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We study existence and uniqueness of the invariant measure for a stochastic process with degenerate diffusion, whose infinitesimal generator is a linear subelliptic operator in the whole space R N with coefficients that may be unbounded. Such a measure together with a Liouville-type theorem will play a crucial role in two applications: the ergodic problem studied through stationary problems with vanishing discount and the long time behavior of the solution to a parabolic Cauchy problem. In both cases, the constants will be characterized in terms of the invariant measure.

Introduction

This paper is devoted to study with pde's methods, the existence and uniqueness of the invariant measure of stochastic processes with degenerate diffusion, whose infinitesimal generators are linear subelliptic operators in the whole space R N with coefficients that may be unbounded. The invariant measures play a crucial role in ergodicity, homogenization and large time behaviour of the value function associated to the process. These methods, based on optimal control theory and pde's arguments, were introduced in the 80's by Bensoussan and developed until nowadays (see the monograph [START_REF] Bensoussan | Perturbation methods in optimal control[END_REF] by Bensoussan and references therein).

We shall first tackle the case of the Heisenberg group as model problem; after we shall extend our techniques to other subelliptic operators. In the Heisenberg case, we consider the stochastic dynamics (1.1) dX t = b(X t )dt + √ 2σ(X t )dW t for t ∈ (0, +∞),

X 0 = x 0 ∈ R 3
where, if x = (x 1 , x 2 , x 3 ) ∈ R 3 , the matrix σ(x) has the form

(1.2) σ(x) =   1 0 0 1 2x 2 -2x 1  
(in other words, the columns of σ are vectors generating the Heisenberg group) while W t is a 3-dimensional Brownian motion.

Our principal aim is to prove, under suitable assumptions on the drift b, the existence and uniqueness of the invariant measure m associated to the process (1.1). Let us recall from [START_REF] Bensoussan | Perturbation methods in optimal control[END_REF] that a probability measure m on R 3 is an invariant measure for process (1.1) if, for each u 0 ∈ L ∞ (R 3 ), it satisfies 

(1.3) R 3 u(x, t)m(x) dx =
L * m = - i,j ∂ ij ((σσ T ) ij m) + i ∂ i (b i m).
In the framework of locally strongly elliptic operators, Has'minskiǐ [START_REF]Has'minskiȋ Stochastic stability of differential equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis[END_REF]Sect. IV.4] (see also [START_REF] Lorenzi | Analytical methods for Markov semigroups[END_REF]Sect.8.2]) established the existence of an invariant measure provided that there exists a bounded set U with smooth boundary such that (1.5) for any x 0 ∈ R N \ U , the mean time τ at which the path (1.1) issuing from x 0 reaches U is finite and E x τ is locally finite.

In our case this result does not apply because the matrix A := σσ T with σ given by (1.2) is

(1.6) A(x) =   1 0 2x 2 0 1 -2x 1 2x 2 -2x 1 4(x 2 1 + x 2 2 )  
and it is only positive semidefinite.

It is worth noticing (see [START_REF] Bardi | Convergence by viscosity methods in multiscale financial models with stochastic volatility[END_REF][START_REF] Cirant | On the solvability of some ergodic control problems[END_REF][START_REF] Lions | Ergodicity of diffusion processes[END_REF]) that a sufficient condition for property (1.5) is the existence of a Lyapunov-like function w which satisfies, for some positive constants k and R 0

(1.7) Lw ≥ k for |x| ≥ R 0 and w(x) → +∞ as |x| → +∞.

As one can easily check the presence of the first order term is somehow 'crucial' for the existence of such a function. We will prove the existence of such Lyapunov function under suitable assumptions on the drift b that include also the Ornstein-Uhlenbeck case (see [START_REF] Lorenzi | Analytical methods for Markov semigroups[END_REF] and Remark 2.3 below) where the operator is of the following type

-Lu := tr(σ(x)σ T (x)D 2 u(x)) -αx • Du(x), α > 0.
For ergodicity results based on probabilistic methods we refer to [START_REF] Kabanov | Pergamenshchikov Two-scale stochastic systems[END_REF] and [START_REF] Kushner | Weak convergence methods and singularly perturbed stochastic control and filtering problems[END_REF] and the references therein. The existence of a Lyapunov function is reminiscent of similar conditions (for instance, see: [START_REF] Lorenzi | Analytical methods for Markov semigroups[END_REF]Sect. 8.2] and [START_REF] Pardoux | On the Poisson equation and diffusion approximation, I[END_REF][START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF][START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF]) called "recurrence condition" in the probabilistic jargon.

Ichihara and Kunita [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF] (see also [START_REF] Kunita | Asymptotic behavior of the nonlinear filtering errors of Markov processes[END_REF]) proved the existence of an invariant measure for hypoelliptic processes as (1.1) which are constrained in a compact set. It is worth to recall that, in unbounded set the existence of an invariant measure may fail as it can be easily seen for (1.1) with b = 0 and σ = I.

In this paper we want to establish existence and uniqueness of an invariant measure for process (1.1), namely for a process with the following features: it lies in an unbounded set and its infinitesimal generator is simultaneously degenerate and with unbounded coefficients. To this end we shall use only pure analytical arguments.

It is important to stress that, in the Heisenberg case, the principal part of Lu can be written as 2 i=1 X 2 i u where X 1 , X 2 , are the vector fields given by the columns of σ and that they satisfy Hörmander condition: X 1 , X 2 , and their commutators of any order span R 3 at each point (x 1 , x 2 , x 3 ) ∈ R 3 . In this case we have that [X 1 , X 2 ] = -4∂ x 3 . This property will play a crucial role in this paper since, as for the uniformly elliptic case, we have regularity, comparison and maximum principle ( [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF]).

The methods used in this work are strongly inspired by the lectures "Equations paraboliques et ergodicité" of P.L Lions at Collège de France (2014-15) [START_REF]Lions Lectures at Collège de France 2014-2015[END_REF] and by a unpublished manuscript by P.L. Lions and M. Musiela [START_REF] Lions | Ergodicity of diffusion processes[END_REF] (see also the paper of Cirant [START_REF] Cirant | On the solvability of some ergodic control problems[END_REF] for similar arguments). Actually, we shall consider the process

(1.8) dX ρ t = b(X ρ t )dt + √ 2σ ρ (X ρ t )dW t ,
where σ ρ is the approximating matrix of σ in (1.2):

σ ρ (x) =   1 0 0 0 1 0 2x 2 -2x 1 ρ   such that A ρ = σ ρ σ T
ρ is locally strictly positive, constrained in a bounded set O n suitably chosen.

Let us stress that, in our argument, it is not enough to approximate the matrix A with any non-degenerate matrix A ρ but we also need that A ρ can be written as σ ρ σ T ρ , where σ ρ is the diffusion matrix of a new underlying optimal control problem. This issue motivates the fact that in (1.8) a new Brownian motion appears.

Let us recall from [START_REF] Bensoussan | Perturbation methods in optimal control[END_REF] that the invariant measure m n ρ of this process solves

L * ρ m n ρ = 0 in O n
coupled with a boundary condition of Neumann type, where

-L ρ (u) = tr(σ ρ (x)σ T ρ (x)D 2 u(x)) + b(x) • Du(x) is an uniformly elliptic operator in O n .
Letting n → +∞, we obtain and invariant measure m ρ for the process (1.8) in the whole space; letting ρ → 0 + , we get the desired invariant measure for (1.1). The Lyapunov function will play a crucial role in these limits: it will be used in order to prove that all the m ρ 's and m are really measures (in other words, that the m n ρ and the m ρ do not "disperse at infinity").

Moreover in this paper we also establish a Liouville type result. Similar result for semilinear operator without the drift term can be founded in the papers [START_REF] Birindelli | Liouville theorems for semilinear equations on the Heisenberg group[END_REF][START_REF] Birindelli | Indefinite semilinear equations on the Heisenberg group: a priori bounds and existence[END_REF][START_REF] Capuzzo Dolcetta | On the Liouville property for sub-Laplacians[END_REF] and references therein; in all these papers the nonlinear zeroth order term is the key ingredient whereas, in our setting, the crucial contribution is due to the drift.

We shall use the invariant measure and the Liouville property in two classic applications: an ergodic problem and the long time behaviour of a Cauchy problem. For the former problem we consider the family of equations

(1.9) δu δ -tr(σ(x)σ T (x)D 2 u δ ) -b(x)Du δ = F (x) in R 3 ,
where δ > 0 and we shall prove that, as δ → 0, δu δ converges to a constant λ, called "ergodic" constant. Let us stress that the differential operator in the ergodic problem coincides with the infinitesimal generator L of process (1.1).

We recall that the study of ergodic problems for equations with periodic, uniformly elliptic, operators has been addressed in [START_REF] Arisawa | On ergodic stochastic control[END_REF][START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF] while, for periodic, possibly degenerate (still satisfying the Hörmander's condition) operators, we refer the reader to the papers [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF][START_REF] Alvarez | Multiscale problems and homogenization for second-order Hamilton Jacobi equations[END_REF].

The main difficulties in our problem are the lack of periodicity and the degeneracy of the operator. We shall overcome these issues using some techniques introduced by [START_REF] Bardi | Convergence by viscosity methods in multiscale financial models with stochastic volatility[END_REF] for an elliptic operator on the whole space. Moreover, we shall give an explicit formula for the ergodic constant λ in terms of the invariant measure for (1.1).

In the latter application we consider the following Cauchy problem:

u t + Lu = 0 in (0, +∞) × R 3 , u(0, x) = f (x) on R 3 ,
where L is the operator defined in (1.4). We will prove that, as t → +∞, the solution u converges to a constant Λ which will be characterised in terms of the invariant measure.

Finally, we shall show how to extend our previous results to other degenerate operators satisfying Hörmander condition with possibly unbounded coefficients.

Our future purpose is to use the ergodic problem to study the homogenization problem

(1.10) -ǫ tr(σ( x ǫ )σ T ( x ǫ )D 2 u ǫ ) -b( x ǫ ) • Du ǫ + f (x, x ǫ ) + au ǫ = 0 in R 3 ,
where σ has the form (1.2). In this case the approximated cell problem formally coincides with the problem (1.9). For the study of homogenization problems for periodic, possibly nonlinear, degenerate (still satisfying the Hörmander's condition) operators, we refer the reader to the papers [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF][START_REF] Biroli | Homogenization by the Heisenberg group[END_REF][START_REF] Mannucci | Periodic homogenization under a hypoellipticity condition NoDEA Nonlinear Differential Equations[END_REF]. This paper is organized as follows: Section 2 contains the main result of the paper: we find conditions on the drift b such that a Lyapunov functions does exist and by means of this function we prove the existence and uniqueness of an invariant measure associated to our process. In Section 3, we establish a Liouville type result assuming the existence of a Lyapunov-like function. Section 4 is devoted to our applications: in Section 4.1 we study the ergodic problem through stationary problems with vanishing discount, while in Section 4.2 we consider the long time behaviour of a Cauchy problem. In Section 5 we generalise the previous results to a more general class of subelliptic operators, encompassing e.g. the Grushin one. The Appendix contains a condition equivalent to (1.7) which will be useful to manage the Lyapunov function founded in Section 2.

Existence and uniqueness of the invariant measure

This section is devoted to the invariant measure for process (1.1). Let us recall (see [START_REF] Lions | Ergodicity of diffusion processes[END_REF] or Proposition 2.1 below) that, when the matrix associated to the infinitesimal generator L is a strictly definite positive matrix, a sufficient condition for the existence of an invariant measure is given by: there exists a Lyapunov-like function such that

w ∈ C ∞ (B C 0 ) ∩ C 0 (R 3 ) (2.1) Lw ≥ 1, in B C 0 w ≥ 0 in B C 0 , w = 0 on ∂B 0 ,
where B 0 is a ball centered in 0 with suitable radius. (For less regular functions w, we refer to ( [START_REF] Lions | Ergodicity of diffusion processes[END_REF])).

In our case, the matrix A = σσ T in (1.6) is degenerate in any point, and the rank of the matrix is 2. In order to overcome this issue, for ρ > 0, we introduce the approximating operators

(2.2) L ρ w := -tr(A ρ (x)D 2 w) -b(x)Dw,
where (2.3)

A ρ (x) =   1 0 2x 2 0 1 -2x 1 2x 2 -2x 1 4(x 2 1 + x 2 2 ) + ρ 2   = σ(x)σ T (x) +   0 0 0 0 0 0 0 0 ρ 2   .
In the following Lemma we collect some useful properties of L ρ .

Lemma 2.1 The matrix A ρ (x) is locally strictly positive definite (namely, for any compact

K ⊂ R 3 , there holds λA ρ (x)λ T ≥ ν(x)|λ| 2 for any x ∈ K, with ν(x) ≥ a(K, ρ) > 0) and it is positive definite in R 3 .
Moreover, there exists a 3×3 matrix σ ρ (x) with linear coefficients such that

(2.4) A ρ (x) = σ ρ (x)σ T ρ (x). Proof. Set α = 4(x 2 1 + x 2 2 ) + ρ 2 + 1. The eigenvalues of A ρ are λ 1 = 1, λ 2,3 = α ± α 2 -4ρ 2 2 .
It is easy to remark that λ 2 ≥ 1 2 . The last eigenvalue is

λ 3 = 2ρ 2 α+ √ α 2 -4ρ 2 > ρ 2 α hence, for any fixed R > 0, if x 2 1 + x 2 2 ≤ R 2 , α ≤ 4R 2 + ρ 2 + 1 and λ 3 > ρ 2 4R 2 +ρ 2 +1 > 0. The matrix (2.5) σ ρ (x) =   1 0 0 0 1 0 2x 2 -2x 1 ρ   . verifies (2.4) 2 
Remark 2.1 From (2.4), beside being uniformly elliptic, the operator -L ρ is also the infinitesimal generator of the stochastic process

(2.6) dX ρ t = b(X ρ t )dt + √ 2σ ρ (X ρ t )dW t ,
where σ ρ is defined in (2.5) and W t = (W 1t , W 2t , W 3t ) and W 1t , W 2t , W 3t are three independent Brownian motions whereas our starting process (1.1) only contains two independent Brownian motions. Now, we want to prove that, for some classes of drifts b, there exists a function w satisfying (2.1) with L replaced by L ρ . To this end, we consider

a continuous drift b = (b 1 , b 2 , b 3 ) such that (2.7) b i (x) = b i (x i ), b i (x i ) ≤ -C i |x i | 1-α for x i ≥ R b i (x i ) ≥ C i |x i | 1-α for x i ≤ -R
for some constants α ≥ 0, R > 0 and C i > 0 (i = 1, 2, 3). Note that Lemma 2.2 here below, holds also for ρ = 0 then we have a Lyapunov-like function w ( i.e. satisfying condition (2.1)) also for the degenerate starting problem where L is given by (3.1). Similar conditions to (2.7) was obtained in [START_REF] Lions | Ergodicity of diffusion processes[END_REF] with σ = I the identity matrix.

Lemma 2.2 Assume σ as in (1.2). Assume that b is a continuous function verifying (2.7) with (i) either α > 0, (ii) or α = 0 and sufficiently large C i .

Then, there exists a R 0 and a C ∞ function w which satisfies

(2.8) L ρ w ≥ 1 in B(0, R 0 ) C , w ≥ 0 in B(0, R 0 ) C , lim |x|→∞ w = ∞
for ρ sufficiently small.

Proof. We set

w := (x 4 1 + x 4 2 ) 12 + x 2 3 2 .
Then, there holds

L ρ w = -5(x 2 1 + x 2 2 ) -ρ 2 - 1 3 (b 1 x 3 1 + b 2 x 3 2 ) -b 3 x 3 .
We denote

K i := max x i ∈[-R,R] |b i (x i )|.
Case (i). Assume α > 0. We want to prove that there exists R 0 such that

L ρ w > 1 in B(0, R 0 )
C for ρ sufficiently small. To this end, we split the arguments in several cases.

(I). If |x i | ≥ R for any i ∈ {1, 2, 3}, then L ρ w ≥ x 2 1 (-5 + C 1 |x 1 | α /3) + x 2 2 (-5 + C 2 |x 2 | α /3) + C 3 |x 3 | α -ρ 2 .
Hence, for

|x 1 |, |x 2 | > R 1 := max{(15/C 1 ) 1/α , (15/C 2 ) 1/α , R}, |x 3 | ≥ R 3 := max{C -1/α 3
, R}, we get:

L ρ w ≥ 1 for ρ sufficiently small. (II). If |x 1 |, |x 2 | ≤ R 1 and |x 3 | ≥ R, then L ρ w ≥ -10R 2 1 -ρ 2 -R 3 (K 1 + K 2 )/3 + C 3 |x 3 | α
(here, we used the relation:

-b i x 3 i ≥ 0 for |x i | ∈ [R, R 1 ], i = 1, 2)
. Hence, for |x 3 | ≥ R3 with R3 sufficiently large, taking ρ sufficiently small, we get

L ρ w ≥ 1. (III). If |x 1 | ≤ R 1 , |x 2 | ≥ R 1 and |x 3 | ≥ R (and similarly, for |x 1 | ≥ R 1 , |x 2 | ≤ R 1 and |x 3 | ≥ R), then L ρ w ≥ -5R 2 1 + x 2 2 (-5 + |x 2 | α /3) -ρ 2 -K 1 R 3 /3 + C 3 |x 3 | α . Hence, for |x 3 | ≥ R3 , we get L ρ w ≥ 1 for ρ sufficiently small. (IV ). If |x 1 | ≤ R 1 , |x 2 | > R, |x 3 | < R3 (and similarly for |x 1 | > R, |x 2 | ≤ R 1 , |x 3 | < R3 ), then L ρ w ≥ |x 2 | 2 (-5 + C 2 |x 2 | α /3) -5R 2 1 -ρ 2 -K 1 R 2 /3 -K 3 R.
Hence, for |x 2 | > R 1 , we get L ρ w ≥ 1 for ρ sufficiently small. In conclusion, gluing together all these cases, we accomplish the proof for α > 0. Case (ii). Assume α = 0; we want to prove that there exist some constants

C i and a radius R 0 such that L ρ w ≥ 1 in B(0, R 0 ) C . (I). If |x i | > R for any i = 1, 2, 3, then L ρ w ≥ x 2 1 (-5 + 1 3 C 1 ) + x 2 2 (-5 + 1 3 C 1 ) + C 3 -ρ 2 ; hence, for C 1 , C 2 > 15, C 3 > 1, we have L ρ w > 1 for ρ sufficiently small. (II). If |x i | < R for i = 1, 2 and |x 3 | > R, then L ρ w ≥ -10R 2 -R 3 (K 1 + K 2 )/3 -ρ 2 + C 3 ; hence, for C 3 > 10R 2 + R 3 (K 1 + K 2 )/3 + 1, we have L ρ w > 1 for ρ sufficiently small. (III). If |x 1 | < R, |x 2 | > R and |x 3 | > R (and similarly, for |x 1 | ≥ R, |x 2 | ≤ R and |x 3 | ≥ R), then L ρ w ≥ -5R 2 + x 2 2 (-5 + C 2 /3) -R 2 K 1 /3 -ρ 2 + C 3 ,
hence, for C 2 > 15, C 3 sufficiently large and ρ sufficiently small, we have

L ρ w > 1. (IV ). If |x 1 | ≤ R, |x 2 | > R, |x 3 | < R (and similarly for |x 1 | > R, |x 2 | ≤ R, |x 3 | < R), then L ρ w ≥ -5R 2 +x 2 2 (-5+C 2 /3)-K 1 R 2 -ρ 2 -K 3 R; hence, for C 2 > 15, |x 2 |
sufficiently large and ρ sufficiently small, we have L ρ w > 1.
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Remark 2.2 Stronger sufficient condition on b i for the existence of a Lyapunov-like function w satisfying condition (2.1) could be found using w(x) := log((

x 2 1 + x 2 2 ) 2 + x 2 3 )).
Remark 2.3 The drifts of the Ornstein-Uhlenbeck operator (i.e., b(x) = -γx for γ > 0) satisfy assumption (i) of Lemma 2.2. For further properties of this operator we refer the reader to the monograph [START_REF] Lorenzi | Analytical methods for Markov semigroups[END_REF].

In the next proposition we will establish the existence of an invariant measure m ρ of the approximating process (2.6). This measure will be used in the main theorem of this paper when the invariant measure for the process (1.1) will be obtained as the limit of m ρ as ρ → 0.

Proposition 2.1 Let σ ρ (x) defined by (2.5) and b(x) be a Lipschitz function satisfying (2.7) either with α > 0 or α = 0 and C i sufficiently large.

There exists a unique invariant probability measure m ρ on R 3 for the process (2.6).

Proof. As proved in Lemma 2.1 the operator L ρ is uniformly elliptic in each bounded set (but the ellipticity constant degenerates in the whole R 3 ). We adapt some techniques introduced by [START_REF] Lions | Ergodicity of diffusion processes[END_REF] (see also [START_REF] Cirant | On the solvability of some ergodic control problems[END_REF] for similar arguments), by considering approximate problems in domains O n such that

O n ր R 3 if n → +∞.
Let us recall (see [START_REF]Lions Lectures at Collège de France 2014-2015[END_REF] or Lemma A.1 in the Appendix) that condition (2.8) is equivalent to the following one: there exists a function w ∈ C ∞ (R 3 ) such that (2.9)

L ρ w + χw = φ in R 3 , lim |x|→+∞ w = ∞
where χ ∈ C ∞ 0 and φ ∈ C ∞ are suitable functions such that, χ > 0 on B 0 , suppχ = B0 (B 0 is a suitable open set) and lim |x|→∞ φ = ∞. (As a matter of facts, this condition is satisfied by the function w chosen in the proof of Lemma 2.2-(i)). We define 

O n := {x ∈ R 3 | w(x) < M n } where M n → +∞ if n → +∞
L * ρ m n ρ := - i,j ∂ 2 ((a ρ ) ij m n ρ ) ∂x i ∂x j + i ∂(b i m n ρ ) ∂x i = 0 in O n , (2.10) ij ν i ( ∂((a ρ ) ij m n ρ ) ∂x j -b i m n ρ ) = 0 on ∂O n (2.11) On m n ρ = 1, m n ρ > 0.
We have to prove that, as n → +∞, m ρ converges in some sense to m ρ invariant measure to the process with generator L ρ , i.e. m ρ solves

L * ρ m ρ := - i,j ∂ 2 ((a ρ ) ij m ρ ) ∂x i ∂x j + i ∂(b i m ρ ) ∂x i = 0 in R 3 (2.12) R 3 m ρ = 1, m ρ ≥ 0.
From Prohorov Theorem and the fact that O n m n ρ = 1 we know that m n ρ ⇀ m ρ as n → +∞ (possibly passing to a subsequence). We prove now that R 3 m ρ = 1. Multiplying equation (2.10) by w defined in (2.9), integrating on O n and taking into account (2.11) we obtain

0 = O n L * ρ m n ρ w = O n m n ρ L ρ w + ∂O n m n ρ i,j (a ρ ) ij ∂w ∂x i ν j .
Since w = M n on ∂O n and w < M n on O n , we have ∂w ∂x i = ∂w ∂ν ν i and ∂w ∂ν ≥ 0 on ∂O n . Then, there holds

0 = O n m n ρ L ρ w + ∂w ∂ν ∂O n m n ρ i,j (a ρ ) ij ν i ν j ,
and since i,j

(a ρ ) ij ν i ν j ≥ 0, we obtain O n m n ρ L ρ w ≤ 0. Hence O n m n ρ L ρ w = O n (φ -χw)m n ρ ≤ 0,
and

O n φm n ρ ≤ suppχ χwm n ρ ≤ C
where C is a positive constant independent of n. Let us extend m n ρ by zero outside O n , and call it again m n ρ , then (2.13)

R 3 φm n ρ ≤ C
where C is a positive constant independent of n.

Since lim

|x|→+∞ φ(x) = +∞, for any N there exists a R N such that φ(x) > N on B C R N . Hence, from (2.13) 
(2.14)

B C R N m n ρ ≤ C N . Since R 3 m n ρ = 1 then from (2.14) B R N m n ρ ≥ 1 - C N
and from the weak convergence of m n ρ to m ρ , we have

B R N m ρ ≥ 1 - C N , hence letting N → +∞ we obtain that R 3 m ρ = 1.
Moreover from the local regularity W 2,p for any p > 1 of m n ρ since m n ρ solves equation (2.10), passing to the limit we easily obtain that m ρ solves equation (2.12). 2

Remark 2.4 The condition of strict ellipticity in the compact subsets of R N is sufficient to deduce from (2.8) the existence of the invariant measure m ρ (see [START_REF]Has'minskiȋ Stochastic stability of differential equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis[END_REF]Theorem IV.4.1] under their assumption B.1). Nevertheless we gave the proof of Proposition 2.1 because it is purely analytic and for the sake of completeness.

Now we want to prove that m ρ converges in some sense to m, invariant measure to the process (1.1), solving (2.15)

L * m = 0,

R 3 m = 1 and m ≥ 0.
Theorem 2.1 Let σ be defined by (1.2) and b(y) be a continuous function satisfying (2.7) either with α > 0 or α = 0 and C i sufficiently large.

Then there exists a unique invariant probability measure m on R 3 for the process (1.1).

Proof. The uniqueness of the measure m comes from the results of Arnold, Klieman [START_REF] Arnold | On unique ergodicity for degenerate diffusions[END_REF], or Ichihara, Kunita [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF].

The existence of the invariant measure it is obtained proving that the invariant measure m ρ of Proposition 2.1 converges, if ρ tends to 0, to the measure m associated to the process (1.1). We proceed analogously to Proposition 2.1. The measure m ρ satisfies the following conditions:

(2. [START_REF] Crandall | User's guide to viscosity solutions of second-order partial differential equations[END_REF])

L * ρ m ρ = 0 in R 3 , R N m ρ = 1, m ρ ≥ 0.
We know that m ρ ⇀ m as ρ → 0 (at least for a subsequence) where m is a measure. We have to prove that m is an invariant measure to the process (1.1) i.e. that m solves (2.15). From condition (2.8) and the equivalent conditions (2.9), we know that there exists smooth functions χ and φ such that w satisfies L ρ w + χw = φ, in R 3 , w and φ such that → +∞ if |x| → +∞ and χ has compact support. Multiplying equation (2.12) by such w and integrating on R 3 we obtain

0 = R 3 L * ρ m ρ w = R 3 L ρ wm ρ = R 3 (φ -χw)m ρ , hence (2.17) R 3 φ m ρ = supp χ χ w m ρ ≤ C,
where C is a positive constant independent of ρ. From (2.17), since

1 = B R N m ρ + B C R N m ρ , then B R N m ρ ≥ 1 - C N and from the convergence of m ρ B R N m ≥ 1 - C N , hence letting N → +∞ we obtain R 3 m = 1.
To prove that L * m = 0 we write, for any ψ smooth,

0 = R 3 L * ρ m ρ ψ = R 3 L ρ ψm ρ → R 3 Lψm = R 3 L * mψ .
Taking account that L ρ ψ → Lψ strongly and m ρ ⇀ m weakly in L 1 . 2

A Liouville type result

In this section, we establish a Liouville type result, which holds true not only in the Heisenberg setting but also for σ whose columns satisfy the general Hörmander condition. This result will be stated in Proposition 3.1.

Although in the proof of Theorems 4.1 and 4.2 below it will be applied to the particular case of a regular solution, Proposition 3.1 contains a general statement which has its own independent interest. Let us first recall from [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] the definition of Hörmander condition.

Definition 3.1 The vector fields X j , j = 1, . . . m, satisfy the Hörmander condition if X 1 , . . . X m and their commutators of any order span R N at each point of R N .

Proposition 3.1 Consider the problem

(3.1) LV = -tr(σ(x)σ T (x)D 2 V ) -b(x) • DV = 0, x ∈ R N
where σ and b are smooth functions and the vector fields X j = σ j • ∇, j = 1, . . . m satisfy the Hörmander condition as in definition (3.1). Assume that there exists w(x) ∈ C ∞ (R N ) and R 0 > 0 such that

(3.2) Lw ≥ 0 in B(0, R 0 ) C , w(x) → +∞ as |x| → +∞.
Then:

(i) every viscosity subsolution V ∈ U SC(R N ) to (3.1) such that lim sup |x|→+∞ V w ≤ 0 is constant; (ii) every viscosity supersolution V ∈ LSC(R N ) to (3.1) such that lim inf |x|→+∞ V w ≥ 0 is constant.
Proof. The proof uses the same arguments as in [START_REF] Lions | Ergodicity of diffusion processes[END_REF] (see also [START_REF] Bardi | Convergence by viscosity methods in multiscale financial models with stochastic volatility[END_REF]Lemma 4.1 and remark 4.1]). For the sake of completeness, we shall give the proof of case (i); being similar, the proof of case (ii

) is omitted. Let us first observe that if ψ ∈ C 2 (A) (A is any open set A ⊂ B(0, R 0 ) C ) is a classical supersolution in A, i.e.
Lψ ≥ 0 in A then w + ψ is a viscosity supersolution in A, i.e.

L(w + ψ) ≥ 0 in A.

Define for each η > 0:

V η := V (x) -ηw(x).
We claim that V η is a viscosity subsolution in B(0, R 0 ) C i.e.

(3.3) L(V η ) ≤ 0 in B(0, R 0 ) C .
Indeed, let us assume by contradiction that there exists

ψ ∈ C 2 (B(0, R 0 ) C ) such that V η -ψ attains a strict maximum in some point x ∈ B(0, R 0 ) C , V (x) = ηw(x) + ψ(x)
, and that there holds

L(ψ)(x) > 0.
By the the continuity of the coefficients of L, and the regularity of ψ there exists a r 0 > 0 such that

(3.4) L(ψ)(x) > 0 in B(x, r 0 ) ⊂ B(0, R 0 ) C .
As remarked above ηw + ψ is a supersolution in B(x, r 0 ). Moreover there exists α > 0 such that V (x) < ηw(x) + ψ(x) -α for any x ∈ ∂B(x, r 0 ). Then by a local comparison principle (see [START_REF] Bardi | Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. I, Convex operators[END_REF] or [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] for classical solutions), V (x) ≤ ηw(x) + ψ(x) -α in B(x, r 0 ) and for x = x we get a contradiction and our claim (3.3) is proved.

Thanks to V η → -∞ as |x| → +∞, there exist R 1 (η) = R 1 > R 0 such that V η (x) ≤ sup |z|=R 0 V η (z), ∀|x| ≥ R 1
then, using the weak maximum principle applied to V η , max

B(0,R 1 )\B(0,R 0 ) V η = max ∂B(0,R 0 ) V η
and this implies that

V η (x) ≤ max ∂B(0,R 0 ) V η , ∀x ∈ B(0, R 0 ) C .
Letting η → 0 in the preceding inequality:

V (x) ≤ max ∂B(0,R 0 ) V, ∀x ∈ B(0, R 0 ) C .
Therefore V attains its global maximum so it is a constant by the strong maximum principle established by Bardi 

Applications

In this section we provide two applications of the previous results. In both cases we will use the existence of the invariant measure for the process (1.1) proved in Section 2 and the Liouville type property obtained in Section 3. Summarizing, we shall prove that lim

δ→0 δu δ (x) = lim t→+∞ u(t, x) = lim t→+∞ v(t, x) t = R 3 f (x)dm(x),
where m is the invariant measure of Section 2 and u δ , u and w are the solutions respectively of

δu δ (x) + Lu = f (x), in R 3 , u t + Lu = 0, u(0, x) = f (x), in (0, +∞) × R 3 , v t + Lv = f, v(0, x) = 0, in (0, +∞) × R 3 ,
and L is the infinitesimal generator of the process (1.1), i.e. the operator defined in (1.4).

The ergodic problem

In this section we tackle the following ergodic problem. We consider the family of problems

(4.1) δu δ (x) -tr(σ(x)σ T (x)D 2 u δ ) -b(x)Du δ = f (x) in R 3 ,
where δ > 0 and we investigate about the convergence as δ → 0 of δu δ to a constant λ called the ergodic constant. Throughout this section, we assume

(A 1 ) σ is defined in (1.2) (A 2 ) b ∈ C ∞ (R 3
) and satisfies the hypotheses of Lemma 2.2

(A 3 ) f ∈ C ∞ (R 3 ) ∩ L ∞ (R 3 )
The next two Lemma contain several properties of u δ which will be used later on.

Lemma 4.1 Under Assumptions (A 1 )-(A 3 ), there exists an unique smooth viscosity solution u δ of the approximating problem (4.1) such that

(4.2) |u δ (x)| ≤ C δ , ∀x ∈ R 3 ,
for some positive constant C independent of δ.

Proof. The uniqueness follows from the comparison principle proved in [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF]. By assumption (A 3 ) it is easy to see that w ± = ± C δ with C sufficiently large is respectively a supersolution and a subsolution for problem (4.1). In conclusion, applying Perron's method, we infer the existence of a solution to (4.1) verifying (4.2). 2

Lemma 4.2 Under assumptions (A 1 )-(A 3 ), the functions v δ := δu δ , where u δ is the solution of problem (4.1), are locally uniformly Hölder continuous. Namely, there exists α ∈ (0, 1) such that for every compact K ⊂ R 3 there exists a constant N such that

(4.3) |v δ (x 1 ) -v δ (x 2 )| ≤ N |x 1 -x 2 | α , ∀x 1 , x 2 ∈ K, ∀δ ∈ (0, 1).
The constant N only depends on K and on the data of the problem (in particular is independent of δ).

Proof. The statement is a direct consequence of the result of Krylov [START_REF] Krylov | Hölder continuity and L p estimates for elliptic equations under general Hörmander's condition[END_REF].

For the sake of completeness let us sketch how to apply Krylov's result to our case. From Lemma 4.1 the function v δ is uniformly bounded and smooth and solves the following equation

(4.4) δv δ -tr(σ(x)σ T (x)D 2 v δ ) -b(x)Dv δ = δf (x) in R 3 .
We observe that equation (4.4) can be written in the form

(4.5) -L 0 v δ + v δ := -σ ik ∂ x i (σ jk ∂ x j v δ ) -BDv δ + v δ = δf + (1 -δ)v δ where B j = b j -jk σ ik ∂ x i σ jk and L 0 = σ ik ∂ x i (σ jk ∂ x j •).
For δ fixed, consider the problem

-L 0 v δ,n + v δ,n = δf + (1 -δ)v δ in B(0, n) v δ,n = 0 on ∂B(0, n).
We observe that {v δ,n } is a equibounded family (by the same arguments of Lemma 4.1). [22, Theorem 2.1] of Krylov ensures that there exists α ∈ (0, 1) such that for every compact K ⊂ R 3 there exists a constant N 1 (independent of δ, n) such that

(4.6) |v δ,n (x 1 ) -v δ,n (x 2 )| ≤ N 1 |x 1 -x 2 | α , ∀x 1 , x 2 ∈ K.
By Ascoli-Arzelà Theorem, letting n → +∞ (possibly passing to a subsequence) we get that v δ,n converges locally uniformly to a function V δ . By the stability and uniqueness results we infer V δ = v δ . Moreover, passing to the limit in n in (4.6), we get (4.3). 2

In the next result we prove that δu δ converges to a constant which will be characterize in terms of the invariant measure of the process (1.1). where m is the invariant measure of process (1.1) founded in Section 2.

Proof. We shall proceed following some arguments of [START_REF] Bardi | Convergence by viscosity methods in multiscale financial models with stochastic volatility[END_REF]. The functions v δ := δu δ solve (4.4) and, from estimate (4.2), satisfy

(4.8) |v δ | ≤ C, in R 3 ,
with C independent of δ, hence they are uniformly bounded in R 3 . From Lemma 4.2 v δ are also uniformly Hölder continuous in any compact set of R 3 . Then by the Ascoli-Arzelà theorem there is a sequence δ n → 0 and a continuous function w such that v δn → v locally uniformly; by stability, v is a solution of (4.9)

-tr(σ(x)σ T (x)D 2 v) -b(x)Dv = 0, x ∈ R 3 ,
hence v ∈ C ∞ by the hypoellipticity of the operator (see [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF]). Then by Proposition 3.1, v is constant.

In conclusion, we have that, possibly passing to a subsequence, {δu δ } δ converges locally uniformly to a constant. Now, it remains to prove that this constant is independent of the subsequence chosen and that is has the form (4.7). By standard arguments of optimal control theory (see [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]), the function u δ can be written as

u δ (x) = E x +∞ 0 f (X t )e -δt dt
where X t is the process in (1.1) with initial data X 0 = x while E denotes the expectation. Integrating both sides with respect to the invariant measure, we infer

R 3 u δ (x) dm(x) = +∞ 0 E x R 3 f (X t ) dm(x) e -δt dt = +∞ 0 R 3 f (x) dm(x) e -δt dt = 1 δ R 3 f (x) dm(x)
where the second inequality is due to the definition of invariant measure. Taking into account that every convergent subsequence of {δu δ } δ must converge to a constant, we conclude that all the sequence {δu δ } δ converges to R 3 f dm. 2

Large time behavior of solutions

This section concerns the asymptotic behavior for large times of the solution of the parabolic Cauchy problem:

(4.10)

u t + Lu = 0 in (0, +∞) × R 3 , u(0, x) = f (x) on R 3 ,
where L is the operator defined in (1.4). Let us recall that, for periodic fully nonlinear equations, this issue was studied in [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF]Theorem 4.2]. We quote here also the results in the manuscript [START_REF] Lions | Ergodicity of diffusion processes[END_REF].

Theorem 4.2 Under the assumptions of Theorem 2.1 and Proposition 3.1, for f (x) ∈ C 0 (R 3 ) ∩ L ∞ (R 3 ), the solution u(t, x) of problem (4.10) verifies

lim t→+∞ u(t, x) = R 3 f (x) dm(x), locally uniformly in x,
where m is the invariant measure of process (1.1) founded in Section 2.

Proof. Since ± f ∞ are sub and supersolution of (4.10), by the comparison principle we have that

(4.11) u ∞ ≤ f ∞ .
Arguing as in [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF]Theorem 4.2] we get, for some c > 0, |u(t+s, x)-u(t, x)| ≤ cs, and in particular |u t (t, x)| ≤ c. Moreover classical results on regularity of subelliptic operators give that u(t, •) are locally Hölder continuous on x uniformly in t (see [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF][START_REF] Krylov | Hölder continuity and L p estimates for elliptic equations under general Hörmander's condition[END_REF]). Hence by Ascoli-Arzelà theorem for any sequence t n → +∞ there exists a subsequence t n k such that u(t n k , •) → v locally uniformly for some v ∈ C 0 (R We show now that the constant C is independent of the chosen sequence. Let us consider an arbitrary sequence s n such that s n → +∞ and u(s n , •) → K locally uniformly. From (1.3)

R 3 u(s n , x) dm(x) = R 3 f (x) dm(x)
Using (4.11), R 3 dm(x) = 1 and the dominated convergence theorem 

K = R 3 f (x) dm(x). 2 
v t + Lv = f in (0, +∞) × R 3 v(0, x) = 0 on R 3 ,
where L is the operator defined in (1.4) and f is a function as in Theorem 4.2. By means of the Duhamel formula and a change of variables the solution v can be written as v(t, x) = t 0 u(τ, x)dτ where u is the solution of (4.10). Hence the statement of Theorem 4.2 can be rephrased as

lim t→+∞ v(t, x) t = R 3 f (x) dm(x).

The general case

In this section we address to the process (1.1) under the following assumptions:

(5.1) 

   σ(x) ∈ C ∞ (R N ), σ ( 
(x), f (x) ∈ C ∞ (R N ), b(x) , |f (x)| ≤ C(|x| + 1), C > 0. (5.2) (5.3) For A := σσ T , there exists {A ρ (x)} ρ∈(0,1) with A ρ = σ ρ σ T ρ , σ ρ ∈ C ∞ (R N ), A ρ → A in L ∞ and A ρ is locally definite positive.
Under these assumptions it is easy to check that the matrix σ ρ (x) = 1 0 0 0 x 1 ρ satisfies (5.3) and that the function W (x) = 1 12 x 4 1 + 1 2 x 2 2 satisfies (5.4). In conclusion, since all the hypotheses (5.1)-(5.4) are satisfied, Theorem 5.1 apply.

Remark 5.1 Lions-Musiela in [START_REF] Lions | Ergodicity of diffusion processes[END_REF] have considered a similar degenerate case but in their paper the elements of the matrix are bounded in R 2 in this way

(5.7) σ(x) = 1 0 0 x 1 √ 1+x 2 1 .

A Appendix

In the following Lemma we state the equivalence between conditions (2.8) and (2.9). This property has already been established by P.L. Lions [START_REF]Lions Lectures at Collège de France 2014-2015[END_REF]; however, for the sake of completeness we shall provide the proof. Then, conditions (2.8) and (2.9) are equivalent; namely the following properties are equivalent:

(i) there exists w ∈ C ∞ (R N ) such that G(w) ≥ 1 in B(0, R 0 ) C , w ≥ 0 in B(0, R 0 ) C , lim |x|→+∞ w = +∞ for some constant R 0 > 0; (ii) there exists w ∈ C ∞ (R N ) such that G( w) + χ w = φ in R N , lim |x|→+∞ w = +∞
for some C ∞ functions χ and φ with lim |x|→+∞ φ = +∞, χ ≥ 0 and suppχ compact.

Proof. For completeness, we report the arguments of [START_REF]Lions Lectures at Collège de France 2014-2015[END_REF]. As one can easily check, property (ii) obviously implies property (i) (possibly adding a constant). Now, assuming (i), we want to prove (ii). We denote K := max

B(0,R 0 ) |w| and K G := max B(0,R 0 ) |G(w)|. We fix χ ∈ C ∞ 0 (R N ) such that χ ≥ 0, χ = 1
in B(0, R 0 ) and suppχ ⊂ B(0, 2R 0 ). We claim that the function w ♭ (x) := w(x)

+ K + K G + 1 satisfies (A.1) G(w ♭ ) + χw ♭ =: f * (x) ≥ 1 in R N , lim |x|→+∞ w ♭ = +∞.
Indeed, the latter property is an immediate consequence of (i). Moreover, for |x| ≤ R 0 , we have

G(w ♭ ) + χw ♭ ≥ -K G + χ(w + K + K G + 1) ≥ 1
while, for |x| ≥ R 0 , we have

G(w ♭ ) + χw ♭ ≥ G(w) ≥ 1;
hence, our claim (A.1) is proved.

Let us now consider a regular partition of unity {φ i } i∈N such that φ i ≥ 0, ∞ i=1 φ i (x) = 1, supp φ i ⊂ B(0, i + 1) \ B(0, i -1),

φ i = 1 on B(0, i + 1 2 ) \ B(0, i - 1 2 
). We claim that there exists a regular solution to

(A.2) G(W n ) + χW n = n i=1 φ i in R N , 0 ≤ W n ≤ w ♭ .
In order to prove this existence, it is expedient to introduce, for m ≥ n + 1 and ǫ > 0, the following boundary value problems

(A.3)      (G -ǫ∆)(W ǫ nm ) + χW ǫ nm = n i=1 φ i in B(0, m)
W ǫ nm = 0 on ∂B(0, m).

By the non-degeneracy of the operator, the comparison principle applies to problems (A.3). Hence, the Perron's method ensures that there exists a unique solution to (A.3). By standard arguments in hypoelliptic theory (see [START_REF] Krylov | Hölder continuity and L p estimates for elliptic equations under general Hörmander's condition[END_REF], [START_REF] Oleinik | Second order equations with nonnegative characteristic form[END_REF]), as ǫ → 0 + , W ǫ nm (x) converges to W nm (x) in B(0, m), where W nm is the solution to where the boundary condition is attained only in the viscosity sense. We observe that the Hörmander's condition guarantees the comparison principle for (A.4); since 0 and w ♭ are respectively a sub-and a supersolution, there holds true 0 ≤ W nm ≤ w ♭ in B(0, m). On the other hand, for m 1 > m, still by comparison principle, we infer W ǫ nm 1 (x) ≥ W ǫ nm (x) for every x ∈ B(0, m); so, as ǫ → 0 + , we get W nm 1 (x) ≥ W nm (x) for every x ∈ B(0, m), namely, the sequence {W nm } m is nondecreasing and locally bounded. Passing to the limit and using the regularity theory for hypoelliptic operators (see [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF]), we accomplish the proof of our claim (A.2).

By (A.2), the functions w i (x) := W i (x) -W i-1 (x) solve

G(w i ) + χw i = φ i in R N
and verify:

∞ i=1 w i (x) < ∞ in R N .
Let us recall an elementary result: for any ∞ i=1 a i < +∞ with a i ≥ 0, there exists a sequence {λ i } i such that lim i→+∞ λ i = +∞ and ∞ i=1 λ i a i < +∞. Then in our case there exists a sequence {λ i } i such that lim i→+∞ λ i = +∞ and 

R 3 u 3 and( 1 . 4 ) 3 m dx = 1 and m ≥ 0, 2 where

 331432 0 (x)m(x) dx where u(x, t) = E x (u 0 (X t )) is the solution to the parabolic Cauchy problem∂ t u + Lu = 0 in (0, +∞) × R 3 u(0, x) = u 0 (x) on R -Lu := tr(σ(x)σ T (x)D 2 u(x)) + b(x) • Du(x)is the infinitesimal generator of process (1.1). It is well known (see[START_REF] Bensoussan | Perturbation methods in optimal control[END_REF] Sect. II.4 and II.5]) that the density of the probability m (which, with a slight abuse of notation, we still denote by m) solves L * m = 0, R L * m is the adjoint operator

Theorem 4 . 1 satisfies lim δ→0 δu δ = R 3 f

 413 Under assumptions (A 1 )-(A 3 ), the solution u δ of problem (4.1) given in Lemma 4.1 (x)dm(x), locally uniformly, (4.7)

  x) ≤ C(|x| + 1), for some C > 0; the columns of σ satisfy Hörmander condition.

  b

Lemma A. 1

 1 Consider a linear operator G(u) := -tr(τ τ T D 2 u) -β • Du where τ is a matrix whose columns verify the Hörmander condition (3.1), τ and β are smooth functions with |τ (x)|, |β(x)| ≤ C(1 + |x|) ∀x ∈ R N .

∞λλ i φ i = C * n 0

 0 i=1 i w i (0) = K < +∞.Let n 0 ∈ N be fixed. Let us denote by w ♯ n (x) := n i=1 λ i w i (x). In B(0, n 0 ) inequality there exists a constant C n 0 independent of n This implies that in any bounded set w ♯ is well defined, i.e. w ♯ (x) := ∞ i=1 λ i w i (x) < ∞ for every x ∈ R N . Moreover the function w ♯ satisfies (A.6) G(w ♯ ) + χw ♯ = ∞ i=1 λ i φ i =: φ, w ♯ ≥ 0 with lim x→∞ φ(x) = +∞.In conclusion, by (A.1) and (A.6), the function w := w ♭ + w ♯ satisfies (ii). 2

  and M n is not a critical value of w. Since w → +∞ if x → +∞ then O n are bounded and smooth and O n ր R 3 . Fix ρ > 0 and n, the results by Bensoussan [8, Section 4] ensure that there exists an unique invariant measure m n ρ associated to the diffusion process X ρ t in O n with reflecting boundary whose infinitesimal generator is L ρ in O n with boundary conditions where ν denotes the unit outward normal to ∂O n and the matrix A ρ = (a ρ ) ij = σ ρ σ T ρ as in Lemma 2.1. The invariant measure m n ρ satisfies the problem

	i,j	(a ρ ) ij	∂u ∂ν j	= 0	on ∂O n

  Note that conditions on the sub and super solutions in i) and ii) imply the boundedness of the sub and super solutions.

and Da Lio [6, Corollary 3.2]. 2 Remark 3.1 Note that, in the Heisenberg group, the function w introduced in Lemma 2.2 satisfies assumptions (3.2). Remark 3.2 Let us stress that the above arguments work for any linear operator L with continuous coefficients, satisfying a local comparison principle and a strong maximum principle. Remark 3.3
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(5.4) There exists a function w which verifies (2.8) for any ρ sufficiently small. The grow assumptions on σ in (5.1) and on b and f in (5.2) allow us to obtain the existence of a process X t in (1.1). Under assumptions (5.1), (5.2), the Liouville type result contained in Proposition 3.1 still holds true. In fact the results of Bony [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] on comparison principle and strong maximum principle hold also in this setting if we observe that -tr(σσ

where C(x) = Dσ j • σ j and σ j are the columns of the matrix σ.

Theorem 5.1 Under assumptions (5.1)-(5.4) there exists an invariant probability measure m associated to the diffusion process (1.1).

Proof. We observe that, by assumptions (5.3), (5.4), there exists an unique invariant measure m ρ for the process with diffusion σ ρ . Then, arguing as in the proof of Theorem 2.1, using again the function w in (5.4) we obtain the existence of the invariant measure associated to the process (1.1). 2 and observe that σ satisfies (5.1) since X 1 = (1, 0) and [X 1 , X 2 ] = (0, 1) span all R 2 . In this case the infinitesimal generator is

We take f and b(x) = (b 1 (x 1 ), b 2 (x 2 )) satisfying (5.2) with (5.6)