ε is the silent
action. Given a set X, let k ∈ Z and x ∈ X, we define a linear expression on X
by the following grammar: λ ::= k | k ∗ x | λ+ λ. Given a linear expression λ on
X and a N-valuation ν for X, ν(λ) is the integer obtained when replacing each
element x in X from λ, by the corresponding value ν(x).

2.1 Petri Nets and Marked Petri Nets

Definition 1 (Petri Net) A Petri Net is a 4-tuple N = (P, T, Pre, Post)
where P is a finite set of places, T is a finite set of transitions, Pre and

Discrete Parameters in Petri Nets 3

Post ∈ N|P |×|T | are the backward and forward incidence matrices, such that
Pre(p, t) = n with n > 0 when there is an arc from place p to transition t with
weight n and Post(p, t) = n with n > 0 when there is an arc from transition t
to place p with weight n.

Given a Petri Net N = (P, T, Pre, Post), we denote Pre(•, t) (also written
•t) as the vector (Pre(p1, t), P re(p2, t), ..., P re(p|P |, t)) i.e. the tth column of the
matrix Pre. The same notation is used for Post(•, t) (or t•).

Definition 2 (Marking) A marking of a Petri Net N = (P, T, Pre, Post) is a
vector m ∈ N|P |.

If m ∈ N|P | is a marking, m(pi) is the number of tokens in place pi. We can
define a partial order over markings.

Definition 3 (Partial Order) Let N be a Petri Net such that N = (P, T, Pre,
Post), let m and m′ be two markings of N . We define ≤ as a binary relation
such that ≤ is a subset of N|P | × N|P | defined by:

m ≤ m′ ⇔ ∀p ∈ P,m(p) ≤ m′(p) (1)

Definition 4 (Marked Petri Net) A marked Petri Net (PN) is a couple S =
(N ,m0) where N is a Petri Net and m0 is a marking of N called the initial
marking of the system.

An example of marked Petri Net is given in Figure 1.

p1

p2

p3

t2

2

t1

3

•(.) =

t1 t2 1 1
0 2
0 0

 p1
p2
p3

(.)• =

t1 t2 0 0
3 0
0 1

 p1
p2
p3

m0 =

 2
0
0



Fig. 1. A Marked Petri Net

2.2 Operational Semantics

Augmenting Petri Nets with markings leads to the notion of enabled-transitions
and firing of transitions. Given a marked Petri Net S, a transition t ∈ T is said
enabled by a marking m when m ≥ Pre(•, t).

4 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

Definition 5 (PN Semantics) The semantics of PN is a transition system
ST = (Q, q0,→) where, Q = N|P |, q0 = m0, →∈ Q× T ×Q such that,

m
ti→ m′ ⇔

{
m ≥ •ti
m′ = m− •ti + t•i

(2)

This relation holds for sequences of transitions:

– m
w→ m′ if w is the empty word and m = m′

– m
wt→ m′ if ∃m′′,m w→ m′′ ∧m′′ t→ m′ where w ∈ T ∗ and t ∈ T .

Definition 6 (Reachability set) Given a PN, S = (N ,m0), the reachability
set of S, RS(S) is the set of all reachable markings of S i.e. RS(S) = {m | ∃w ∈
T ∗,m0

w→ m}

2.3 Parametric Petri Nets

We would like to use less rigid modeling in order to model systems where some
data are not known a priori. Therefore, in this subsection, we extend the previous
definitions by adding a set of parameters Par. Working with Petri nets and
discrete parameters leads to consider two main situations: the first one involves
parameters on markings, by replacing the number of tokens in some places by
parameters, the second one involves parameters as weights. The same parameter
can be used in both situations. Using parameters on markings can be easily
understood as modeling an unfixed amount of resources that one may want to
optimise. Let us consider a concrete example to illustrate parameterised weights.
In a production line, we consider two operations: first, to supply raw material,
we need to unpack some boxes containing an amount λ1 of resources, as depicted
in Figure 2, and at the end, we need to pack end products in boxes of capacity
λ2, as in Figure 3. This is part of a whole packaging process that one may want
to optimise. The level of abstraction induced by parameters permits to leave
those values unspecified in order to perform an early analysis.

p1 p2t
λ1

Fig. 2. Unpacking raw material

p1 p2t

λ2

Fig. 3. Packing end products

Definition 7 (Parametric Petri Net) A parametric Petri Net, NP is a 5-
tuple NP = (P, T, Pre, Post, Par) such that P is a finite set of places of NP,
T is a finite set of transitions of NP, Par is a finite set of parameters of NP,
Pre and Post ∈ (N ∪ Par)|P |×|T |

Discrete Parameters in Petri Nets 5

p1

p2

p3

t2

λ2

λ3
t1

λ1

•(.) =

t1 t2 1 1
0 λ2

0 0

 p1
p2
p3

(.)• =

t1 t2 0 0
λ1 0
0 λ3

 p1
p2
p3

Fig. 4. A Parametric Petri Net

Intuitively, a parametric Petri net is a Petri net where the number of tokens
involved in a transition is parameterised as depicted in Figure 4.

Definition 8 (Parametric marking) Given a parametric Petri Net NP =
(P, T, Pre, Post, Par), a parametric marking is a |P |-dimensional vector µ of
linear expressions on N ∪ Par.

Modeling with parameters means using parameters over weights and mark-
ings rather than setting numeric values everywhere. Therefore we may also use
a parametric initial marking.

Definition 9 (parametric PN or PPN) A parametric marked Petri Net (PPN)
is a couple, SP = (NP, µ0) where NP is a Parametric Petri Net and µ0 is the
parametric initial marking of NP.

PPNs can be used to design systems where some parts have not been analysed
or where we need to keep flexibility. We now need to define a way to instantiate
classic Petri nets from our parametric marked Petri Nets, in order to define a
semantics.

Definition 10 (Parametric Semantics) Let SP = (P, T, Pre, Post, Par, µ0)
be a PPN, we consider the set of valuations NPar. Let ν ∈ NPar, we define ν(SP)
as the PN obtained from SP by replacing each parameter λ ∈ Par by ν(λ), its
valuation by ν, i.e. ν(SP) = (P, T, Pre′, Post′,m0) where ∀i ∈ [[1, |P |]],∀j ∈
[[1, |T |]],

Pre′(i, j) =

{
Pre(i, j) if Pre(i, j) ∈ N

ν(Pre(i, j)) if Pre(i, j) ∈ Par (3)

Post′(i, j) =

{
Post(i, j) if Post(i, j) ∈ N

ν(Post(i, j)) if Post(i, j) ∈ Par (4)

m0(i) =

{
µ0(i) if µ0(i) ∈ N

ν(µ0(i)) if µ0(i) is a linear expression on Par
(5)

A marked Petri Net is an instance of a parametric marked Petri net.

6 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

2.4 Parametric problems

We can define several interesting parametric problems on PPNs. In fact, the
behaviour of a PPN is described by the behaviours of all the PNs obtained by
considering all possible valuations of the parameters. It seems therefore obvious
to ask, in a first time, if there exists valuations for the parameters such that
a property holds for the corresponding instance and its dual, i.e., if every in-
stance of the parametric marked Petri Net satisfies the property. Given a class
of problem P (coverability, reachability,...), SP a PPN and φ is an instance of
P, parameterised problems are written as follows:

Definition 11 (P-Existence problem) (E -P): Is there a valuation ν ∈ NPar
s.t. ν(SP) satisfies the property φ ?

Definition 12 (P-Universality problem) (U -P): Does ν(SP) satisfies the
property φ for each ν ∈ NPar ?

This paper focuses on reachability and coverability issues.

Definition 13 (Reachability) Let S = (N ,m0) = (P, T, Pre, Post,m0) and
m a marking of S, S reaches m iff m ∈ RS(S).

Definition 14 (Coverability) Let S = (N ,m0) = (P, T, Pre, Post,m0) and
m a marking of S, S covers m if there exists a reachable marking m′ of S such
that m′ is greater or equal to m i.e.

∃m′ ∈ RS(S)s.t. ∀p ∈ P,m′(p) ≥ m(p) (6)

We recall that reachability [9] and coverability [7] are decidable on classic
Petri nets. In the context of parametric Petri nets, coverability leads to two
main problems presented previously, that is to say: the existence problem, writ-
ten (E -cov) and the universal problem, written (U -cov). For instance, (U -cov)
asks: ”Does each valuation of the parameters implies that the valuation of the
parametric P/T net system covers m ?” i.e.

m is U -coverable in SP ⇔
{
∀ν ∈ NPar, ∃m′ ∈ RS(ν(SP))

s.t. m′ ≥ m (7)

We can similarly define E -reach and U -reach for parameterised reachability.

3 Undecidability Results for the General Case

In their paper suming-up results of decidability for reset-nets and corresponding
subclasses, Dufourd, Finkel and Schnoebelen noticed that ”Reachability is known
to become undecidable as soon as the power of Petri nets is increased” [5], for
instance, adding reset arcs [2] or inhibitor arcs [6] makes reachability undecid-
able. In this section, we focus on showing that adding parameters to PN leads to
undecidability. More specifically, (U -cov) and (E -cov) are undecidable on PPNs.

Discrete Parameters in Petri Nets 7

As we will proceed by reduction to the halting problem (and counter bound-
edness problem) for counter machines to answer our problem, we first recall some
definitions. A 2-Counters Machine has a pointer and a tape which contains finite
number of instructions in three types: increment, decrement and zero-test. The
pointer reads the tape to execute increment or decrement instructions sequen-
tially. When the pointer reaches a zero-test instruction, then it will jump to a
certain position on the tape and continue. Formally, it consists of two counters
c1, c2, a set of states P = {p0, ...pm}, a terminal state labelled halt and a finite
list of instructions l1, ..., ls among the following list:

– increment: increase ck by one and go to next state, where k ∈ {1, 2}
– decrement: decrease ck by one and go to next state, where k ∈ {1, 2}
– zero-test: if ck = 0 go to state pj else go to state pl, where pj , pl ∈ P ∪{halt}

and k ∈ {1, 2}

We can assume without restriction that the counters are non negative integers
i.e. that the machine is well-formed in the sense that a decrement instruction
is guarded by a zero-test and that the counters are initialised to zero. It is
well known that the halting problem (whether state halt is reachable) and the
counters boundedness problem (whether the counters values stay in a finite set)
are both undecidable as proved by Minksy [10].

Theorem 1 (Undecidability of E -cov on PPN) The E -coverability problem
for PPN is undecidable 1.

Proof. We proceed by reduction from a 2-counters machine. Given a Minksy
2-counters machineM, we construct a PPN that simulates it, SPM, as follows.

– Each counter ci is modeled by two places Ci and ¬Ci. The value of the
counter is encoded by the number of tokens in Ci.

– For each state p of P ∪ {halt} a 1-bounded place p is created in the net.
– The instructions of the previous definition are modeled by the transitions

and arcs depicted in Figure 5.
– A unique additional place π with an additional transition θ serves to initialise

the net. The initial marking is composed of one token in π and one token in
the place p corresponding to the initial state p of M.

Initially, only θ can be fired, which leads to the initial configuration of the
machine (state p0 and counters values null), with one token in p0, no tokens in C1

and C2 and a parameterised number of tokens in ¬Ci. The value of this parameter
will therefore represent the upper bound of the counter over the instructions
sequence. We have to verify that each time m(Ci) +m(¬Ci) = λ. First we show
that SPM simulates M by verifying the behaviour of each instruction:

1We can be more accurate by specifying that we need at least 1 parameter used on
6 distinct arcs. The question remains opened for fewer parameterised arcs

8 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

...

C1

...

¬C1

π

pi

pj

error

λ

C1 + +

θ

λ

...

C1

...

¬C1

π

pi pj

C1−−

θ

λ

...

C1

...

¬C1

π

pi pj

pk

0

λ

λ
¬0

θ

λ

incrementation
of a counter

decrementation
of a counter

zero test of
a counter

Fig. 5. Modeling a counter with PPN

– Increment instruction: As Ci models the counter, the transition Ci + +
adds one token in Ci, removes one token from ¬Ci and changes the current
state by removing the token from pi and adding a token in pj . The error
states is marked iff the incrementation instruction is performed whereas we
have already reached the upper bound over the execution. This state will be
useful for the second proof.

– Decrement instruction: As Ci models the counter, the transition Ci - -
removes one token from Ci, adds one token in ¬Ci and changes the current
state by removing the token from pi and adding a token in pj . We recall the
machine is well-formed.

– Zero Test: As Ci models the counter, and as we know the sum of tokens
available in Ci and ¬Ci, there is no token in Ci iff there are λ tokens in
¬Ci. According to this test the current state is updated by removing the
token from pi and adding a token in pj or pk. The value of the counter is
left unchanged.

E Coverability is undecidable :
We will show that given a 2-counters machine M, (a) M halts (it reaches the
halt state) iff (b) there exists a valuation ν such that ν(SPM) covers the corre-
sponding phalt place.

– (a) ⇒ (b) First, let us assume that M halts. As M halts, the execution
of the machine is finite. On this execution the two counters are bounded
by clim1 and clim2. Let clim be the maximum of those two values. Let ν
be the valuation such that ν(λ) = clim. By the previous explanation, SPM
simulates M. Moreover, the valuation ν ensures that SPM does not reach

Discrete Parameters in Petri Nets 9

a deadlock state where perror is marked. Therefore, when M reaches halt,
SPM will add 1 token in phalt. So, a marking where there is one token in
phalt is coverable.

– (b) ⇒ (a) We proceed by contrapositive. Let us assume that M does not
halt. We want to show that there is no valuation ν such that ν(SPM) adds
a token in phalt. Let us consider the two following distinct alternatives:
• If the counters are bounded along the execution, either the value of λ is

less than the maximum value of the counters and error will be reached
during some increment resulting in a deadlock, or the value of λ is big
enough so that error is never marked, but, in this case, then, as the
machine does not halt, it means that it does not reach halt. So there
is no instruction that leads to halt in M. Therefore, according to the
previous explanation, there is no transition that adds a token in phalt.

• If at least one counter is not bounded, then for any given valuation ν,
we will reach an instruction inc(ci), where i is 1 or 2, and ci = ν(λ).
Therefore, a token will be added in perror leading to a deadlock. So SPM
will not cover a terminal state.

The undecidability of the halting problem on the 2-counters machine gives the
undecidability of the E -coverability problem.

Theorem 2 (Undecidability of U -cov on PPN) The U -coverability prob-
lem for PPN is undecidable.

Proof. U Coverability is undecidable:

We proceed by reduction from a 2-counters machine. We use the same con-
struction as in the previous proof. We denotemerror the marking weremerror(p) =
0 for each p ∈ P except merror(perror) = 1. We will show that given a 2-counter
machine M, (a) the counters are unbounded along the instructions sequence of
M (counters boundedness problem) iff (b) for each valuation ν, ν(SPM) covers
the merror.

– (a) ⇒ (b) First, let us assume that on a given instruction sequence, one
counter of M is unbounded. By the second alternative considered in the
proof for E -cov we proved that for any valuation, a token will be added in
perror.

– (b) ⇒ (a) Reciprocally, by contrapositive, we want to show that if the
counters are bounded, there exists a valuation ν such that ν(SPM) does not
cover merror. This comes directly from the previous proof. As the counters
are bounded along the instructions sequence, we consider a valuation ν such
that ν(λ) = clim where clim is an upper bound of the values of the counters.
By construction, there is no possibilities to add a token in perror, otherwise,
it means that SPM took an incrementation transition meaning that clim is
not an upper bound.

The undecidability of the counters boundedness problem on the 2-counters ma-
chine gives the undecidability of the U -coverability problem.

10 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

4 Subclasses of Parametric Petri Nets

4.1 Introducing Subclasses

On the one hand, our parametric model increases the modeling power of Petri
nets but on the other hand, using parameters leads to complex models where
properties become undecidable. In order to obtain parameterised models that
are easier to analyse and therefore can be used in practice, we should reduce the
power of modeling. We will therefore introduce some subclasses of the PPN in
which we restrict the use of parameters to only markings, which could be used
to model arbitrary number of identical processes, to only output arcs, which,
we will see, is a bit more general or to only input arcs, which could model
synchronizations among arbitrary numbers of identical process, and finally some
combinations of those.

The following subclasses have therefore a dual interest. From a modeling
point of view, restrict the use of parameters to tokens, output or input can be
used to model concrete examples such as respectively processes or synchroni-
sation of a given number of processes. From a theoretical point of view, it is
interesting to introduce those subclasses of PPN in a concern of completeness of
the study.

Definition 15 (P-parametric PN) A P-parametric marked Petri Net (P-PPN),
SP = (NP, µ0) where NP is a Parametric Petri Net such that Pre and Post ∈
N|P |×|T | and µ0 is a parametric marking of NP.

A P-PPN is a classic Petri net with a parametric initial marking.

Definition 16 (T-parametric PN) A T-parametric Petri Net (T-PPN),
SP = (NP,m0) where NP is a Parametric Petri Net and m0 is a marking of
NP

Intuitively, using parameters on outputs means we will create parametric mark-
ings. To complete this study, we can extract a subclass in which parameters
involved in the Pre matrix and parameters involved in the Post matrix corre-
spond to disjoints subsets of parameters. i.e. par(Pre) ∩ par(Post) = ∅ where
par is the application that maps to the set of parameters involved in a ma-
trix (or a vector). We call this subclass distinctT-PPN 2. We can even refine
the subclass of distinctT-PPN by considering the two distinct classes of Pre-T-
parametric PPN (preT-PPN), where Post ∈ N|P | and Post-T-parametric PPN
(postT-PPN), where Pre ∈ N|P |.

As we introduced several subclasses, it is interesting to study whether one of
this subclass is more expressive than the other. We will show that P-PPN and
postT-PPN are related. Therefore, we introduce here some useful definitions.
Our translations add silent actions that detail the beahviour of the Petri nets.
Therefore, we introduce a labelling function Λ from the set of transitions T to

2Studying the undecidability proof, it is relevant to think that using different pa-
rameters for the input and the output would reduce the modeling power.

Discrete Parameters in Petri Nets 11

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

Fig. 6. Subclasses of PPN

Σε, Λ : T → Σε, such that Σε ⊆ T ∪ {ε} and Λ(ti) equals either ti or ε. We

extend the previous definitions by using m
t→ m′ or m

Λ(t)→ m′ depending on the

context3. For instance, m
ε∗→ m′ means that m leads to m′ by using zero or more

internal ε-transitions. Given two markings m and m′ we write:

m
α→ε m

′ ⇔ m
ε∗→ α→ ε∗→ m′ with α 6= ε (8)

Definition 17 (Weak-Simulation) Given two labelled marked Petri nets, S1 =
(P1, T1, F1, Λ1, Σε,m

0
1) and S2 = (P2, T2, F2, Λ2, Σε,m

0
2), a binary relation R ⊆

N|P1| × N|P2| is a simulation if

∀(m1,m2) ∈ R ⇔
{
∀α ∈ Σ and m′1 s.t. m1

α→ε m
′
1,

∃m′2s.t. m2
α→ε m

′
2 and (m′1,m

′
2) ∈ R

(9)

If we can find a weak-simulationR ⊆ N|P1|×N|P2| such that (m0
1,m

0
2) ∈ R we say

that S2 weakly simulates S1, which means intuitively that S2 can match all the
moves of S1. Moreover if we can find another weak-simulation R′ ⊆ N|P1|×N|P2|

such that S1 weakly simulates S2, we say that S1 and S2 are weakly co-similar.

Definition 18 (Weak-Bisimulation) Given two labelled PN, S1 = (P1, T1, F1,
Λ1, Σε,m

0
1) and S2 = (P2, T2, F2, Λ2, Σε,m

0
2), a binary relation R ⊆ N|P1|×N|P2|

3Indeed, if we consider the alphabet A equals to the set of the transition T of the
Petri Net, and L as the identity function, the two definitions are equivalent. Using
labelling is more general and allows to introduce non deterministic behaviours.

12 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

is a weak-bisimulation 4 if

∀(m1,m2) ∈ R ⇔


− ∀α ∈ Σ and m′1 s.t. m1

α→ε m
′
1

there is m′2s.t. m2
α→ε m

′
2 and (m′1,m

′
2) ∈ R

− ∀α ∈ Σ and m′2 s.t. m2
α→ε m

′
2

there is m′1s.t. m1
α→ε m

′
1 and (m′1,m

′
2) ∈ R

(10)

Two labelled Petri Nets S1 and S2 are weakly bisimilar if there is a weak
bisimulation relating their initial markings. In the sequel, every transition called
θ is mapped to ε by Λ whereas for a transition called t, Λ(t) = t. If the original
PPN, SP = (P, T, Pre, Post, Par, Λ, µ0), has a set of transition T and T ′ denotes
the set of transition of the constructed PPN, SP ′ = (P ′, T ′, P re′, Post′, Par, Λ′, µ′0)
then T ′ = T ∪Θ with T ∩Θ = ∅. For each t ∈ T , Λ(t) = t and for each θ in Θ,
Λ(θ) = ε.

4.2 Translating P-PPN to postT-PPN

In order to simulate the behaviour of parameterised places, we translate those
places in a parameterised initialisation process that needs to be fired before
firing any other transitions in the net. The idea relies on using a new place π
and a new transition θ enabled by this place, such that θ• initializes a P-PPN, as
showed in Figure 7. We define the initial marking m0 = (0, ..., 0, 1) i.e. ∀p ∈ P ,
m0(p) = 0 and m0(π) = 1. We will show that SP ′ and SP are weakly-bisimilar
by showing that each behaviour of SP can be done in SP ′ if we begin by firing
θ and reciprocally.

p1

λ1

p2

λ2

p3

p4

t

p1 p2

π

p3

p4

t

θ

1 λ2

λ1

replacement of the
P parameters by
postT parameters

Fig. 7. From P-PPN to postT-PPN

4There exists several definitions of bisimulation, for instance preserving deadlocks
or epsilon-branching, but the one we use is sufficient for our purpose.

Discrete Parameters in Petri Nets 13

Lemma 3 ∀ν ∈ NPar, ν(SP) and ν(SP ′) are weakly bisimilar.

Note that each path in SP = (P, T, Pre, Post, Par, Λ, µ0) can be done in
SP ′ = (P ′, T ′, P re′, Post′, Par, Λ′,m′0) by adding θ at the beginning. And re-
ciprocally, each path in SP ′ begins by θ so is written θ.w where w is a path in
SP.

Proof. Let ν ∈ NPar a valuation of the parameters. We want to show that ν(SP)
and ν(SP ′) are weakly bisimilar. Let ν(µ0) be the parametric initial marking
of ν(SP) and ν(m′0) = m′0 the initial marking of ν(SP ′). The only transition

firable from m′0 is θ and m′0
θ→ ν(µ0) as shown in Figure 7. From ν(µ0), SP and

SP ′ are isomorphic. So ν(SP1) and ν(SP2) are weakly-bisimilar.

Those results underline that using parameters on outputs is more powerfull
than using parameters on markings. We can conclude that T-PPN are more
expressive than PPN.

4.3 Translating postT-PPN to P-PPN

We will show that from a postT-PPN, SP1 = (P1, T1, P re1, Post1, Par1, Λ1,m
0
1)

we can construct a P-PPN, SP2 = (P2, T2, P re2, Post2, Par2, Λ2, µ
0
2) that weakly-

simulates the behaviours of the postT-PPN. Reciprocally, the postT-PPN also
weakly-simulates the behaviours of the P-PPN built.

For each transition t and place p such that the arc (t, p) is weighted by a
parameter, we construct the net depicted in Figure 8 which replace this arc 5.
Therefore, T1 ⊆ T2. As previously, we introduce two labelling functions Λ1 and
Λ2 from T1 (resp. T2) to Tε such that, for each t ∈ T1, Λ1(t) = Λ2(t) = t and
Λ2(t) = ε otherwise (i.e. for each t ∈ T2\T1).

Lemma 4 ∀ν ∈ NPar, ν(SP1) and ν(SP2) are weakly cosimilar.

Proof. We will prove the 2 weak-simulations.

– ∀ν ∈ NPar, ν(SP2) simulates ν(SP1). Let us consider ν ∈ NPar, ν(SP1)
has the following behaviour: each time t is fired, ν(λ) tokens are created
in p. In SP2, it is possible to generates ν(λ) tokens in p after firing the

sequence t θ
ν(λ)
t,p,1 θt θ

ν(λ)
t,p,2, labeled tε∗. Moreover, this sequence resets the

sub-net constructed for the weak-simulation. As the other transitions of the
network are not affected, monotony gives directly the weak-simulation.

5Notice that if several labeled arcs come from the same transition, some places and
transitions of the Figure 8 should be duplicated according to indices

14 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

p

t

λ

πt,1

p

πt,p,2

λ

πt,p,1

πt,2

t

θt

θt,p,2θt,p,1

replacement of the
postT parameters
by P parameters

Fig. 8. From postT-PPN to P-PPN

– ∀ν ∈ NPar, ν(SP1) simulates ν(SP2). Reciprocally, a marking with ν(λ)
tokens in p allows to simulate the behaviours of every marking such that
m(p) ≤ ν(λ) according to monotony therefore, the reachable markings in-
duced by creating less than ν(λ) tokens in SP2 are simulated by the one with
ν(λ) tokens, and therefore by SP1. As the other transitions of the network
are not affected, monotony gives directly the weak-simulation.

Therefore, SP1 and SP2 are weakly co-similar.

Remark 1. This is not a weak bisimulation. Indeed, if SP2 adds 3 tokens in p
(leading to a marking m2) whereas SP1 adds ν(λ) = 4 tokens in p (leading to
a marking m1). Then any transitions needing more than 3 tokens could only be
fired from m1 in SP1 only. Here the two simulations relations are not reciprocal:
m1 would simulates m2 but m2 would not.

5 Decidability Results

We will now consider the parameterised properties defined in Section 2 and the
different subclasses of parameterised models of Section 4. Table 1 sums up the
results that we present in this section.

U -problem E -problem

Reachability Coverability Reachability Coverability

preT-PPN ? ? ? D
postT-PPN ? D ? D

PPN U U U U
distinctT-PPN ? ? ? D

P-PPN ? D D D

Table 1. Decidability results for parametric coverability and reachability

Discrete Parameters in Petri Nets 15

5.1 Study of Parameterised Coverability

The easiest proofs rely on monotony. Indeed, some instances simulate other
instances. We recall that the zero valuation (written 0) is the valuation that
maps every parameter to zero.

Lemma 5 Decidability of U -coverability on postT-PPN (resp. P-PPN) can be
reduced to a test with the zero valuation.

Proof. For postT-PPN and P-PPN, the zero valuation is the one allowing the
lowest amount of behaviours for coverability i.e. it is the most restrictive valua-
tion for coverability. Indeed, considering a marking m that we try to cover, m is
U -coverable if and only if there is a firing sequence w such that m0

w→ m1 ≥ m
in the 0-instanced postT-PPN (or P-PPN). Formally, given a postT-PPN or a
P-PPN SP and a marking m, we have:

∃ν s.t. m is not coverable in ν(SP) iff m is not coverable in 0(SP)

Indeed, for any valuation ν we can fire w in the ν-instanced PPN, leading to a
marking m2 ≥ m1 by monotony. Moreover, on the instance of a PPN (i.e. on
a PN), the coverability is known decidable, so we can answer to the problem
on the zero instanced postT-PPN (or P-PPN). If the answer is no, then we
have found a counter example. Else, monotony directly implies that using a
greater valuation ν will provide at least behaviours covering the current ones.
The winning behaviour that allowed to answer yes for the zero-instance will still
works on this ν-instance. So every instance will satisfy the coverability.

Therefore we can claim that U -cov is decidable on postT-PPN and P-PPN.
Let us consider E -cov for the same subclasses.

Theorem 6 E -cov is decidable on P-PPN.

Proof. Decidability of E -cov on P-PPN:
We consider a P-PPN, SP1. We will now build a PN S2 with token-canons that
will supply the parameterised places of SP1 as depicted in Figure 9. Each token-
canon consists in two places πp, π

′
p and two transitions θp, θ

′
p. θp supplies p of

S2. Moreover, each transition of SP1 is added as an input and an output of π′p,
meaning that the net is blocked as long as every θ′p has not been fired. This is
repeated for each place initially marked by a parameter. We initialize S2 with 1

token in each πp. So for each valuation ν of SP1, firing the sequence θ
ν(λp)
p θ′p

for each parameterised place p leads to a marking m2 equals to the valuation of
the initial marking of SP1. Moreover, the θ-transitions added have been fired,
so every π′p is marked. The two nets have now the same behaviour. This shows
that S2 simulates any valuation of SP1. Therefore, the existence of a valuation
such that a given marking is covered can be reduced to the coverability of the
same marking (completed with 0 for each πp and 1 for each π′p added) which is
known decidable as a classic coverability problem on an unbounded Petri net.

16 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

λpp p

πp

π′p

θp

θ′p

replacement of the
P parameters

by token canons

Fig. 9. From PPN to PN

Corollary 7 E -cov is decidable on postT-PPN.

Proof. Decidability of E -cov on postT-PPN:
We proved in previous section that postT-PPN and P-PPN are weakly-cosimilar.
Therefore, given a postT-PPN we can built a P-PPN which is weakly-co-similar.
Moreover, as coverability can be reduced to firing transition (by adding an ob-
server transition), weak-simulation holds coverability. Theorem 6 gives us the
decidability.

Theorem 8 E -cov is decidable for preT-PPN.

Proof. E -cov for the preT-PPN is decidable:
Let us consider a preT-PPN and a marking m that we try to cover. For an input
transition with a weight of zero, we do not require the input place to be marked.
Therefore, in terms of input parameters, by monotony, the zero valuation is the
most permissive one for firing. Thus, there is at some valuation a firing sequence
w such that m0

w→ m1 ≥ m if and only if we can fire w in the 0-instanced one,
leading to a marking m2 ≥ m1. Formally, given a preT-PPN SP, we have:

m0
w→ m1 ≥ m in ν(SP) iff m0

w→ m2 ≥ m in 0(SP) with m2 ≥ m1

Informally, it means that the zero instance of the preT-PPN has the greatest
amount of behaviours (in terms of coverability). Therefore it is the one which is
necessary and sufficient to satisfy the E -cov of m, meaning that if it does not
satisfy the property, monotony implies that any instance of the preT-PPN will
not satisfy either. If the 0-instanced net covers m, we have a witness for the
E -cov.

Corollary 9 E -cov is decidable for distinctT-PPN.

Proof. E -cov for the distinctT-PPN is decidable:
As we can create a partition over Par between ParPre and ParPost, respectively

Discrete Parameters in Petri Nets 17

sets of parameters involved on inputs and outputs which are disjoint. We can
consider the partial valuation 0|ParPre

, which maps every parameter of ParPre
to 0. We therefore get a postT-PPN on which the problem is decidable. More-
over, the post-PPN built is the one with the greatest amount of behaviours for
coverability as explained previously. Considering that, if we cannot find any in-
stance of this postT-PPN satisfying the property, we cannot find any instance
of this distinctT-PPN satisfying it either.

5.2 Study of Parameterised Reachability

In classic Petri nets decidability of reachability certainly implies decidability of
coverability. Indeed, given a marked Petri Net and a coverability problem, we
can construct another marked Petri Net over which the previous coverability
problem is equivalent to a reachability problem. Actually, with notations of Fig-

p pg

tgoal

m

tempty,p

Fig. 10. Reducing Coverability to Reachability

ure 10 covering a marking m is equivalent to reach the marking with only one
token in place pg in the net augmented with this new place pg, a new transi-
tion tgoal such that •tgoal = m, with Post(pg, tgoal) = 1 and, for each place
p, a transition tempty,p such that: if p is not equal to pg, Pre(p, tempty,p) = 1,
Pre(pg, tempty,p) = 1 and Post(pg, tempty,p) = 1. It is clear that the same can be
done for PPN , which implies that decidability of E -reachability implies decid-
ability of E -coverability and decidability of U -reachability implies decidability of
U -coverability. Section 3 provides therefore the undecidability of (E -reach) and
(U -reach) in the general case of PPN .

Theorem 10 E -reach is decidable on P-PPN.

Proof. We can trivially adapt the conclusion of the proof of Theorem 6. We keep
the same construction: the existence of a valuation such that a given marking is
reached can be reduced to the reachability of the same marking (completed with
0 for each πp and 1 for each π′p added) which is known decidable as a classic
reachability problem on an unbounded Petri net.

Nevertheless, for the other subclasses, the decidability of reachability is more
complex. Intuitively, increasing the valuation used to instanciate a preT-PPN

18 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

(resp. a postT-PPN) leads to disable (resp. enable) transitions, i.e. the cover-
ability of a marking, but this is not sufifcient to deduce the exact number of
tokens involved, i.e. reachability.

p1

p2

p3

t

0

0

(a) 0-instance

p1

p2

p3

t

1

1

(b) 1-instance

p1

p2

p3

t

2

1

(c) ν-instance

Fig. 11. Several instances of a preT-PPN

Figure 11 presents a preT-PPN. It is obvious that using the 0-valuation
leads to enable the firing of t in any case, so it allows to cover any amount of
tokens in p2. In Figure 11(a), the coverability set is CS0 = {m|m ≤ (2, 1, ω)}.
On the other hand, increasing the valuation leads to potentially disable t. We
will therefore reduce the coverability set as we strengthen the pre-condition to
fire t: in Figure 11(b), the coverability set is CS1 = {m|m ≤ (2, 1, 0) ∨ m ≤
(1, 0, 1)} ⊆ CS0, and in Figure 11(c), we have CS2 = {m|m ≤ (2, 1, 0) ∨m ≤
(0, 0, 1)} ⊆ CS1. Nevertheless, this strengthening of the pre-condition, does not
imply general consequences in terms of reachability sets. Indeed, in Figure 11(a),
the reachability set is {(2, 1, n)|n ∈ N}, whereas in Figure 11(b) we can reach
{(2, 1, 0), (1, 0, 1)} and in Figure 11(c), we can reach {(2, 1, 0), (0, 0, 1)}.

p1 p2t
0

(a) 0-instance

p1 p2t
1

(b) 1-instance

Fig. 12. Several instances of a postT-PPN

Equivalent observations rise from the study of Figure 12. When increasing the
valuation, we may fire at least the same transitions, therefore, the coverability
set is increasing: Figure 12(a) can cover any markings lower or equal to (2, 0) and
can reach the set {(2, 0), (1, 0), (0, 0)} whereas Figure 12(b) can cover markings
lower or equal to (2, 0),(1, 1) or (0, 2) but can reach the set {(2, 0)(1, 1)(0, 2)}.

Discrete Parameters in Petri Nets 19

6 Conclusion

6.1 Main results

In this paper, we have introduced the use of discrete parameters and suggested
parametric versions of the well known reachability and coverability problems.
The study of the decidability of those problems leads to the results summed
up in Figure 13 for coverability (Classes inside a dashed outline are decidable
for the two corresponding parametric coverability problems). We recall that the

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PNE -Cov

U -Cov

Fig. 13. What is decidable among the subclasses ? (for coverability)

other results are presented in Tab 1.

6.2 Future work

If we have strong intuitions for several empty cases such as decidability of U -
Coverability on preT-PPN and distinctT-PPN which would join the intuition
that using the same parameters on inputs and outputs considerably increases
the power of modeling of classic Petri nets, a deeper study should be carried
to answer the decidability of Parametric-Reachability for instance. Being able
to treat these parameterised models constitutes a scientific breakthrough in two
ways:

– It significantly increases the level of abstraction in models. We will therefore
be able to handle a much larger and therefore more realistic class of models.

– The existence of parameters can also address more relevant and realistic
verification issues. Instead of just providing a binary response on the satis-
faction or not of an expected property, we can aim tosynthetise constraints

20 Nicolas David, Claude Jard, Didier Lime, and Olivier H. Roux

on the parameters ensuring that if these constraints are satisfied, the prop-
erty is satisfied. Such conditions for the proper functioning of the system are
essential information for the designer.

Acknowledgement

We wish to thank the anonymous reviewers, who helped us to improve the paper
by their suggestions.

References

1. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, pages 592–601, New York, NY, USA, 1993. ACM.

2. Toshiro Araki and Tadao Kasami. Some decision problems related to the reacha-
bility problem for Petri nets. Theoretical Computer Science, 3(1):85–104, October
1976.

3. Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular
model checking. In CAV, 2000.

4. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A symbolic reachability
graph for coloured petri nets. Theor. Comput. Sci., 176(1-2):39–65, April 1997.

5. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Au-
tomata, Languages and Programming, volume 1443 of Lecture Notes in Computer
Science, pages 103–115. Springer Berlin Heidelberg, 1998.

6. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in
Petri nets. Theoretical Computer Science 4, pages 277–299, 1977.

7. Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147 – 195, 1969.

8. Markus Lindqvist. Parameterized reachability trees for predicate/transition nets.
In Grzegorz Rozenberg, editor, Advances in Petri Nets 1993, volume 674 of Lecture
Notes in Computer Science, pages 301–324. Springer Berlin Heidelberg, 1993.

9. Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC ’81, pages 238–246, New York, NY, USA, 1981. ACM.

10. Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

