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Structured Abstract:  

The paper presents a new bond-slip model for reinforced concrete structures. It consists in an interface element 
(3D) which represents the interface between concrete (modeled in 3D) and steel, modeled using 1D truss 
elements. The formulation of the interface element is presented and verified through a comparison with an 
analytical solution on an academic case. Finally, the model is compared with experimental results on a reinforced 
concrete tie. Contrary to the classical perfect or ‘no-slip’ relation which supposes the same displacement 
between steel and concrete,, the proposed model is able to reproduce both global (force-displacement curve) 

and local (crack openings) results. The proposed approach, applicable to large scale computations, represents a 
valuable alternative to no-slip relation hypothesis to correctly capture the crack properties of reinforced concrete 

structures. 
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1. Introduction 

The validity of the models and more generally of the methodology for nonlinear computations 

developed to capture the mechanical behavior of concrete and reinforced concrete structures is 

generally obtained by comparing their performance with experimental results. The validation is 

performed on small-size specimens, where the elementary features of the models are tested 

(Ghavamian et al., 2003). When a satisfactory agreement is achieved in these initial configurations, 

more realistic computations can be imagined to evaluate the capacity of the models to reproduce 

real scale situations. But in these complex cases, regarding especially the dimensions of the problem, 

strong hypothesis has to be introduced to perform the numerical solution. When reinforced concrete 

structures are considered ((Parmar et al., 2014) or (Granger et al., 2001) for example), one of the 

most used hypotheses is to model the steel reinforcement as truss (or membrane) elements and to 

consider a no-slip (also called “perfect”) relation between steel and concrete. This no-slip relation is 

generally applied through cinematic relations between both models, using the shape functions of 

each element. But this hypothesis may have heavy consequences when the crack properties (spacing 

and openings) are studied, as the steel – concrete bond directly influences their evolutions 

((Eligehausen et al, 1982), (Fib, 2000), (Gambarova et al, 2000), (Eurocode 2, 2007) or (Jason et al., 

2013) for example). Indeed, cracking in reinforced concrete structures is generally driven by the 

stress distribution along the interface between steel and concrete. For example, in the case of a 

reinforced concrete tie, once the first crack appears in the weakest section, the concrete stress in the 

cracked zone drops to zero while the load is totally resisted by the steel reinforcement. The stresses 

are then progressively transferred from steel to concrete (Figure 1). This transition zone has an 

impact on the crack properties and is directly influenced by the steel–concrete interface (Eurocode 2, 

2007). Taking into account these effects seems thus essential to predict correctly the cracking of 

reinforced concrete structures. 

To understand the bond-slip mechanism, many experimental studies were carried out ((Lam and El-

Lobody, 2005), (Loh et al., 2004), (Nie and Cai, 2001) or (Dancygier and Katz, 2012) for example) 

through various experimental setups. Analytical approaches were then attempted to fit the 

experimental results ((Bradford and Gilbert, 1992) on partial composite beam analysis or (Dezi et al., 

1993) with the solution of the governing differential equation using the finite differential method). 

Numerical studies were also carried out, based on a double node concept to represent the relative 

slip between a concrete slab and a beam ((Gara et al., 2006), (Gattesco, 1999) and (Queiroz et al., 

2009) among others).  

 

Figure 1. Distribution of stresses in steel and concrete in a reinforced concrete tie after the first crack ( c

and s are the stresses in concrete and steel respectively, and 
st

c  is the concrete strength). 
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This approach is easily applicable within the finite element formulation, but it increases significantly 

the number of degrees of freedom and also complexity in the mesh definition.  Ngo and Scordelis 

(1967) proposed a spring element to relate concrete and steel nodes, associated to a linear 

constitutive law. To improve the description of the bond law, an interface element in 2D was 

introduced by Brancherie and Ibrahimbegovic (2009) or Dominguez et al. (2005) which enables the 

use of a nonlinear law.  Dominguez (2005) and Ibrahimbegovic et al. (2010) finally proposed an 

embedded element in which the bond behavior is described through an enrichment of the degrees of 

freedom.  

Even if these approaches propose a correct description of the bond mechanism between steel and 

concrete, they also have their own limits, especially in cases of real scale applications, such as 

meshing problems (explicit representation of 3D steel geometry), element direction or computation 

time which is very costly for large-scale applications (enriched elements like in (Dominguez, 2005)). 

That is why alternative solutions have been proposed ((Casanova et al., 2012) for example), first to 

represent the effects of the steel-concrete bond but also to be adapted to large scale applications 

(truss steel elements) with no need to explicitly mesh the steel-concrete interface (like in Dominguez 

et al., 2005 for example). Based on this principle, a new interface element is presented in this 

contribution. In a first part, the equations and the numerical implementation of the so-called “coaxial 

element” will be described. Then it will be verified by a comparison to an analytical solution on an 

academic problem. Finally, the model is compared with experimental results on a monotonic 

reinforced concrete tie.   

2. Description of the bond slip model 

In this contribution, a new interface element is developed, based on the initial work from Casanova 

et al. (2012). It is a zero thickness four node element which relates each steel truss element with a 

segment superimposed with the steel element and perfectly bonded to the surrounding concrete 

(Figure 2). The perfect bond is done by imposing a similar displacement using the shape functions of 

the concrete element. Each node of the interface element has three degrees of freedom 

(translations). The following sections present the kinematics relations, the stress-slip relations and 

the numerical implementation. 

2.1. Kinematics relations 

As previously mentioned, the four node interface element is associated to 12 degrees of freedom 

 u  which can be written in the local direct reference frame as: 

   
1 2 1 2 1 2 1 21 1 1 2 2 2 3 3 3 4 4 4, , , , , , , , , , ,

T

t n n t n n t n n t n nu u u u u u u u u u u u u      ( 1 ) 

 

Figure 2. Principle of the interface element 
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Figure 3. Degrees of freedom of the interface element 

 

Figure 4. Definition of the slip between steel and concrete in the interface element in the ( t , 
1

n ) plane 

t  is the vector tangential to the direction of the steel truss element. 1n  and 2n  are chosen to 

represent a direct reference frame (Figure 3). The slip between steel and concrete node is then 

computed using the following expression (Figure 4): 

     3 3 3 3

3 3 3 3

0 0

0 0
node

I I
u N u

I I


 
  
  

       ( 2 ) 

with : 

   
1 2 1 21 1 1 2 2 2, , , , ,

T

node t n n t n n               ( 3 ) 

and 

3 3

1 0 0 0 0 0

0 1 0  ; 0 0 0 0

0 0 1 0 0 0

I

   
   

 
   
      

        ( 4 ) 

Considering the linearity of the slip along the interface element, the generalized slip  ( )p  can be 

written as: 

   
1

2

1 2

( )

( ) ( ) ( ) ( )

( )

t

n node

n

p

p p B p B p

p



  



 
          
  

       ( 5 ) 

 

with: 
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1 3

2 3

( ) 0.5(1 )

( ) 0.5(1 )

B p p I

B p p I

 

 

          ( 6 ) 

and  

1 1p              ( 7 ) 

 Combining equations ( 2 ) and ( 5 ), it comes : 

      1 2 1 2( ) ( ) ( ) ( ) ( ) ( )p B p B p B p B p u B p u     
  

     ( 8 ) 

It is to be noted that the hypothesis of linearity for the slip is valid as linearity is supposed for the 

displacement. 

2.2. Stresses and nodal forces in the interface element 

The stresses  
1

2

( )

( ) ( )

( )

t

n

n

p

p p

p



 



 
  

  
 
  

in the interface element are direct functions of the slip ( )p . 

In the tangential direction, the tangential stress t is computed from the tangential slip following the 

recommendations from Torre-Casanova et al. (2013) (bond stress – bond slip relation (Eligehausen et 

al., 1982) for example) (Figure 5 for the monotonic case): 

( ) ( ( ))t tp f p            ( 9 ) 

The bond slip law f is especially driven by the maximum bond stress 𝜎𝑡,𝑚𝑎𝑥 and its corresponding 

tangential slip 𝛿𝑡,𝑚𝑎𝑥 and by the residual bond stress 𝜎𝑡,𝑓 and its corresponding tangential slip 𝛿𝑡,𝑓, 

which can be functions of the concrete cover (see (Torre-Casanova et al., 2013) for more details). 

 

Figure 5. Example of a bond law in the tangential direction 

 



6 
 

 

 

Figure 6. Evolution of the tangential bond stress as a function of the tangential slip (right) for an alternate loads in the 
pre-peak phase (left) 

In cases of alternate loads, the bond slip law presented in Figure 5 has to be improved in order to 

take into account the unloading effects. Indeed, in case of unloading, the steel concrete bond is not 

reversible. Some authors experimentally studied the cyclic bond behavior, using for example pull-out 

tests or bending beams ((Eligehausen et al., 1983), (Spencer et al., 1982), (Soleymani Ashtiani et al., 

2013) or (Campione et al., 2005)). After loading to any given stress level and at the onset of 

unloading, a sudden decrease of the bond stress is observed at almost constant slip, the slope being 

close to the initial slope of the loading elastic branch. Once a frictional limit is reached, a decrease of 

the slip is obtained at constant bond stress (friction). Finally, once the steel rib reaches undamaged 

concrete, the bond slip and bond stress follows a usual evolution. Following these experimental 

observations, a bond slip – bond stress law is proposed, including a non-reduced envelope (constant 

maximum bond stress with the number of cycles), as in (Kwak and Hwang, 2011). In this case, the 

bond slip – bond stress law is illustrated in the pre-peak phase in Figure 6. In addition to the bond 

parameters already mentioned in Figure 5, the unloading behavior requires the friction stress to be 

defined (equal to 2 MPa in the figure). This value is in agreement with the one experimentally 

obtained in (Torre-Casanova, 2012) or in (Torre-Casanova et al, 2012) for monotonic loads. It is to be 

noted that this value is difficult to calibrate as it is highly subjected to experimental dispersion. 

In the normal directions, a linear relation is supposed between the stresses n1 and n2 and the 

corresponding normal slip: 

1 1

2 2

( ) ( )

( ) ( )

n n

n

n n

p p
k

p p

 

 

      
   

      

          ( 10 ) 

For the sake of simplicity, the value of the normal stiffness kn is chosen high enough to be 

representative of a perfect bond in the normal directions. Some improvements could be investigated 

in future works to take into account the effect of the bond slip behavior in the normal direction (for 

example unilateral contact if normal stress is in tension). 

The nodal internal force vector  interfaceF  in the local reference frame is then obtained by integration 

along the length of the element.  

         interface 1 2 3 4

T T T T T
F F F F F 

 
       ( 11 ) 
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with: 

   
1

2

1 0

1 1

1

1

( )
2



 
  

  
 
  


t

e
n

n

F
l

F F A p dp

F

          ( 12 ) 

with le the length of the element and : 

0 0

0 0

0 0

 
 

  
 
 

s

s

s

d

A d

d



          ( 13 ) 

where ds is the steel diameter.  

   
1

2 1

2 2

0

2 2

( )
2

 
 

  
 
 


t

e
n

n

F
l

F F A p dp

F

         ( 14 ) 

From the equilibrium of the forces between steel and concrete, it comes: 

       
1 1

3 4

3 3 1 4 4 2

3 2 4 2

  ;    

t t

n n

n n

F F

F F F F F F

F F

   
   

        
   
   

      ( 15 ) 

2.3. Numerical implementation 

The model is implemented in the finite element code Cast3M (2014). A linearity of the stresses along 

the interface element is supposed for the numerical implementation. In this case, the generalized 

stresses can be written as functions of the stresses calculated at the positions of two Gauss points 

   
1 2 1 21 1 1 2 2 2

T

GP GP t GP n GP n GP t GP n GP n       (Figure 7): 

   1 2( ) ( ) ( ) 
   GPp B p B p Q          ( 16 ) 

where 

1

1 1 2 1

1 2 2 2

( ) ( )

( ) ( )

GP GP

GP GP

B a B a
Q

B a B a



 
 
 
 

         ( 17 ) 

and 

1

2

1

3

1

3

GP

GP

a

a

 



           ( 18 ) 
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Figure 7. Positions of the Gauss points GP1 and GP2 in the interface element  

 

 

Figure 8. Nodal forces in the global reference frame 

After an analytical integration, it comes: 

   

1

2

3

4

 
 
 

  
 
  

GP

F

F
F CQ

F

F

          ( 19 ) 

1 2 1 2

T T T T T

C C C C C
 

   
 

        ( 20 ) 

1 3 3

2 3 3

3 1

8 8

1 3

8 8

 
  

 

 
  

 

e

e

C l A I I

C l A I I

          ( 21 ) 

For the calculation of the nodal internal force vector in the global reference frame (Figure 8), a 

transformation matrix L GT    is introduced from the local reference frame to the global one: 

1 3 3 3

13 3 3

13 3 3

13 3 3

0 0 0

0 0 0

0 0 0

0 0 0

L G

T

T
T

T

T



 
 
 
 
 
 
 
 

         ( 22 ) 

1 2

1 1 2

1 2

. . .

. . .

. . .

x t x n x n

T y t y n y n

z t z n z n

 
 

  
 
  

          ( 23 ) 
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It comes: 

   

1

2

3

4



 
 
 

  
 
  

L G GPglobal

global

F

F
F T CQ

F

F

         ( 24 ) 

For the resolution, a Newton-Raphson scheme is used (Ma and May, 1986). The contribution of the 

interface element to the tangent stiffness matrix interface

n

K 
   is computed using the equation: 

 

 interface

n
n

Tn global GP
L G L G

global

F
K T CQ T

u u


 

   
            

      ( 25 ) 

It supposes an update of the resolution matrix at each iteration, as a function of the position in the (t, 

t) curve.  

In the case of a linear evolution between the tangent bond stress and the slip, this matrix becomes 

constant and equal to: 

 
 

 interface

0
0

T
global GP

L G L G

global

F
K T CQ T

u u 



 




   
            

     ( 26 ) 

0

GP

u 





 
 

 
is directly computed following the expression (in the local reference frame): 

1

0

GP nodeQ E
u u

 



    
   

    
         ( 27 ) 

with 
 
 
 
 

S S
E

S S

 and 

0 0

0 0

0 0

 
 

  
 
 

t

n

n

k

S k

k

 where : 

0t

t
t

t

k








 
  

 
           ( 28 ) 

Finally, it comes (in the global reference frame): 

int

T

L G L GerfaceK T CEN T              ( 29 ) 

The steps for the resolution of the system are summarized in Figure 9. It is to be noted that the use of a 

constant matrix may induce convergence troubles, especially for the post-peak stage. Nevertheless, for 

the level of slip encountered in the applications, no problem was reported so far. 

 

2.4 Model verification 

In order to validate the numerical implementation of the interface element, its application to a 

rather simple reinforced concrete tension member is considered in the following, in the ideal 

situation where steel, concrete and steel-concrete bond behave elastically. To achieve this goal, a 

comparison with an analytical solution is performed.  
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Figure 9. Principle of the resolution for the interface element 

 

Figure 10. Presentation of the test, the boundary conditions and loading 

 

A reinforced concrete tie (length L equal to 1.15 m, square section Sc equal to 0.01m²), crossed by a 

steel bar (diameter ds equal to 10 mm for a section Ss equal to 7.85 10-5 m2)  is considered (Figure 10). 

Concrete and steel are meshed with 50 elements in the length, using solid elements for concrete and 

truss elements for steel (Figure 11), with one concrete element in the section. At each end of the 

steel bar, one element is added to apply the boundary conditions (no displacement at one end) and 

the loading (imposed horizontal displacement at the other end) (Figure 10). 
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Figure 11. Concrete mesh for the analytical verification 

Steel 
Young modulus 

Steel 
Poisson ratio 

Concrete Young 
modulus 

Concrete 
Poisson ratio 

Es s Ec c 

200 GPa 0.3 30.4 GPa 0.2 

Table 1. Steel and concrete elastic parameters  

 
Figure 12. Equilibrium of the steel bar between the loaded end and the abscise x 

Steel and concrete are supposed to behave elastically, using the parameters given in Table 1. For this 

particular application, the steel-concrete bond between t  and t  in the tangential direction is 

represented by a linear relation: 

t t tk             ( 30 ) 

with kt equal to 1011 Pa.m-1 (secant value for the bond slip – bond stress law as experimentally 

reported in Torre-Casanova et al, 2013 for example). 

To validate the implementation of the interface element and its ability to reproduce the effect of the 

steel-concrete bond, the numerical results are compared with an analytical solution. Considering the 

equilibrium of the steel bar between the loaded end and the abscissa x (Figure 12), the external force 

F applied at the end of the steel bar is balanced by the internal force sF  on the section and by the 

bond force induced by concrete on the steel bar c sF  . It comes: 

( ) ( )c s sF x F x F             ( 31 ) 

with 

F
Fs c sF 

x L/2
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( )
( ) ( ) s

s s s s s s

u x
F x E S x E S

x



 


        ( 32 ) 

with ( )s x  and ( )su x respectively the steel strain and steel displacement at x. 

The bond force can be computed as follows: 

/2 /2

( ) ( ) ( ( ) ( ))

L L

c s s t s t s c

x x

F x d x dx d k u x u x dx             ( 33 ) 

with ( )cu x the concrete displacement at x. 

The equilibrium of the force in concrete can be also written (considering the homogeneity of the 

concrete stress and strain in the section): 

 ( ) ( ) 0s c cF x F x             ( 34 ) 

where 

( )
( ) ( ) c

c c c c c c

u x
F x E S x E S

x



 


        ( 35 ) 

and 

( ) ( )c s s cF x F x             ( 36 ) 

c(x) stands for the concrete strain at x. 

Using equations (32), (33), (34), it comes: 

/2
( )

( ( ) ( ))

L

s
s s s t s c

x

u x
E S F d k u x u x dx

x



  

         ( 37 ) 

By a second derivation of the previous equation, combined to equations (35), (36) and (37), it comes: 

3

3

( ) ( )s su x u x
a b

x x

 
 

 
          ( 38 ) 
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1 1
( )s t
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s t
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



 
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         ( 39 ) 

Hence, the evolution of the steel stress s is given by: 

2
2

3

s
s

x


  


 


          ( 40 ) 

with  ;  sa bE    
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With the boundary conditions on the steel stress ( ) ( )
2 2

s s

s

L L F

S
    and on the bond slip 

(0) 0t  (symmetry of the problem), we finally obtain for the steel stress, the concrete stress c and 

the slip: 

2 2
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
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










  

 

  

        ( 41 ) 

For the comparison between the analytical solution and the modelling, Figure 13 presents the 

evolution of the steel stress along the tie, for an imposed displacement of 0.5 mm corresponding to 

an applied force of 27.3 kN. A satisfactory agreement is obtained between the analytical solution and 

the modelling which validates the implementation of the model.  Figure 14 gives the same 

comparison for the slip. Once again, a satisfactory agreement is obtained between the analytical 

solution and the modelling.  

Qualitatively, the model is able to reproduce the transfer of stresses between the steel bar and 

concrete from the end of the tie to its center. The maximum of the stress transfer and of the bond 

slip is located at the end of the structure. In this sense, it is able to reproduce the effects related to 

the steel concrete bond as mentioned for example in (Eurocode 2, 2007). 

 

Figure 13. Plot of the stress in the reinforcement according to the analytical and numerical solutions 
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Figure 14. Plot of the bond slip along the reinforcement according to the analytical and numerical solutions  

3. Model validation on a reinforced concrete tie 

In this section, the modelling using the steel-concrete bond element is compared with the 

experimental results from (Farra, 1995) on a monotonic reinforced concrete tie 

3.1 Presentation of the test 

The reinforced concrete tie experimentally studied in (Farra, 1995) has the same geometry as 

presented in Figure 10 (1.15m x 0.1m x 0.1m). Compared with the results presented for the 

verification, the mesh is here refined in the section (Figure 15). To reproduce the experimental 

behavior, the steel bar is represented using an elastic-plastic model with linear hardening. Concrete 

is modeled using a damage constitutive law developed in (Faria, 1998) and implemented in the finite 

element code Cast3M (2014). This constitutive law was chosen because it was successfully applied in 

previous works for structural applications ((Jason et al., 2013) for example). It includes damage in 

compression and in tension, which is regularized using the Hillerborg concept of fracture energy that 

guarantees a constant energy release, independently from the mesh size (Hillerborg et al., 1976). 

Parameters given in Table 2 and Table 3 are chosen, in agreement with the experimental data. 

Numerical responses in tension, compression and pure shear are illustrated in Figure 16. 

. A random distribution of the tensile strength is added in order to localize the damage during loading 

(Figure 17). For the bond model, only the bond stress – bond slip law f has to be provided. A 

piecewise linear curve is chosen, following the recommendations from (Torre-Casanova et al., 2013). 

The parameters are given in Table 4. The resulting curve is illustrated in Figure 18. 

A monotonic increasing displacement is applied to the loaded end of the steel bar. 
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Figure 15. Mesh of the reinforced concrete tie 

Young modulus Poisson ratio Limit of elasticity Hardening slope 

Es s 
e

s  Eh 

200 GPa 0.3 500 MPa 3245 MPa 

Table 2. Steel parameters  

Young modulus Poisson ratio Tensile strength 
Compressive 

strength 
Fracture energy 

Ec c ft fc Gf 

30.4 GPa 0.2 2.6 MPa 56.9 MPa 150 N/m 

Table 3. Concrete parameters  

    

Figure 16. Uniaxial compression (left), tension (middle) and pure shear (right) responses for the concrete model 

 
 

Figure 17. Distribution of the tensile strength along the reinforced concrete tie  
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Bond stress (MPa) 2 10 13.2 21 2 2 

Bond slip (mm) 0.002 0.1 0.25 0.765 1.5 1.8 

Slope (Pa/m) 1012 8.2 1010 2.1 1010 1.5 1010 -1.3 109 0 

Table 4. Parameters for the bond stress – bond slip law  

 
Figure 18. Plot of the bond stress – bond slip law  (monotonic evolution) 

3.2. Results using the bond model 

Figure 19 shows the evolution of the stress at the loaded end of the steel bar as a function of the 

mean concrete strain. The mean concrete strain is calculated from the relative displacement on a 

length L equal to 1m at the center of the tie.  

The expected evolution is obtained including three main steps: a linear regime in which concrete and 

steel behave elastically, then a nonlinear regime where concrete is gradually damaged (active 

cracking) and finally a stage where the number of cracks in concrete does not evolve any more 

(stabilized crack). Some unloading zones are also observed in both experiment and modelling which 

correspond to the occurrence of a cross-wise damaged zone in the tie (“crack”). A satisfactory 

agreement is observed between experiment and modelling concerning the crack initiation and the 

envelope curve. As reported in (Farra, 1995), the “brittleness” of the experimental curve at the 

occurrence of the cracks is directly related to the experimental device and cannot be fully 

reproduced by the numerical solution. 
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Figure 19. Plot of the stress in the reinforcement as a function of the mean strain in concrete according to the numerical 
solution and the experiment 

Moreover, on this type of application (reinforced concrete tie), the occurrence of the cracks is 

directly related to the spatial distribution of the tensile strength and may thus be different between 

two similar experiments (as observed in (Farra, 1995)). That is why a perfect agreement cannot be 

reached between experiment and modelling. Figure 20 illustrates the evolution of the mean crack 

opening as a function of the mean concrete strain. In the modelling, the crack opening is calculated 

from the evolution of the horizontal relative displacement. For the calculation of the mean opening, 

a crack is taken into account once it has reached a value greater than 50 m. A satisfactory 

agreement is obtained, especially during the stabilized cracking phase. A correct number of cracks 

(five) is predicted by the model. As already observed in Figure 19, differences in the evolution of the 

mean crack opening are partly related to the random distribution of the tensile strength.    

 

Figure 20. Plot of the mean crack opening as a function of the mean concrete strain according to the numerical solution 
and the experiment  
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Figure 21. Plot of the crack openings as a function of the mean concrete strain according to the numerical solution 
(dashed curves) and the experiment (full curves) 

Finally, local quantities are investigated. Figure 21 provides the evolutions of each crack opening with 

the mean concrete strain. In both experimental and numerical results, the occurrence of a new crack 

is responsible for the decrease in the openings of the other cracks.  

The number of the cracks yielded by the proposed numerical approach (five at the end of the 

loading) and their openings are in a quite satisfactory agreement with experiment. It thus validates 

the ability of the proposed bond model to represent the cracking behavior of this reinforced concrete 

tie. 

3.3. Discussion on the bond effect 

In this section, the interest of the bond model compared with the “perfect” no-slip relation 

hypothesis is discussed. To this aim, a second computation is performed on the reinforced concrete 

tie where each steel node has the same displacement as the concrete element in which it is included 

(zero slip). This so-called “perfect” bond is applied using additional cinematic relations. It is to be 

noted that the random distribution of the tensile strength is particularly useful in this case as it 

avoids a homogeneous damage field along the reinforced concrete tie (excepted for the end of the 

tie) (Figure 22). 

 
Figure 22. Example of a damage distribution obtained without the random distribution of the tensile strength (no-slip 
perfect bond) 
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Figure 23 illustrates the evolution of the steel stress at the loaded end of the bar as a function of the 

mean strain in concrete. As already reported in (Richard et al., 2011) for example, a smother 

behavior is obtained when a no-slip relation is considered. In this case, the no-slip relation only 

reproduces the envelope behavior. Nevertheless, the time of first cracking is the same and the 

evolution up to the end of the loading remains similar compared with the bond model and to the 

experiment. 

Figure 24 gives the evolution of the mean crack opening as a function of the mean strain in concrete. 

Compared with the global behavior, more significant differences appear. For a given mean strain in 

concrete, the mean crack opening is clearly underestimated by the no-slip “perfect” relation 

compared with the experiment or the bond model.  

 

Figure 23. Plot of the steel stress as a function of the mean concrete strain according to the numerical solutions (using 
the bond model or the no-slip “perfect relation) and the experiment  

 

Figure 24. Plot of the mean crack opening  as a function of the mean concrete strain according to the numerical solutions 
(using the bond model or the no-slip “perfect relation) and the experiment  
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For the same loading, more cracks appear with the no-slip “perfect” relation with smaller openings. 

This is partly related to a wrong representation of the stress transfer between steel and concrete. 

This effect is underlined in Figure 25. Contrary to the experiment and to the situation in which the 

bond model is used, the no-slip relation induces the simultaneous occurrence of cracks, especially 

during the initiation. As a consequence, the mean crack opening is significantly lower than the 

experimental value. At the end of the loading (stabilized cracking phase), six cracks are modelled 

while five cracks are experimentally observed. For a mean concrete strain equal to 1.4 0/00, the 

modelled maximum crack opening using the no-slip relation is 275 m. The corresponding 

experimental value is 324 m while the value obtained with the bond model is 298 m. The bond 

model is thus clearly more appropriate to describe the local behavior of the reinforced concrete 

structure. 

 

Figure 25. Plot of the crack opening as a function of the mean concrete strain according to the numerical solution, using 
the no-slip “perfect relation  

  

 
Figure 26. Damage distributions in concrete at the end of the loading using the no-slip “perfect” relation (left) or the 
bond model (right) 
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Finally, Figure 26 illustrates the damage distributions using the no-slip relation (left) and the bond 

model (right). The same tendency is observed with a higher number of heavily-damaged zones 

(indirectly representing crack positions) when the no-slip relation is considered. In this case, one can 

also notice a concentration of damage at each end of the structure that reaches the whole section. 

On the contrary, with the bond model, the damage is only localized around the steel bar.   

4. Conclusions 

A new interface element has been proposed to take into account the effect of the steel-concrete 

bond. It is adapted to large scale applications as it has been developed to relate 1D truss elements 

for steel to 3D concrete elements, even in a case of non-coincident meshes. Its implementation was 

verified by comparison to an analytical solution in the case of a simplified reinforced concrete tie 

with elastic materials. The model is able to reproduce the effects of the steel-concrete bond with the 

stress transfer between steel and concrete during loading and after crack occurrence. It was also 

validated on a reinforced concrete tie by a comparison to experimental results. A satisfactory 

agreement was observed both on global (steel stress – mean strain curve) and local results (evolution 

of the local and mean crack openings). It thus succeeded in describing the behavior of this reinforced 

concrete structure, contrary to the no-slip “perfect” relation that induced a higher number of cracks. 

In this case, including the bond behavior through the proposed model enables to obtain more 

realistic results concerning the crack properties (crack opening and spacing). 

Future work will concern the validation of the cyclic part of the model that has been implemented 

but not totally validated with the concrete tie (only partly during the partial unloading). To this aim, 

more complicated structures like cyclic shearing wall with more complex crack pattern could be 

investigated.   
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