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The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n -dimensional harmonic oscillator basis

We derive by a simple recurrence method the matrices representation of division algebras or Hurwitz matrices (H n , n = 2,4,8,16). We introduce a generalization of the polar angles and coordinates and we show the connection between H n and the polypolar matrices transformations. We find new properties of H n matrices. We also find that the matrices H n are generating functions of Cartan-Weyl basis of SO (n). We define the polycylindrical coordinates and we find the 2 n -dimensional harmonic oscillator basis for n≥1.

Introduction

The real division algebras are: real numbers, complex numbers, quaternion, and Octonion. These algebras and the orthogonal groups SO(n) are very important in mathematics and physics [START_REF] Okubo | Introduction to Octonion and Other Non-Associative Algebras in Physics[END_REF][START_REF] Dixon | Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics[END_REF][START_REF] Baez | Division Algebras and quantum theory[END_REF][START_REF] Baez | The Octonion[END_REF][START_REF] Levi | Civita opera Mathematiche[END_REF][6][START_REF] Hage-Hassan | Inertia tensor and cross product in n-dimensions space[END_REF][START_REF] Hage-Hassan | Generating function method and its applications to Quantum, Nuclear and the Classical Groups[END_REF][START_REF] Shaffer | [END_REF][START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF]. This real division algebra is originated of the famous problem solving "the sums of squares" [START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF][START_REF] Tian | matrix Representations of Octonion and their applications[END_REF]. So we try to determine the values of n so that there is a solution of the identity:

   2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 ... ... ... n n n z z z x x x x x x           (1.1)
With z i are bilinear forms x i , y i , i, j = 1... n. This problem was solved by Euler and Fermat for n = 2, by Hamilton for n = 4 and by Grave and Cayley for n = 8. Hurwitz shown that the equation (1.1) has solutions only for n = 1, 2, 4, and 8. And every solution corresponds to an algebra which is isomorphic to anti-symmetric matrices H n (u 1 ... u n ), representing the division algebras [START_REF] Tian | matrix Representations of Octonion and their applications[END_REF][START_REF] Hage-Hassan | Hurwitz's matrices, Cayley transformation and the Cartan-Weyl basis for the orthogonal groups[END_REF].

In this work we determine H n (u) by a simple recurrence method. Then, by developing

i i j re z   , . 4 , 2 , 1 ), 1 ( ,     k k j re z i i j  
and by introducing a new parameterization of } { j  polypolar angles, we find that the expansion of the polypolar coordinates are expressed in terms of matrices M n with M n = H n (1... [START_REF] Okubo | Introduction to Octonion and Other Non-Associative Algebras in Physics[END_REF].

By calculating the generating function of the cylindrical oscillator basis [START_REF] Hage-Hassan | Fock Bargmann space and Feynman propagator of charged Harmonic oscillator in a constant magnetic field[END_REF][START_REF] Karimi | Radial quantum number of Laguerre-Gauss modes[END_REF], we have observed a property of H 2 (u) and after a simple calculation we found that this new property may be generalized to H n (u) n = 4, 8, 16. The matrices representing the infinitesimal generators [START_REF] Wybourne | Classical Groups for Physicists[END_REF][START_REF] Louck | [END_REF][START_REF] Granzow | N-dimensional orbital angular momentum operator[END_REF][18][START_REF] Sharp | O(5) Polynomials Bases[END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] of SO (n) are the antisymmetric matrices which require the study of the connection between these matrices and H n (u). We find that H n are generating matrices of Cartan-Weyl basis [START_REF] Wybourne | Classical Groups for Physicists[END_REF] . The theory of N-dimensional harmonic oscillator is very useful in the study of Molecular vibration [START_REF] Shaffer | [END_REF] and quantum physics [START_REF] Messiah | Mécanique Quantique Tomes I et II E[END_REF][START_REF] Das | [END_REF][START_REF] Grosche | Handbook of Feynman path Integrals[END_REF]. It is natural to extend the polypolar coordinates, for that we generalize the cylindrical basis of the harmonic oscillator [18][START_REF] Sharp | O(5) Polynomials Bases[END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] by introducing a new parameterization of cylindrical coordinates [START_REF] Karimi | Radial quantum number of Laguerre-Gauss modes[END_REF][START_REF] Grosche | Handbook of Feynman path Integrals[END_REF]. And thus we determine the eigenstates of the harmonic oscillator in N-dimensional, N= 2 n with n> 1. Finally we give a simple application of division algebras.

In this paper we expose the derivation of the representation matrices of division algebras in section two. In section three we introduce the polypolars coordinates and its relation with the representation matrix of division algebra. The new properties of Hurwitz matrices or the representation matrices of division algebras are given in section four. In section five we give the representation matrix of division algebras and the Cartan-Weyl basis of

) 6 ( ... ) 2 ( SO SO  
. The generalized cylindrical coordinates and the Ndimensional radial function of the oscillators will be given in section six. In section seven we expose the derivation the wave function of the N-dimensional harmonic oscillator. In the appendix we give the polycylindric coordinates for n = 4 and the new simple application of division algebras.

The matrices representation of division algebras

We determine the matrices representation of division algebras [START_REF] Tian | matrix Representations of Octonion and their applications[END_REF], using a recurrence method and taking as a starting point trigonometry formulas. The matrix representations of the real is

I u u H 1 1 ) (  .

The matrix representation of complex algebra

We begin with the well-known trigonometric formulas:

) 2 / ( sin ) 2 / ( cos cos 2 2      ) 2 / sin( ) 2 / cos( 2 sin     (2.1)
Multiplying these expressions by r:

2 1 2 2 2 2 1 1 2 , u u x u u x    (2.2) With ) 2 / sin( ), 2 / cos( 2 1   r u r u   And 2 2 2 2 1 2 2 2 1 ) ( u u x x    or 2 2 2 ) (u r    (2.3)
We write (2.1) in matrix form:

) ( )) ( ( 2 2 1 2 1 2 2 1 2 1 U u H u u u u u u x x t                            (2.4) ) , ( 2 1 2 u u H
is an orthogonal matrix and is anti-symmetric with:

I u u u H u H J and Ju I u u H t ) ( ) ( ) ( , 1 , ) ( 2 2 2 1 2 2 2 2 1 2       (2.5) And ) ( 2 u H t is the transpose of ) ( 2 u H .

The matrix representation of Quaternion

The generalization of the transformation (2.2) and (2.3) is obtained by setting:

                          4 3 1 2 2 1 2 1 u u 2 x x u u u u (2.7) We add ) ( ) ( 2 4 2 3 2 2 2 1 3 u u u u x     for the relationship 2 2 2 ) (u r    .
We find the Octonion quadratic transformation, [START_REF] Hage-Hassan | Inertia tensor and cross product in n-dimensions space[END_REF][START_REF] Hage-Hassan | Generating function method and its applications to Quantum, Nuclear and the Classical Groups[END_REF],
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In quaternion's notations we write:
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(2.9)

The matrix representation of Octonion

We obtain the orthogonal matrix H 8 (u) by generalization of the transformation (2.6). We find the Octonion quadratic transformation 

                             u u u u u H x x x x t We add ) ( ) ( 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 5 u u u u u u u u x         so that 2 2 2 ) (u r   
, we find: 

                                                       1 2

The Hurwitz theorem:

There are only anti-symmetric matrices and orthogonal H n only if: n=1, 2, 4,8 or "R, C, H=Q and O" (2.12)

The polypolar coordinates and the matrix representation of division algebra

We will define first the polypolar coordinates and then we determine the connection between these coordinates and the Hurwitz matrices of division algebras.

The polypolar coordinates

We consider the n-couples of complex numbers  

4 , 2 , 1 ), 1 ( , ,    k k j z e r z j i j j   and { i  } are functions of angular variables . ,... , , etc    For n=2,           2 1 , For n=3                             ) ( , ) ( , ) ( , ) ( 4 3 2 1
We will show that the developments  

4 , 2 , 1 ), 1 ( , ,   k k j z z j j 
are expressed simply with the help of H n (1).

The polar coordinates and Hurwitz matrix of the complex variable

We consider the polar transformation

1 1 1 1 1 1 ) sin (cos ) sin (cos iy x r e r z iy x r e r z i i                  (3.1)
This polar transformation is written in the matrix form by:

                             1 1 1 1 ) 1 ( ) , 1 ( , 2 2 1 1 2 1 1 H i M With iy x M z z (3.2)

The polar coordinates and Hurwitz matrix of the quaternion

We consider the case of two complex variables z 1 and z 2 with:

, ) sin )(cos sin (cos 2 2 1 1 ) ( 1 y ix iy x i i r re z i                 , ) sin )(cos sin (cos 2 2 1 1 ) ( 2 y ix iy x i i r re z i                 , ) sin )(cos sin (cos 2 2 1 1 ) ( 1 y ix iy x i i r re z i                2 2 1 1 ) ( 2 ) sin )(cos sin (cos y ix iy x i i r re z i                (3.3)
We write the polar transformation by:

                                                    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 1 ( ) 1 , , , 1 ( , 4 4 2 2 1 1 4 2 1 2 1 H i i M y ix iy x M z z z z (3.4)

The polar coordinates of the Hurwitz matrix of Octonion and Sedenion 3.4.1 The polar coordinates of the Hurwitz matrix of the Octonion

We consider the case of four complex variables ) ,..., , ,..., ( 

                            ) ( , ) ( , ) ( , ) ( 4 3 2 1 (3.5)
The transformation in this case becomes: 

                                    (3.6) 
a-We get a matrix of the form  

i i i i 1 1 1 1
. b-We arrange the columns: the first column is followed by real-4 columns imaginary and 3-columns real  

) 1 ( 1 1 1 1 8 8 H M i i i i  
and so we get the expression that generalizes (3.4).

The polar coordinates of the Hurwitz matrix of the Sedenion

We consider the case of four variables:

                           ) ) (( , , ) ) (( , ) ) (( 8 2 1  
We follow the method above and we get the orthogonal matrix M 16 .

The new properties of Hurwitz matrices

In performing the calculation of the generating function of the cylindrical oscillator basis [START_REF] Hage-Hassan | Generating function method and its applications to Quantum, Nuclear and the Classical Groups[END_REF][START_REF] Shaffer | [END_REF][START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF][START_REF] Tian | matrix Representations of Octonion and their applications[END_REF][START_REF] Hage-Hassan | Hurwitz's matrices, Cayley transformation and the Cartan-Weyl basis for the orthogonal groups[END_REF][START_REF] Hage-Hassan | Fock Bargmann space and Feynman propagator of charged Harmonic oscillator in a constant magnetic field[END_REF] we observe the existence of interesting properties of matrices H 2 (u) which is simply generalized to H n (u).

The cylindrical basis of the harmonic oscillator and the complex variables

We know that the Cartesian basis of harmonic oscillator [START_REF] Messiah | Mécanique Quantique Tomes I et II E[END_REF] in Dirac notations is:

0 ! ) ( , ) ( n a n And n q q u n n    (4.1) with dx id p and ip x a ip x a / ), ( 2 2 ), ( 2 2       
The generating function of the oscillator basis is well known:

} 2 2 2 exp{ 0 ) ( ! ) , ( 2 2 4 1 0 z qz q e q q u n z q z G za n n n             (4.2)
and the cylindrical basis is:

0 , 0 )! ( )! ( , 2 1 m j m j A A m j m j jm m j m j           . (4.3) with ) ( 2 2 ), ( 2 
2 2 1           y x y x ia a A ia a A (4.4)
In term of Cartesian coordinates

j y i x r     
we derive the generating function [START_REF] Hage-Hassan | Fock Bargmann space and Feynman propagator of charged Harmonic oscillator in a constant magnetic field[END_REF]:

                                         2 2 exp 1 00 , , )! ( )! ( ) , ( 2 2 2 1 2 2 2 1 2 2 ) ( ) ( ) ( 2 
) ( 1 2 1 2 1 H H y H i x H y x e y x jm y x m j m j u u r u F y x a u u i a u u jm m j m j   (4.5) with    y H i x H iy x u iy x u 2 2 2 1 2 1 ) ( ) (      (4.6) and           2 2 2 1 2 2 2 1 2 1 2 2 2 1 2 , , 4 u u H H u u H H      (4.7)
The properties of H 2 (u)

    2 2 1 2 2 2 2 1 2 1 ) ( , ) ( u u H u u H    

The new properties of Quaternion matrix

We denote the sum of elements of the i th column of H n by

n i H .    n j j i n n i H H 1 , ) ( (4.8) 
After elementary calculation we find that:

) ( 8 ) ( ) ( ) ( ) ( 4 2 3 1 2 4 4 2 4 3 2 4 2 2 4 1 u u u u H H H H      (4.9)             4 1 2 2 4 4 2 4 3 2 4 2 2 4 1 4 ) ( ) ( ) ( ) ( i i u H H H H (4.10) We deduce that ), ) ( ) (( 2 ) ( ) ( 2 4 2 2 3 1 2 4 4 2 4 1 u u u u H H      (4.11) ) ) ( ) (( 2 ) ( ) ( 2 4 2 2 3 1 2 4 3 2 4 2 u u u u H H     

The new properties of Octonion and Sedenion matrices

It is easy to verify the following relationships: 

The new properties of Octonion matrix

                             4 
                ) (
          i i u H H H H H H H H (4.13) We deduce that ), ) ( ) ( ) ( ) (( 4 ) ( ), ) ( ) ( ) ( ) (( 4 ) ( ) (
i i i i                      (4.14)

The new properties of Sedenion matrix

                           8 

The properties of t H n and M n

A-Exchanging columns by lines we find the same result with a change of sign of the first term of the expressions (4.10), (4.12) and (4.15). B-Let:

    n n n n n M M M u u   1 1



Replace n H 1 by n M 1 to find the results of equations (4.7-16).

Representation of division algebra and Cartan-Weyl basis of SO(n)

The generators of SO (n), the group of rotations in n-dimensions [START_REF] Wybourne | Classical Groups for Physicists[END_REF][START_REF] Louck | [END_REF][START_REF] Granzow | N-dimensional orbital angular momentum operator[END_REF][18][START_REF] Sharp | O(5) Polynomials Bases[END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF][START_REF] Messiah | Mécanique Quantique Tomes I et II E[END_REF], may be taken as

ij ji ij L j i j i L L . 5 , , 1 , ; ;     
what generates rotations in the ij plane. The number of generators is therefore N g = n (n+1)/2. The generators of rotation are

                      n ij n i j j i i j j i ij p p L x x p x p x x x x x i L    1 1 ) ( (5.1) with   ji ij ij L     ˆ (5.2)
In the following we put a hat to the adjoin representations.

V5.1 The generating matrices of Cartan-Weyl basis of SO(3)

For SO(2) we have

                    y x p p u u y x S u 0 0 2 2 3 2
(5.3) and

            1 2 2 1 3 2 1 2 ˆu u u u S u I u H
(5.4) The usual generators of SO [START_REF] Baez | Division Algebras and quantum theory[END_REF] 

S and S

 

to this case (5.3).

                  1 4 3 4 1 2 3 2 1 1 4 2 3 3 2 1 3 ) ( u u u u u u u u u S u S u S u I u H   
(5.6)

The generating matrices of Cartan-Weyl basis of SO(4)

For n= 4 and Ng=6 , we obtain two orthogonal matrices: 

      2 / ,
L L T L L T L L T       (5.7)                          1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1 1 4 2 3 3 2 1 1 4       2 / ,
L L S L L S L L S             2 / ,
L L T L L T L L T       , , , , ˆ45 2 35 1 25 2 15 1 L V L V L U L U    
(5.10) S and T are two commuting spins which generate SO(4) transformations.

The generating matrices are: 

         ) ( 2 2 8 1 7 2 6 1 5 1 4 2 3 3 2 1 1 5 V u V u U u U u S u S u S u I u H                                 2 / ,
L L S L L S L L S             2 / ,
L L T L L T L L T          , 2 1 , 2 1 16 25 2 26 15 1 L L U L L U        , 2 1 , 2 1 16 25 4 15 26 3 L L U L L U        , 2 1 , 2 1 36 45 2 46 35 1 L L V L L V         36 45 4 35 46 3 2 1 , 2 1 L L V L L V    
(5.13)

In addition we also have 56

L

The generating matrices of Cartan-Weyl basis are: 

          ) ) ( ( 2 2 8 1 7 2 6 1 5 1 4 2 3 56 3 2 1 1 8 V u V u U u U u S u S u L S u I u H                                    1 2

The Polycylindrical coordinates

We consider the complex numbers   

n i i 2 ,..., 1 ,   . A-For n=1       2 , 0 , , , 1   i re z r B-For n=2 2 1 2 2 1 1 ,             2 / , 0 , sin , cos 2 1 2 1          i i e r z e r z
Following the notations of Euler's angles [START_REF] Edmonds | Angular Momentum in Quantum Mechanics Princeton[END_REF] we write: It is easy to verify that:

      2 1 , . C-For n=3 ), ( ) ( ), ( ) ( 4 3 2 1 2 4 3 2 1 1                   ) ( ) ( ), ( ) ( 4 3 2 1 4 4 3 2 1 3                   3 2 3 1 3 1 4 2 1 2 3 1 3 2 1 1 sin sin , sin cos cos sin , cos cos             i i i i e
2 2   i i z r (6.2)
The invariant metric in this case is:

2 2 / 1 2    N i i N dz ds (6.3)
We therefore conclude that the number of angles

} { i  is 2 n-1 , the number } { i  r cosθ 1 sinθ 1
Tree of coordinates N=2 n is 2 n-1 -1, and it follows that the total number of variables is 2 n . D-We emphasize that the transformation

  } { } , { 2 1 i i i       is a matrix M N / 2.

The Schrödinger equation in N-dimensional harmonic oscillator

The time independent Schrödinger equation for a particle of mass M in N-dimensional space has the form [START_REF] Granzow | N-dimensional orbital angular momentum operator[END_REF][START_REF] Messiah | Mécanique Quantique Tomes I et II E[END_REF][START_REF] Das | [END_REF]]

   E r M M N     ) 2 1 2 ( 2 2 2  (6.4)
Where N  is the Laplacian operator:

      N i i N x 1 2 2 / (6.5)
We write the wave function by:

), ( ) ( ) , (     Y r R r With   2 1 1 2 1 ,..., , ,..., ( N N        (6.6) ) (r R And ) ( Y
are the radial and angular parts of the wave functions. To determine the eigenfunctions of the oscillator it is important to firstly determine the expression of Laplacian in terms of the polycylindrical coordinates and then we calculate

) (r R and ) ( Y
by the separating of variables method.

Expression of Laplacian

The invariant metric on the manifold is:

  N j i j i ij N dx dx g ds , 2 (6.7) 
And the invariant Laplace-Beltrami operator is

ij ij ij j ij i N g g g g x g g x g ) ( ), det( , 1 1                (6.8) We derive , 1 2 2 1 1 r r r r r S N N N                   (6.9)  S
 is the Laplace-Beltrami operator on ν-sphere S ν .

Louck [START_REF] Louck | [END_REF] define the total angular-momentum by 2 L and find that is given by: 1 ,

1 2 1 1 2 2            N k L L k i i j ij S   (6.10)
The eigevalues of the Laplace operator  S  on a ν-sphere S ν are -ℓ (ℓ + ν -1).

, 0 ) ( ) 1 ( ) (        Y l l Y S   (6.11)

Expression of radial Harmonic oscillator

The wave function of radial part by: 0

) ( ) 2 ( 1 2 2 2 2 2 2               r R r r N dr d r N dr d    
(6.12) R (r) was determined from long time by several authors and by different methods [START_REF] Das | [END_REF][START_REF] Grosche | Handbook of Feynman path Integrals[END_REF] and therefore we will give only the result:

) ( ) ( ! 2 ) ( 2 ) 1 ( ) 2 ( 2 2 , 2 r L r e p p r R p N r p N               (6.13) With , 2 , 2       N p N  ) 2 / 2 ( N p E      (6.14)

The cylindrical basis of the N-dimensional harmonic oscillator

We simply determine the proper functions of N-dimensional harmonic oscillator for N = 2, 4, 8, with the help of a formula of Vilenkin [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF].

The cylindrical basis of harmonic oscillator

The invariant metric is

2 2 2 2  d z ds   (7.1) and ) 
( ) ( ) ( 2 2 2 2     Y m Y Y S       (7.
2)

The solution is:

   2 ) ( im e Y  (7.
3)

The solution of the cylindrical basis is:

   im p pm e r R ) ( ) , ( , 2    (7.4)

The basis of 4-dimensions of harmonic oscillator

The invariant metric is given by

2 2 2 2 1 2 2 2 2 2 1 2 1 2 3 sin cos ) (        d d d dz dz ds      (7.5) ) 2 sin( 2 1 cos sin 1      g (7.6)
The Laplacian is then written: 

                              S (7.7)
To determine the solution of this equation we use the formula [START_REF] Gradshteyn | table of integrals series and products[END_REF]:

0 ) 1 ( sin ) 1 ( cos ) 1 ( sin cos sin cos 1 2 2                             Y l l q s s p r r Y q p q p          and 1    q p 
with l a positive integer number.

Put x tg v tg Y l s       2 , cos
We find the solution:

                   2 ; 2 1 ; 2 1 , 2 cos tg q s p r l s r l s F tg u l s (7.8)
This expression is written using polynomial Jacobi [START_REF] Piepenbring | [END_REF]:

) 1 1 ; 1 ; , ( 2 
1 ) 1 ( ! ) 1 ( ) ( ) , (                    z z n n F z n n z P n n       m j m j m j d          
We finally find:

           2 1 2 1 ) ' , ( ) (cos ) (sin / ) 2 ( ) (cos ) (sin p q j m m d u        (7.11) 2 1 , 2 1       p r q s   2 ' , 2 , 1 2 2 1                   m m q p l j ( 7.12) 
From expression (7.6) we deduce that p = q = 1, hence the solution is: [START_REF] Beg | [END_REF]:

) ( 2 / ) ( , 2 / ) ( 2 2 1 1 2 1 2 1 2 1 ) 2 ( ) , , (       m m i j m m m m j m m e d Y    
The wave function of 4-dimensional oscillator in of the cylindrical coordinates is:

) , , ( ) ( ) , , , ( 2 1 2 1 
, 4 ,       j m m pj m jm p Y r R r   (7.13)

7.3The basis of 8-dimensions of harmonic oscillator

The invariant metric in this case is

) sin cos ( sin ) sin cos ( cos 2 4 3 2 2 3 3 2 2 3 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 1 2 7              d d d d d d d ds        (7.14) ) 2 ) 2 sin( ) 2 ( sin 2 1 3 2 1 3 5     g (7.
15)

The Laplacian is then written

) ( sin 1 ) ( cos 1 ) 2 ( sin ) 2 ( sin 1 4 3 3 3 1 2 2 1 2 3 1 2 1 1 3 1 1 3 7             S S S                   We have 2 / , 2 / , , 2 2 1 1 2 1 l j l j l s l r     2 , 1 2 ' , 2 2 , 1 , 1 , 7 3 2 1 2 1 l l m l l m j r s q p                   
We get the angular function of (6.5)

: m m m e d d d Y        
The wave function of 8-dimensional oscillator in terms of the cylindrical coordinates is:

) , ( ) ( ) , , ( ) , , ( , 8 , , , 2 1 2 1 
  j j j m m m pj j j j p i Y r R   (7.16)

Appendix

We give the expressions of polycylindric coordinates for n = 4 and we present a new application of division algebras to "change the ideas". 

The Polycylindrical coordinates for n=4

                                  ………………………………………………………………………………………….
) 

                                 
The invariant metric in this case is 

The new simple application of division algebra

Ten years of work after retirement, (2004), [START_REF] Hage-Hassan | A note on the normalization of the momentum eigenfunctions and Dirac delta function[END_REF], I wanted to be "illiterate". The deception pushed me in the street one morning to relax and I found a lot of women who go to the market. This made me think of the movie "God created woman" and: 1-Why god is masculine in all languages! "Break the left-right symmetry" 2-The definition of God in the Quran: "Who has never begotten and has not been begotten, and that no one is able to match!" a-So God is not composed of matter and is Pure Imaginary "As time" b-The imaginary in division algebras are: Complex, Quaternions and Octonion. This is reflected in the Christian religion by: the father, the son and saint-spirit (3 in1).

3 )

 3 The calculation of the Laplacian is simple and it is quite obvious that the angular functions of the wave functions are products of functions  

(2.10)

(5.9)

The generating matrices of Cartan-Weyl basis of SO(5)

The generators SO(5), N g =10, are:

(5.12)

The generating matrices of Cartan-Weyl basis of SO(6)

We The generators of SO(6) [START_REF] Piepenbring | [END_REF],N g =15, are: 

The generalized cylindrical coordinates and the N-dimensional harmonic oscillators

We introduce the polycylindrical coordinates to the resolution of the N-dimensions, N = 2 n , harmonic oscillator which are natural extensions of the cylindrical [START_REF] Karimi | Radial quantum number of Laguerre-Gauss modes[END_REF][START_REF] Grosche | Handbook of Feynman path Integrals[END_REF] and polypolar coordinates (3.1). We expose also the method of solving the Schrödinger equation and we give the radial function of N-dimensional Harmonic oscillator.