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Modal method for second harmonic generation in nanostructures

A modal method for the study of second harmonic (SH) generation in nanostructures is depicted both for plane waves and focused beam illumination. It is based on the B-spline modal method, and relies on the undepleted pump approximation. The nonlinear polarization induced by an incident plane wave or a focused beam generates a source term at the doubled frequency. The latter is divided into a finite number of sub-sources, and the SH field is subsequently computed by integration of these sub-source contributions.

INTRODUCTION

In the near-and the mid-infrared, nanostructured devices are giving promising results for controlling the localization of the electric field and for strong intensity field enhancement [START_REF] Bouchon | Total funneling of light in high aspect ratio plasmonic nanoresonators[END_REF][START_REF] Grosjean | Diabolo nanoantenna for enhancing and confining the magnetic optical field[END_REF][START_REF] Novotny | Antennas for light[END_REF][START_REF] Chevalier | Giant field enhancement in electromagnetic Helmholtz nanoantenna[END_REF]. Since nonlinear optics processes benefit from a large enhancement of the local electric field, such nanostructures are very promising [START_REF] Kim | Highharmonic generation by resonant plasmon field enhancement[END_REF][START_REF] Schuller | Plasmonics for extreme light concentration and manipulation[END_REF][START_REF] Genevet | Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings[END_REF][START_REF] Kauranen | Nonlinear plasmonics[END_REF]. Their design and optimization need fast numerical simulation tools. So far, various numerical methods have been presented to account for nonlinear processes in periodic nanostructures [START_REF] Bravo-Abad | Modeling nonlinear optical phenomena in nanophotonics[END_REF]. In particular, methods have been developed for computing the second harmonic (SH) generation based on the Green function method [START_REF] Borisov | Second harmonic generation from arrays of sub-wavelength cylinders[END_REF], the Dirichlet-to-Neumann map [START_REF] Yuan | Analyzing second harmonic generation from arrays of cylinders using dirichlet-to-neumann maps[END_REF], the boundary element method [START_REF] Mäkitalo | Boundary element method for surface nonlinear optics of nanoparticles[END_REF], the surface integral method, [START_REF] Butet | Secondharmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach[END_REF] or the finite difference time-domain method [START_REF] Francés | Tensorial split-field finitedifference time-domain approach for second-and thirdorder nonlinear materials[END_REF]. In addition, modal methods are known to be efficient for the study of a stack of nanostructured layers, and the Fourier modal method has been adapted for the study of SH generation [START_REF] Nakagawa | Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation[END_REF][START_REF] Bai | Fourier modal method for the analysis of second-harmonic generation in two-dimensionally periodic structures containing anisotropic materials[END_REF][START_REF] Paul | A numerical approach for analyzing higher harmonic generation in multilayer nanostructures[END_REF].

More recently, the B-spline modal method (BMM) was introduced to solve linear electromagnetic problems [START_REF] Edee | Analysis of defect in extreme uv lithography mask using a modal method based on nodal b-spline expansion[END_REF][START_REF] Bouchon | Fast modal method for subwavelength gratings based on b-spline formulation[END_REF][START_REF] Walz | B-spline modal method: a polynomial approach compared to the Fourier modal method[END_REF][START_REF] Granet | Efficient implementation of b-spline modal method for lamellar gratings[END_REF]. In this method, the eigenvalue equation describing the electromagnetic problem is sparse, allowing the calculation speed to increase by solving the problem for only a few eigenmodes. Additionally, the B-splines can be nonuniform which allows for a better description of permittivity breaks. In this article, we adapt the BMM to map the SH field throughout periodic nanostructured layers for plane waves (of arbitrary incident angle) under the undepleted pump approximation. In addition, to simulate experimental setups with a focused incident light, we develop a computation of SH field for a cylindrical focused beam at the fundamental frequency. In Section 2, the consecutive steps involved in the computation are depicted, both for plane waves and focused regimes. Then, in Section 3, numerical examples are described and the convergence of the method is investigated.

THEORETICAL APPROACH

In this section, a layered nanostructure, invariant along the y direction and periodic along the x direction (period d), is considered (see Fig. 1). The layer B, structured along the x direction, is surrounded by two semi-infinite media, A and C. The interface between A and B (resp. B and C) is noted α (resp. β). The incident plane wave is TE-polarized (i.e., the electric field is along the y direction) and impinging on the grating at oblique incidence, making an angle θ with the z axis. The SH wave is also TE-polarized. The theoretical method to compute the generated SH field in periodic nanostructures is detailed first for a single plane wave of frequency ω, and is then generalized to a focused beam.

A. Method for Plane Wave SH Calculation 1. Construction of the Fundamental Field

In layer B, the field at the fundamental frequency is computed thanks to the BMM [START_REF] Bouchon | Fast modal method for subwavelength gratings based on b-spline formulation[END_REF]. In this method, the electric field is interpolated on N samples on the x axis with a nonuniform basis of B-splines, which are piecewise continuous polynomials of degree p [START_REF] Boor | A Practical Guide to Splines[END_REF]. This field is determined through a modal equation M B e m k 2 m e m in TE-polarization, where M B is a N × N matrix deduced from the Maxwell and constitutive equations, the scalar k m is the mth mode wave vector along z, and the vector e m is the complex amplitude of the electric field of the mth mode at the sampling points. The eigenvectors are gathered in a matrix E ω B , whose mth column corresponds to the eigenvector e m . E ω B being computed, H ω B for the x component of the magnetic field can also be calculated. The complex y component E of the electric field and x component ℋ of the magnetic field, at the sampling coordinates x and fixed height z, can be represented as superpositions of two waves, one upgoing and the other downgoing in the structure:

EzE zE -z;
(1)

ℋzℋ z -ℋ -z: (2) 
These terms are vectors of size N because of the sampling along x over one period. The fields are written at the time frequency ω, thanks to their projections on the eigenmodes basis:

E zE ω B diage ik m z-z 0 U z 0 ; (3) 
ℋ zH ω B diage ik m z-z 0 U z 0 : (4) 
To find the total fields, it suffices to find the two vectors of the mode amplitudes U , which are given relatively to a height z 0 , and to propagate them in the eigenmodes basis (e -iωt is omitted). To this end, the scattering matrices at each interface are determined thanks to the continuity of the tangential electric and magnetic fields (see Fig. 2) [START_REF] Li | Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity[END_REF]. For instance, S α BA stands for the transmission scattering matrix from medium A to layer B, and S α BB for the reflection scattering matrix on interface α in layer B.

The electric field is thus obtained in layer B at any z:

E B zE ω B P α z P β z S β BB P α β ΓS α BA U -z α ; (5) 
where Γ I -S α BB P β α S β BB P α β -1 , and P α z (resp. P β z ) is the propagator from interface α (resp. β) to height z:P z 1 z 2 diage ik z jz 2 -z 1 j . U -z α is the vector for the incident downgoing wave at interface α in medium A.

Construction of the SH Field

In the following, all the equations and fields are given at the doubled frequency 2ω. The grating layer B comprises a nonlinear material for which it is assumed a second order nonlinear susceptibility of the type χ 2 yyy χ 2 , and χ 2 xyy χ 2 zyy 0. Thus, it induces the complex second order nonlinear polarization [START_REF] Boyd | Nonlinear Optics[END_REF]:

P 2 2ω;zε 0 χ 2 2ω;zE 2 B ω;z: (6) 
This term generates a SH field E 2ω , which is calculated in the following. The total field at 2ω is obtained by linear superposition of the fields generated in the structure by independent polarization layers. The undepleted pump approximation is used to state that the fundamental field stays unperturbed through the nonlinear process.

At every height z, a sub-layer of thickness dz acts as a source creating a fraction of the SH field. Thus, to determine the field generated by a single sub-layer at height z, we first consider that it is the only source in the whole system. For the generated fraction of the x component of the magnetic field dℋ at 2ω, the integration of the Maxwell-Ampere equation over regions of thickness dz 0 on a period d gives dℋz -dℋz --2iωP 2 zdz;

where z z dz 2 . Then, Eq. ( 7) is projected on the eigenmode basis thanks to Eqs. ( 2) and ( 4):

dU z -dU -z -dU z -dU -z - -2iωℋ 2ω B -1 P 2 zdz: (8) 
In addition, the continuity of the electric field across the sub-layer, and the reflection scatterings at interfaces β and α give the following equations (see Fig. 3): dU z dU -z dU z -dU -z -;

(9) dU z -M β dU -z -; (10) 
dU -z M α dU z ; [START_REF] Yuan | Analyzing second harmonic generation from arrays of cylinders using dirichlet-to-neumann maps[END_REF] where M i P i z S i BB P z i are functions of z i α; β. Equations ( 8)-( 11) can be reduced to the following system:

M β dU -z -dΠzdU z ; (12) 
M α dU z dΠzdU -z -; (13) 
where dΠz-iωP 2 zdz. The contribution of a single sublayer is then given by

dU z I -M β M α -1 M β IdΠz; (14) dU -z -I -M α M β -1 M α IdΠz: (15) 
Working in the limit dz → 0, one gets z z -z. Each sub-layer is considered linearly independent from the others. Then, the contributions of all the sub-layers are combined to obtain the value of the total SH field at 2ω:

E zE 2ω B Z z z β P z 0 z dU z 0 ; (16) 
E -zE 2ω B Z z α z P z 0 z dU -z 0 : (17) 
Nevertheless, the problem must be discretized for numerical processing, preventing the different sub-layers from being infinitely small. The infinitesimal quantity dz must then be replaced by a finite one, Δz.

B. Method for SH in Focused Regime

To design nanostructures, it is more significant to use focused beams as inputs rather than plane waves to take their experimental characterization into account. Here, a method is depicted to numerically model beams focused along the x direction as they can be decomposed in a plane wave basis.

Construction of the Fundamental Field

The structure is supposed d-periodic along x, and the wavelength of the beam is fixed at λ. The incident beam is described by its electric field distribution E i x; z in the xOz plane as it is considered infinite along the y direction (see Fig. 4). To gain access to its plane wave spectrum, it can be written as an inverse Fourier in the reference plane z z 0 :

E i x; z z 0 1 2π Z R Ẽi k x e ik x x dk x ; (18) 
where the wave vector is k k x ;k z such that jkj2π∕λ.

The Fourier coefficients are given by

Ẽi k x Z R E i x; z z 0 e -ik x x dx: (19) 
An incident beam optically focused on a nanostructure does necessarily contain only propagative orders in its Fourier decomposition. It then reduces the space of integration to k x respecting the condition jk x j ≤ 2π∕λ, ensuring the existence of an associated real k z :

E i x; z z 0 Z jk x j≤2π∕λ Ẽi k x e ik x x dk x : (20) 
For the sake of numerical simulations, a discrete spectrum of k x is needed. To this end, a super-period of size D Md is considered. It contains a finite number M of periods, such that D is much larger than the spatial extent of the beam at z 0. This super-period D stands for the repetition period of the focused field: Ex D; zEx; z. This way, the fields can be written as a Fourier series over a discrete spectrum. Equation [START_REF] Edee | Analysis of defect in extreme uv lithography mask using a modal method based on nodal b-spline expansion[END_REF] for the incident D-periodic field E i D takes the form

E i D x; z z 0 X jmj<D∕λ Ẽi m e ik m x x ; (21) 
where k m x 2πm∕D and the wave vector is k k m x ;k z such that jkj2π∕λ. Note that the condition for propagating modes now turns to jmj <D∕λ. The Fourier coefficients are given by

Ẽi m 1 D Z D∕2 -D∕2 E i D x; z z 0 e -ik m x x dx: (22) 
The fundamental m components of the field E f k m

x x; z, resulting from the interaction between the incoming plane waves e ik m x x , and the nanostructures are then constructed through the modal method previously described. Each mode of the field respects the condition of pseudo-periodicity:

E f m x d; zE f m x; ze ik m x d
. This gives the relative phase between the various mode wave vectors k m

x from one period of the super-period to another. In a given period n, the total field can then be written thanks to the linearity of Maxwell equations:

E ω n x; z X jmj<D∕λ Ẽi m E f m x; ze ik m x nd : (23) 
This description working for cylindrical propagating beams, whose field distribution respects the 1D wave equation, can be generalized to 2D beams [START_REF] Chevalier | Electromagnetic modelization of spherical focusing on a one-dimensional grating thanks to a conical b-spline modal method[END_REF].

Construction of the SH Field

The following computation is similar to the previous construction of the fundamental field with some substantial differences: the first being the wavelength which is now equal to λ∕2. The first step consists of writing the complex second order polarization as a Fourier series:

P 2 D x; z X m 0 ∞ m 0 -∞ P2 m 0 ze ik m 0 x x ; (24) 
where k m 0 x 2πm 0 ∕D and the wave vector is k k m 0 x ;k z such that jkj4π∕λ. All the modes, including the nonpropagative ones, are taken into account. The Fourier coefficients are given by

P2 m 0 z 1 D Z D∕2 -D∕2 P 2 D x; ze -ik m 0 x x dx: (25) 
In Section 2.A.2, the nonlinear medium was decomposed into sub-layers generating fractions of the SH field from the source term P 2 x; z. Here each sub-layer generates a fraction of the SH field which is the sum of SH fields created from source terms for mode m 0 :P 2 m 0 ze -ik m 0 x x . The term dΠz now depends on m 0 :

dΠ m 0 z-iω P2 m 0 ze -ik m 0 x x dz: ( 26 
)
The SH field is then computed in one period for every mode m 0 , thanks to the method described in Section 2.A.2. The latter is found in the other periods through the pseudo-periodicity condition written for this SH field: E shg m 0 x d; z E shg m 0 x; ze ik m 0 x d . The total field in the nth period eventually reads

E 2ω n x; z X m 0 ∞ m 0 -∞ E shg m 0 x; ze ik m 0 x nd : (27) 
This result does not depend on the form of the nonlinear polarization, but is nonetheless limited to the undepleted pump regime. Propagation throughout the structure is also supposed to remain unperturbed by the presence of a nonlinear polarization term.

NUMERICAL RESULTS

A. Maker Fringes

Numerical simulations are performed in the case of Maker fringes in a 110 crystalline GaAs membrane (see Fig. 5), where a square sine function at a spatial frequency Δk k 2ω -2k ω 2n 2ω -n ω ω∕c is expected in the direction z of the incident plane wave [START_REF] Boyd | Nonlinear Optics[END_REF][START_REF] Maker | Effects of dispersion and focusing on the production of optical harmonics[END_REF]. The incident electric field is polarized along a 111 axis, and the following parameters are used: λ 2πc∕ω 5 μm, n 2 ω ε GaAs ω11.01, n 2 2ω ε GaAs 2ω 11.19 [START_REF] Kachare | Measurements of layer thicknesses and refractive indices in high-energy ion-implanted GaAs and GaP[END_REF] and χ 2 2∕ 3 p × 370 pm∕V (for polarization along the 111 axis) [START_REF] Boyd | Nonlinear Optics[END_REF]. The thickness of the crystal is equal to three times the coherence length L coh π∕Δk, and both faces have an anti-reflective coating at ω and 2ω, giving

jE 2ω zj 2 ∝ e -ik 2ω z sin Δkz 2 Δk - sin Σkz 2 Σk 2 ; ( 28 
)
where Σk k 2ω 2k ω appears to be the frequency of the negligible oscillations which can be seen on the inset. They correspond to the sum of the contributions of upgoing waves (dU ).

A Gaussian focused beam at ω is now incident onto the same structure, with a waist W 5 μm and carrying a power of P 10 mW. The expected solution for an incoming 2D collimated Gaussian beam is a Bessel function multiplied by a Gaussian envelope [START_REF] Boyd | Nonlinear Optics[END_REF]. Here the result must be adapted to take 1D collimation into account, giving an approximate normalized SH field distribution:

E 2ω foc x; z ∝ Ax; z q 0 z p e -ik ω x 2 ∕q 0 z-i2k ω z ; (29) 
where q 0 iπW 2 ∕λ, and

Ax; z iω ε 2 p c χ 2 Z z 0 e iΔkz 0 q 0 z 0 p dz 0 : (30) 
Figure 6(c) shows the evolution of the square of the SH field absolute value at the center of the beam with respect to z. The waist of the beam, at the entrance of the medium, is equal to W 5 μm. The computation is performed over a depth equal to three times the coherence length of the SHG process. The analytical and numerical curves are found to be in good agreement. The difference is mainly because of the fact that the analytical solution relies on the hypothesis that the SH field has the same confocal parameter b k ω W 2 as the fundamental beam. The absolute values of the fundamental and SH fields are also displayed in Figs. 6(a) and 6(b) as functions of x and z to show the shape of the beam. These amplitudes are normalized to the maximum value of the field at ω.

B. SHG Exaltation in a Grating of Nanorods

As this method aims at designing nanostructures able to greatly enhance the nonlinear processes, a single grating of cylindrical nanorods is studied. The behavior of this architecture has already been investigated both in linear [START_REF] Gómez-Medina | Extraordinary optical reflection from sub-wavelength cylinder arrays[END_REF][START_REF] Ghenuche | Optical extinction in a single layer of nanorods[END_REF] and nonlinear cases [START_REF] Borisov | Second harmonic generation from arrays of sub-wavelength cylinders[END_REF]. These works highlighted a need for a strong linear exaltation of the electric field inside the cylinders. For a given wavelength λ and diameter R, such a nanostructure exhibits reflectivity resonances for peculiar values of the period d.At2πc∕ω 5 μm and R 0.2d, a resonance is found for a sub-wavelength period, d 4.36 μm. Other involved parameters are ε rods 2, θ 8.25°, χ 2 2 pm∕V incident field, and jE ω j1 × 10 6 V∕m. For the parameters Δz 0.01R and N 200 (corresponding to the situation Δz ∼ 0.002λ), the resulting field maps to be compared with Ref. [START_REF] Yuan | Analyzing second harmonic generation from arrays of cylinders using dirichlet-to-neumann maps[END_REF] are displayed in Figs. 7(a) and 7(b). Circles are fitted with crosses as drawn on the field maps: the cross-shaped section of the rods has total sides of length R and branches of length R∕4. The difference between these results and those of the Ref. [START_REF] Yuan | Analyzing second harmonic generation from arrays of cylinders using dirichlet-to-neumann maps[END_REF] can be explained by the fact that circular sections are identified with cross-shaped sections. 

C. Convergence for a Grating of GaAs Nanorods

The convergence of the method is now investigated in the case of a grating of nanorods as a function of the number N of samples in a period along x and as a function of the discretization pace along z direction Δz. A grating (period d 4.9 μm) of GaAs nanorods with square section (R 0.2d) is studied. These nanorods are fabricated out of a 110 GaAs substrate and they are oriented along a 111 direction. The incoming light (2πc∕ω 5 μm) is TE-polarized and quasi-normally incident (θ 1°), and the amplitude of the incident electric field is jE ω j1 × 10 6 V∕m. First, to assess the convergence of the linear computed field, the relative error on the fundamental transmitted intensity is plotted in Fig. 8 as a function of N. Second, the relative error made on the value of the output zeroth order SH intensity as a function of N is displayed in Fig. 9 for Δz 10 -4 R, where I 2ω Δz 10 -4 R; N 1000 is taken as the reference value. This error decreases as N increases and goes under 10 -4 from N ≃ 200. This relative error is also displayed as a function of Δz for a fixed N 1000, with the same reference value. The same behavior is observed, highlighting the fact that the choices of Δz and N have to be balanced to obtain an accurate result.

CONCLUSION

A method for computing nonlinear effects in multilayered nanostructured media has been presented in this paper. On one hand, the method for plane waves works under the undepleted pump approximation and is efficient for a properly chosen z-sampling. It has been shown to converge with an increasing number of interpolations points and decreasing discretization pace along z. On the other hand, numerical simulations under a focused beam have been achieved by decomposing the incident light onto a plane wave basis. These results can be extended to 3D focused beams. Recent developments in the B-spline modal method have also introduced a Galerkin description which was shown to give even better convergence rates for linear problems [START_REF] Granet | Efficient implementation of b-spline modal method for lamellar gratings[END_REF].
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 12 Fig. 1. Typical setup of a grating layer (B) surrounded by two semiinfinite media (A, C) separated by two interfaces α and β. It is illuminated by a TE-polarized plane wave E. The incident wave vector k makes an angle θ with the optical axis z in the xOz plane. The structure is infinite along the y direction.

Fig. 3 .

 3 Fig.3. Scheme of the reflections and propagations undergone by the upgoing waves dU (resp. the downgoing waves dU -) in the nonlinear medium from height z (resp. z -). The sub-layer of thickness dz at height z generates a source term dΠz-iωP 2 zdz.

Fig. 4 .

 4 Fig. 4. Scheme of a cylindrical collimated beam. It is infinite along the y axis.
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 5 Fig. 5. Absolute square value of the SH electric field, normalized by the maximum value of the analytical curve for Maker fringes in 110 crystalline GaAs. The inset zooms in the oscillations at frequency Σk. Involved parameters are 2πc∕ω 5 μm, ε GaAs ω11.01, and ε GaAs 2ω11.19, θ 0°.
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 6 Fig. 6. Fields maps (a) of the focused fundamental field and (b) of the SH field in 1 10 crystalline GaAs, normalized to the maximum amplitude of the fundamental field. (c) Absolute square value of the SH electric field at x 150 μm as a function of z, normalized to the maximum value of the analytical curve. The waist W of the Gaussian beam is located at the entrance of the crystal and is equal to 5 μm. Involved parameters are 2πc∕ω 5 μm, ε GaAs ω11.01, ε GaAs 2ω11.19, χ 2 2∕ 3 p × 370 pm∕V, and θ 0°. The beam carries a power P 10 mW.
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 7 Fig. 7. Fundamental and SH absolute values of the electric field in the plane perpendicular to the rod axis of a grating of GaAs nanorods. The electric field is polarized along the rods. Involved parameters are period d 4.36 μm, R 0.2d, 2πc∕ω 5 μm, χ 2 2 pm∕V, ε rods 2, θ 8.25°, and incident field jE ω j1 × 10 6 V∕m. The cross-shaped section of the rods has total sides of length R and branches of length R∕4.
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 8 Fig. 8. Relative error on the value of the output fundamental intensity as a function of the number of interpolation points N, with the reference value I ω N 100017.33 GW∕m 2 . The structure is a grating of GaAs nanorods; involved parameters are period d 4.90 μm, R 0.2d, 2πc∕ω 5 μm, ε GaAs ω11.01, ε GaAs 2ω11.19, θ 1°, and incident field jE ω j1 × 10 6 V∕m.
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 9 Fig. 9. Relative error on the value of the output zeroth order SH intensity in the zero diffractive order (a) as a function of the number N of samples along x in a period for Δz 10 -4 R, and (b) as a function of Δz, the discretization pace along z direction for N 1000. The reference value is I 2ω Δz 10 -4 R; N 10001.817757 W∕m 2 . The structure is a grating of GaAs nanorods; involved parameters are the same as those in Fig. 8 with χ 2 150 pm∕V.