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Abstract

We consider 3D active plane rotators, where the interaction be-
tween the spins is of XY-type and where each spin is driven to rotate.
For the clock-model, when the spins take N > 1 possible values,
we conjecture that there are two low-temperature regimes. At very
low temperatures and for small enough drift the phase diagram is a
small perturbation of the equilibrium case. At larger temperatures the
massless modes appear and the spins start to rotate synchronously for
arbitrary small drift. For the driven XY-model we prove that there is
essentially a unique translation-invariant and stationary distribution
despite the fact that the dynamics is not ergodic.
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1 Introduction

Understanding nonequilibrium phase transitions is a major challenge of sta-
tistical physics, bearing many different aspects. Today not much of a sys-
tematic theory exists, with few experimental and even fewer mathematical
results. One important question of this multifaceted subject is to describe
the changes to the equilibrium phase diagram when a steady nonequilibrium
driving is added. The best known examples are driven diffusive lattice gases
— like boundary driven and asymmetric exclusion processes, see e.g. the
books [19] 5], including many results of computer simulations. The nonequi-
librium there originates from installing differences in chemical potentials or
from adding nonconservative external fields, and follows the prescription of
local detailed balance, [15]. In the present paper a uniform nonequilibrium
force drives the internal degrees of freedom, the planar rotating spins. The
spins take values on the unit circle and are placed on the sites of a regular
lattice. When mutually uncoupled, all spins undergo the same non-reversible
Markov evolution with a bias in the direction of rotation. The interaction
couples nearest neighbors, x ~ y, with energy following the XY-model,

H(p) == cos(ps =) (1)

for “angles” ¢,,x € ZP. The possible values of the angles determine the
nature of the spins. A first choice is to take ¢, = 27k/N,k=1,2,..., N on
the discrete circle with N possible values. For N = 2 that is the Ising model;
for N = 3 it is equivalent with the ¢ = 3 Potts model. The second possible
choice is formally obtained in the N 1 400 limit, and has a continuum of
values ¢, € [0, 27]. That truly corresponds to the XY-model where the spins
are plane rotators having unit length.

The purpose of the paper is to discuss the modification of the phase diagram
when a nonequilibrium driving is inserted that induces biased rotation of the
spins over the circle. By doing so the following phenomena can be addressed:
a) the uniqueness of the stationary distribution accompanied by breakdown
of ergodicity — in the sense that some initial data do not relax;

b) the presence of macroscopic dynamical coherence;

¢) the stability of equilibrium phases against small nonequilibrium driving;
We first briefly introduce each of these points, to realize them more concretely
in later sections.



1.1 Unique stationary distribution without ergodicity

Are there stochastic dynamics with a unique stationary distribution, which
are not ergodic? Without any further restrictions this question is easy and
not very interesting, with the answer being ‘yes’. For discrete time a simple
example is given by the two-state Markov chain

+1=-1—=4+1—=..., (2)

flipping deterministically at each time. Similarly, in continuous time we can
take the rotation over the circle with a constant angular speed v:

0(t) = 6(0) + vt mod 27 (3)

One wonders whether one can construct non-degenerate random processes,
which exhibit the above prototypical behavior. Of course, we must then
consider infinite-volume interacting particle systems and infinite probabilistic
cellular automata, since finite state non-degenerate Markov processes are
always ergodic.

For the case of probabilistic cellular automata (discrete time parallel up-
dating of spins), a construction, mimicking the behavior (2] is presented in
a recent paper by [3]. However, the example of [3] still has some degeneracy,
because for every time T one can present two local events, A and B, such
that the transition probability pr (A|B) in T steps vanishes. Thus, we feel
that a truly non-degenerate discrete time example is still missing. We be-
lieve that the discrete time version of our 3D driven clock model gives such
non-degenerate example.

Our constructions below present the case of rotating interacting spins in
continuous time. The rotation speed v in (3] will be induced by the nonequi-
librium driving, and the angle # should be thought of as the order parameter,
or collective phase, of the model. The dynamics will be nondegenerate, as
local fluctuations in the phase are allowed. See Theorem [7] for the precise
result.

1.2 Macroscopic coherence

Not surprisingly, the mechanism above connects with the old but still not
completely resolved question of whether macroscopic dynamical coherence
or pattern formation in spatially extended systems can be obtained by local



translation-invariant and non-degenerate updating of spins and whether that
is even possible for a continuous time (sequential) dynamics and for dynamics
that satisfy detailed balance, [4, [5]. In fact, an example with that flavor was
recently described in [I8]. There an infinite queuing network was considered,
with several types of clients and with exponential service times. In the high
load regime the system exhibits coherent behavior. That means that if the
initial state of the network is close to the ‘coherent’ one, characterized by
a given value of the ‘phase’ observable (which takes values on the circle),
then in the process of evolution this phase evolves with a constant speed, is
never ‘forgotten’, and the initial synchronization is never broken. Still the
system has a unique stationary distribution, with the phase being uniformly
distributed over the circle. In the language of queuing networks it is an
example of violation of the Poisson hypothesis. Yet, this example lives not
on a lattice with short range interactions, but on a mean-field graph (which
is, in some sense, an infinite complete graph).

There is also a vast literature on the emergence of synchronized rotators using
variants of the so called Kuramoto model; for a review, see [I]. Recently, a
mean field analysis for active rotator models was carried out in [12], which for
some choice of the drift is the mean field version of the model we consider later
in (7). We believe that rotating states emerge in low temperature uniformly
driven N-clock models, if N is sufficiently large. See the conjectures in
Section [3]

1.3 Stability of equilibrium phases

When the equilibrium model has finitely many macroscopic phases in some
regime of its parameters, then we expect that these remain in place for small
driving. Below a critical driving, the changes in basin of attraction and in
macroscopic appearance will be small. To understand the nature of that crit-
ical driving, one must realize that the stability of equilibrium phases requires
some sort of free energy barriers, or, in particle language, the excitations must
be massive. Therefore, the presence of soft modes, or Goldstone bosons, can
break stability. In the context above, that means that the critical driving
(the minimum we need to truly disturb the phase diagram) will go down as
N 1 +00. See conjectures [3H4] for more precise speculations.

The following Section 2] contains the details of the nonequilibrium model
— driven N-clock models — together with a summary of the situation in equi-
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librium. Section [Blis devoted to what we believe happens for finite N; these
are mostly a collection of conjectures in which we firmly believe but where
the proofs are missing. Some of this is remedied in Section [ for the driven
XY-model where the picture is more complete. The main result is that the
3D driven XY-model shows nonergodicity, while having a unique stationary
translation invariant distribution, at (almost) all low temperatures.

2 The N-Clock Model

The N-clock model is an interacting particle system that lives on Z?. At each
site x € Z? there is a spin 0, € Zy, where Zy C S* C C! is the group of N-th
roots of unity. Each spin o, has its clock, and when the clock rings, the spin
jumps to one of the two ‘nearest’ values: o, — 0= = exp {:I:%} 0. That
is equivalent to introducing the angles ¢, with o, = expip,, ¢, = 27k/N,
k=1,2,...,N, and moves ¢, — ¢, = 27/N. In what follows we will use
the notation ¢ () for exp {ip}, ¢ (p) € St € C!, so in particular

2
Op — af =( (i—%) Oy

The particles are interacting, with the energy given by (Il). We define the
rates ¢ (z,0, %) of the jumps o, — o= of the spin o, in the environment o
at inverse temperature 3 by

c(z,0,%) = piexp {g > {cos (som —py %ﬁ) — cos (¢g — @y)} } (4)

Y~z

(sum over nearest neighbors y of x € Z3), where the numbers p, > p_ > 0 are
two extra parameters. Their difference is measured by d := log (p+ / p_) >0
and is called the drift. One can imagine it as the coupling of the planar
rotator with a magnetic field that acts perpendicular to the plane. We call
the above model the ‘N-Clock model” with a drift. (Of course, the drift does
not make sense for N = 2 (Ising model).)

We first describe the properties of the symmetric Clock model, when
the drift d = 0. Note that in this case the evolution defined above satisfies
detailed balance. That is what we call the equilibrium or symmetric Clock
model. Then, the Gibbs measures for (II) are reversible stationary measures.
We can thus use the results of [9], theorem 4.6:
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Theorem 1 (symmetric Clock model) There exists a value 5y of the inverse
temperature, such that for every 5 > By and every N > 2, the symmetric N -
Clock model has at least N different extremal stationary distributions, (). s,
(p = C(%) Jk = 1,...,N. These states are translation-invariant, exhibit
long-range order and are magnetized:

2mik

(02)e, s =mn (B) e, withmy (B) >0 for B> f.

(Here we interpret the spins o, as elements of CL.)

Observe that the finite 8y above remains the same for all N > 2, which
makes the Theorem unreachable for the standard low-temperature analysis
based on the Peierls condition. For example, the Pirogov-Sinai theory [17, 21]
would establish the stability of the NV ground states only for g > 5%, where

15 — 0o as N — oo. The reason for that is not purely technical: indeed,
in the domain of validity of the Pirogov-Sinai theory one necessarily has
additional properties of the pure phases, such as the exponential decay of
the truncated correlation functions. However, we believe that in reality such
exponential decay holds only for low enough temperatures, 8 > 3%, with
B¢ — 0o as N — oo, so the PS-method can not be improved to reach 3.
Moreover, we think that the following is true:

Conjecture 2 There exists a value N, such that for each N > N the 3D
symmetric N-clock model undergoes two phase transitions. Namely, for all
B> B$ it has N pure magnetized phases, with exponential decay of truncated
correlations, with B — oo as N — oo. For smaller intermediate values of 3,
BG > B > BS it also has at least N pure phases with non-zero magnetization;
however, the correlation decay in these phases is only algebraic. (A stronger
recent conjecture of [0] even talks about a continuum of pure phases, (-)Cﬁ,
¢ € S'.) Finally, for B < BY the model has only one Gibbs state, again with
exponential decay of correlations.

We know from [2] that there is no intermediate phase for the Ising model,
hence N > 2. The conjectured behavior is somewhat similar to the one
for 2D Clock models; it was proven in [II] that these indeed undergo a
Berezinskii-Kosterlitz-Thouless phase transition. There, massless Goldstone
modes appear (hence our notation 3%).



3 Conjectures for the driven Clock-model

We now discuss the situation with non-zero drift d, (where we do not have
detailed balance). Let us run our N-Clock model with a drift for a time
duration 7, starting in one of the equilibrium phases (-)¢, 3. Let us denote
the resulting state by ()25

Conjecture 3 For every N > N, B > B% there exists a critical value
der (B, N) of the drift, 0 < d.. (5, N), such that the following holds:

1. if |d| < de (B, N), then the state (- )B’d approaches the state (- )ﬁd, as
T — oo, which is magnetized:

<00>g,d # 0

and is close to ()¢, s for small d, in the sense of expectations of local
observables;

2. ifd > d. (8, N), then the state (- >B§ is a ‘rotating’ state as T — oo (in
particular, it has no limit as T — oo ). Namely, there ezist two periodic
functions: m (T) =m (T;8,N,d) >0 and ®(T)=®(T;5,N,d), i.e.

m(T+w)=m(T), ®(T+w)=d(T),

with period w being the mean angular velocity, w = w (B, N,d), and a
phase shift or, = ¢r (6, N,d), such that

o VT — i (T) D0 | 5 (0 g5 T — 0. 5
B.d

(Here we again are treating the spin o, as belonging to C'.)

It is interesting to compare the curve of the states (-)%" 5q+ 1 >0, with the
conjectured ([6]) pure phases of the symmetric clock-model, (-). 5, ¢ € S,
One cannot be stopped from guessing that perhaps for every T we have

(V5% = (Ve for some C(T) = ( (T, k,d, ) € S
The next conjecture deals with the behavior of the critical drift d., intro-
duced above.

Conjecture 4 The critical drift is positive at low temperatures. It decreases
to become zero at B$:

de (B, N) =0 for B < B < B%.



The rationale behind this conjecture is that at temperatures above (ﬁﬁ) !
the N-Clock model enters into the spin-wave phase or Goldstone modes
regime and so qualitatively should behave like the XY-model, which is in
the rotating phase for any non-zero value of drift, see below. This similar-
ity of the intermediate phases with the XY-model is the basis of all our
speculations. Hence, we believe in the following

Conjecture 5 For every 3 large enough there exists N = N (), such that
for any N > N () and for all d > 0 the N-Clock model with a drift d has a
continuum of different rotating states.

One might wonder whether there is a difference between the structure of
the stationary states in the Pirogov-Sinai regime and in the Goldstone modes
regime, when d > d,,. (6, N), i.e., when we are in the regime of rotating states.
We expect the answer to be positive:

Conjecture 6 1. Rotating soft modes. In the regime [ € ( f\}’,ﬁﬁ),

d > 0 there is a unique stationary distribution, ()sﬁtd It is translation
wmvartant and has zero magnetization. It is given by the limit

THw

(Vgq = Jim (V5 dT (6)

T—oo Jp
(which does not depend on k).

2. Rotating PS. In the regime 3 > 5, d > d.. (3, N), in addition to
the time-stationary translation invariant state (@) there are also time-
stationary non-translation invariant states (the ‘Dobrushin’ states). They

are given by the same formula (@), where instead of the states <>§§

one should use the states ();ZT The latter are obtained by starting
the driven N-Clock dynamics with the measure dy that gives weight 1

to the configuration

e2mki/N for z1 >0
O-Z':{Z'l,Z'Q,Z'g} = eQW(k-ﬁ-%)’i/N fOT ) < O

and where we suppose for simplicity that N is even.



The Dobrushin time-stationary non-translation invariant states have a
rigid interface at the level 1 = 0. In a typical configuration drawn from such
a state the spins on different sides of the interface are pointing in (approxi-
mately) opposite directions, though the direction itself can be arbitrary. One
should remember here that no Dobrushin states exist in the 3D XY-model,
as shown in [I0]; see also the discussion in [20]. In fact, it is argued in [10]
that there are no non-translation invariant states at all in the 3D XY-model.
This is the basis of our Conjecture [6l More precisely, we believe that in
all cases there is a unique translation invariant stationary distribution for

B> B, d>d.(5,N).

4 The three dimensional XY-model: main re-
sult

The dynamical XY -model with a drift — called dXY model below — can
be obtained from the energy (Il), and the dynamics () by taking the limit
N — oo, in a diffusive rescaling of time by ¢t — ¢t/N?. Alternatively, it is a
3D model of coupled Brownian motions .,z € Z3, on circles ¢, € S' C C.
The Brownian motions ¢, have a constant drift, d, and they are interacting
via the nearest neighbor attraction ({l). The dynamics for ¢,(t) € [0, 27] is
then as follows: modulo 27,

OH 2
diet) = d dt = 5= di + \@ AW, (1), (7)

where the W, (t) are independent standard Wiener processes and

oH
0py

> sin(pa(t) = ¢y (1))

Yy~

The formal generator of this process, acting on local smooth functions f is

Lf:L0f+dZ§£
OH of 1 8?
W =X 5 5 5 0] )



Observe that Ly commutes with the new generator for the driven model:
[L, Lo] = 0 because for all z,

0*H
8%8%

Of course L — Ly generates independent rotation on each angle with an-
gular speed d and thus commutes with the generator Ly of the (undriven)
XY —model. In other words, the dynamics of the XY —model can be inter-
changed with uniform rotation of all spins.

Much of the equilibrium structure of the XY-model is known. At low
temperatures 37! the 3D XY -model has a continuum of translation-invariant
Gibbs states. They can be obtained as thermodynamic limits (-). 5 of the
finite-volume Gibbs states with coherent boundary conditions ¢, = ¢ €
St. outside the volume. These translation invariant states have non-zero
spontaneous magnetization,

{v0)¢,g =m(B) ¢, with m () >0,

see [§].
Here is our main result. Consider the set S of stationary and translation-
invariant distributions for the d XY —model.

Theorem 7 The set S is a singleton for almost all temperatures, while at
sufficiently low temperatures there exist rotating states as in Conjecture [3.2:

(V50 = (Verars-

Proof. We start by repeating that the evolution of the random variables
U (1) = @, (t)—dt is that of the XY -model with zero drift. If therefore p is a
stationary distribution for the d XY —model, then p is periodically repeated
under the symmetric XY-dynamics. Suppose now that p is translation-
invariant. Then, Holley’s argument shows that p is in fact a translation
invariant Gibbs measure for the XY-model, [14]. Moreover, ;1 must then be
rotation invariant (S'-invariant) since stationary states of the dX'Y —model
have zero magnetization. From [16] it then follows that y is unique for almost
all temperatures.
On the other hand, at low temperatures 3~! the 3D XY-model has a con-
tinuum of translation-invariant Gibbs states. These phases of the XY -model
correspond in an evident way to rotating states of the dXY —model. These
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rotating states then do not converge to a stationary state of the dX'Y model.
[ |

Remarks:

1. The Gibbs field (-)§ , defined by

OF = [ Ocatc

is S'-invariant. We believe that for all 3 the state (-) 5 1s the only translation-
invariant Gibbs state of the XY-model, which is S'-invariant, which would
remove the “almost all”. (This statement is proven to hold for the X'Y-model
for almost all values of 3, [10].)

2. Note, however, that by changing the interaction from cos (¢, — ¢,) to

1+cos(pa—py) \*
2

we obtain an example of a system which at some temperatures has at least
two translation-invariant S'-invariant Gibbs states (for p large enough), see
[7].

—i.e. by passing to the so-called ‘very-nonlinear o —model” —
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