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A new bond slip model for reinforced concrete structures. Validation by modelling a reinforced concrete tie
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The paper presents a new bond-slip model for reinforced concrete structures. It consists in an interface element (3D) which represents the interface between concrete (modeled in 3D) and steel, modeled using 1D truss elements. The formulation of the interface element is presented and verified through a comparison with an analytical solution on an academic case. Finally, the model is compared with experimental results on a reinforced concrete tie. Contrary to the classical perfect or 'no-slip' relation which supposes the same displacement between steel and concrete,, the proposed model is able to reproduce both global (force-displacement curve) and local (crack openings) results. The proposed approach, applicable to large scale computations, represents a valuable alternative to no-slip relation hypothesis to correctly capture the crack properties of reinforced concrete structures.

Introduction

The validity of the models and more generally of the methodology for nonlinear computations developed to capture the mechanical behavior of concrete and reinforced concrete structures is generally obtained by comparing their performance with experimental results. The validation is performed on small-size specimens, where the elementary features of the models are tested [START_REF] Ghavamian | Discussions over MECA project results[END_REF]. When a satisfactory agreement is achieved in these initial configurations, more realistic computations can be imagined to evaluate the capacity of the models to reproduce real scale situations. But in these complex cases, regarding especially the dimensions of the problem, strong hypothesis has to be introduced to perform the numerical solution. When reinforced concrete structures are considered ( [START_REF] Parmar | Over-pressure test on BARCOM pre-stressed concrete containment[END_REF] or [START_REF] Granger | Containment Evaluation under Severe Accidents (CESA): synthesis of the predictive calculations and analysis of the first experimental results obtained on the Civaux mockup[END_REF] for example), one of the most used hypotheses is to model the steel reinforcement as truss (or membrane) elements and to consider a no-slip (also called "perfect") relation between steel and concrete. This no-slip relation is generally applied through cinematic relations between both models, using the shape functions of each element. But this hypothesis may have heavy consequences when the crack properties (spacing and openings) are studied, as the steel -concrete bond directly influences their evolutions ( (Eligehausen et al, 1982), (Fib, 2000), [START_REF] Gambarova | Bond mechanics including pull-out and splitting failures, State-of-Art report on "bond of reinforcement in concrete[END_REF], (Eurocode 2, 2007) or [START_REF] Jason | Cracking behavior of reinforced concrete beams. Experiment and simulations on the numerical influence of the steel-concrete bond[END_REF] for example). Indeed, cracking in reinforced concrete structures is generally driven by the stress distribution along the interface between steel and concrete. For example, in the case of a reinforced concrete tie, once the first crack appears in the weakest section, the concrete stress in the cracked zone drops to zero while the load is totally resisted by the steel reinforcement. The stresses are then progressively transferred from steel to concrete (Figure 1). This transition zone has an impact on the crack properties and is directly influenced by the steel-concrete interface (Eurocode 2, 2007). Taking into account these effects seems thus essential to predict correctly the cracking of reinforced concrete structures. To understand the bond-slip mechanism, many experimental studies were carried out ( [START_REF] Lam | Behavior of headed stud shear connectors in composite beam[END_REF], [START_REF] Loh | The effects of partial shear connection in the hogging moment regions of composite beams. Part I: Experimental study[END_REF], [START_REF] Nie | Steel-concrete composite beams considering shear slip effects[END_REF] or [START_REF] Dancygier | Bond over direct support of deformed rebars in normal and high strength concrete with and without fibers[END_REF] for example) through various experimental setups. Analytical approaches were then attempted to fit the experimental results ( [START_REF] Bradford | Composite beams with partial interaction under sustained loads[END_REF] on partial composite beam analysis or [START_REF] Dezi | Simplified creep analysis of composite beams with flexible connectors[END_REF] with the solution of the governing differential equation using the finite differential method). Numerical studies were also carried out, based on a double node concept to represent the relative slip between a concrete slab and a beam ( [START_REF] Gara | Displacement-based formulations for composite beams with longitudinal slip and vertical uplift[END_REF], [START_REF] Gattesco | Analytical modeling of non-linear behavior of composite beams with deformable connection[END_REF] and [START_REF] Queiroz | Two dimensional FE model for evaluation of composite beams. I: Formulation and validation[END_REF] among others). This approach is easily applicable within the finite element formulation, but it increases significantly the number of degrees of freedom and also complexity in the mesh definition. [START_REF] Ngo | Finite element analysis of reinforced concrete beams[END_REF] proposed a spring element to relate concrete and steel nodes, associated to a linear constitutive law. To improve the description of the bond law, an interface element in 2D was introduced by [START_REF] Brancherie | Novel anisotropic continuum-discrete model capable of representing localized failure of massive structures. Part I: Theoretical formulation and numerical implementation[END_REF] or Dominguez et al. (2005) which enables the use of a nonlinear law. Dominguez (2005) and [START_REF] Ibrahimbegovic | Modeling of reinforced concrete structures providing crack spacing based on XFEM, EDFEM and novel operator split solution procedure[END_REF] finally proposed an embedded element in which the bond behavior is described through an enrichment of the degrees of freedom.

Even if these approaches propose a correct description of the bond mechanism between steel and concrete, they also have their own limits, especially in cases of real scale applications, such as meshing problems (explicit representation of 3D steel geometry), element direction or computation time which is very costly for large-scale applications (enriched elements like in (Dominguez, 2005)). That is why alternative solutions have been proposed [START_REF] Casanova | Bond slip model for the simulation of reinforced concrete structures[END_REF] for example), first to represent the effects of the steel-concrete bond but also to be adapted to large scale applications (truss steel elements) with no need to explicitly mesh the steel-concrete interface (like in Dominguez et al., 2005 for example). Based on this principle, a new interface element is presented in this contribution. In a first part, the equations and the numerical implementation of the so-called "coaxial element" will be described. Then it will be verified by a comparison to an analytical solution on an academic problem. Finally, the model is compared with experimental results on a monotonic reinforced concrete tie.

Description of the bond slip model

In this contribution, a new interface element is developed, based on the initial work from [START_REF] Casanova | Bond slip model for the simulation of reinforced concrete structures[END_REF]. It is a zero thickness four node element which relates each steel truss element with a segment superimposed with the steel element and perfectly bonded to the surrounding concrete (Figure 2). The perfect bond is done by imposing a similar displacement using the shape functions of the concrete element. Each node of the interface element has three degrees of freedom (translations). The following sections present the kinematics relations, the stress-slip relations and the numerical implementation.

Kinematics relations

As previously mentioned, the four node interface element is associated to 12 degrees of freedom   u which can be written in the local direct reference frame as: n are chosen to represent a direct reference frame (Figure 3). The slip between steel and concrete node is then computed using the following expression (Figure 4):
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Considering the linearity of the slip along the interface element, the generalized slip   Combining equations ( 2) and ( 5), it comes :
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It is to be noted that the hypothesis of linearity for the slip is valid as linearity is supposed for the displacement.

Stresses and nodal forces in the interface element

The stresses   2013) (bond stress -bond slip relation (Eligehausen et al., 1982) for example) (Figure 5 for the monotonic case):

( ) ( ( )) tt p f p   ( 9 )
The bond slip law f is especially driven by the maximum bond stress 𝜎 𝑡,𝑚𝑎𝑥 and its corresponding tangential slip 𝛿 𝑡,𝑚𝑎𝑥 and by the residual bond stress 𝜎 𝑡,𝑓 and its corresponding tangential slip 𝛿 𝑡,𝑓 , which can be functions of the concrete cover (see [START_REF] Jason | Confinement effects on the steelconcrete bond strength and pull-out failure[END_REF] for more details). In cases of alternate loads, the bond slip law presented in Figure 5 has to be improved in order to take into account the unloading effects. Indeed, in case of unloading, the steel concrete bond is not reversible. Some authors experimentally studied the cyclic bond behavior, using for example pull-out tests or bending beams ( [START_REF] Eligehausen | Local bond stress slip relationships of deformed bars under generalized excitation[END_REF], [START_REF] Spencer | Bond of deformed bars in plain and fiber reinforced concrete under reversed cyclic loading[END_REF], [START_REF] Soleymani Ashtiani | Cyclic beam bending test for assessment of bond slip behavior[END_REF] or [START_REF] Campione | Steel-concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions[END_REF]). After loading to any given stress level and at the onset of unloading, a sudden decrease of the bond stress is observed at almost constant slip, the slope being close to the initial slope of the loading elastic branch. Once a frictional limit is reached, a decrease of the slip is obtained at constant bond stress (friction). Finally, once the steel rib reaches undamaged concrete, the bond slip and bond stress follows a usual evolution. Following these experimental observations, a bond slip -bond stress law is proposed, including a non-reduced envelope (constant maximum bond stress with the number of cycles), as in [START_REF] Kwak | Nonlinear finite element analysis of a steel concrete composite beam under cyclic loads considering interface slip effects[END_REF]. In this case, the bond slip -bond stress law is illustrated in the pre-peak phase in Figure 6. In addition to the bond parameters already mentioned in Figure 5, the unloading behavior requires the friction stress to be defined (equal to 2 MPa in the figure). This value is in agreement with the one experimentally obtained in (Torre- Casanova, 2012) or in (Torre-Casanova et al, 2012) for monotonic loads. It is to be noted that this value is difficult to calibrate as it is highly subjected to experimental dispersion.

In the normal directions, a linear relation is supposed between the stresses n1 and n2 and the corresponding normal slip:
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For the sake of simplicity, the value of the normal stiffness kn is chosen high enough to be representative of a perfect bond in the normal directions. Some improvements could be investigated in future works to take into account the effect of the bond slip behavior in the normal direction (for example unilateral contact if normal stress is in tension).

The nodal internal force vector   interface F in the local reference frame is then obtained by integration along the length of the element. 
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where ds is the steel diameter.
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From the equilibrium of the forces between steel and concrete, it comes:
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Numerical implementation

The model is implemented in the finite element code Cast3M (2014). A linearity of the stresses along the interface element is supposed for the numerical implementation. In this case, the generalized stresses can be written as functions of the stresses calculated at the positions of two Gauss points
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where After an analytical integration, it comes: For the calculation of the nodal internal force vector in the global reference frame (Figure 8), a transformation matrix
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LG T  is introduced from the local reference frame to the global one: For the resolution, a Newton-Raphson scheme is used [START_REF] Ma | The Newton-Raphson method used in the non-linear analysis of concrete structures[END_REF]. The contribution of the interface element to the tangent stiffness matrix interface n K   is computed using the equation:
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It supposes an update of the resolution matrix at each iteration, as a function of the position in the (t, t) curve.

In the case of a linear evolution between the tangent bond stress and the slip, this matrix becomes constant and equal to:
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is directly computed following the expression (in the local reference frame): where :

1 0 GP node QE uu                  ( 
0 t t t t k           ( 28 ) 
Finally, it comes (in the global reference frame):
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The steps for the resolution of the system are summarized in Figure 9. It is to be noted that the use of a constant matrix may induce convergence troubles, especially for the post-peak stage. Nevertheless, for the level of slip encountered in the applications, no problem was reported so far.

Model verification

In order to validate the numerical implementation of the interface element, its application to a rather simple reinforced concrete tension member is considered in the following, in the ideal situation where steel, concrete and steel-concrete bond behave elastically. To achieve this goal, a comparison with an analytical solution is performed. A reinforced concrete tie (length L equal to 1.15 m, square section Sc equal to 0.01m²), crossed by a steel bar (diameter ds equal to 10 mm for a section Ss equal to 7.85 10 -5 m 2 ) is considered (Figure 10). Concrete and steel are meshed with 50 elements in the length, using solid elements for concrete and truss elements for steel (Figure 11), with one concrete element in the section. At each end of the steel bar, one element is added to apply the boundary conditions (no displacement at one end) and the loading (imposed horizontal displacement at the other end) (Figure 10). Steel and concrete are supposed to behave elastically, using the parameters given in Table 1. For this particular application, the steel-concrete bond between t  and t  in the tangential direction is represented by a linear relation:
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with kt equal to 10 11 Pa.m -1 (secant value for the bond slip -bond stress law as experimentally reported in Torre-Casanova et al, 2013 for example).

To validate the implementation of the interface element and its ability to reproduce the effect of the steel-concrete bond, the numerical results are compared with an analytical solution. Considering the equilibrium of the steel bar between the loaded end and the abscissa x (Figure 12), the external force F applied at the end of the steel bar is balanced by the internal force s F on the section and by the bond force induced by concrete on the steel bar cs F  . It comes:
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 and () s uxrespectively the steel strain and steel displacement at x.

The bond force can be computed as follows:
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The equilibrium of the force in concrete can be also written (considering the homogeneity of the concrete stress and strain in the section):
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c(x) stands for the concrete strain at x. Using equations ( 32), ( 33), (34), it comes:
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By a second derivation of the previous equation, combined to equations ( 35), ( 36) and ( 37), it comes:
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Hence, the evolution of the steel stress s is given by:
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For the comparison between the analytical solution and the modelling, Figure 13 presents the evolution of the steel stress along the tie, for an imposed displacement of 0.5 mm corresponding to an applied force of 27.3 kN. A satisfactory agreement is obtained between the analytical solution and the modelling which validates the implementation of the model. Figure 14 gives the same comparison for the slip. Once again, a satisfactory agreement is obtained between the analytical solution and the modelling.

Qualitatively, the model is able to reproduce the transfer of stresses between the steel bar and concrete from the end of the tie to its center. The maximum of the stress transfer and of the bond slip is located at the end of the structure. In this sense, it is able to reproduce the effects related to the steel concrete bond as mentioned for example in (Eurocode 2, 2007). 

Model validation on a reinforced concrete tie

In this section, the modelling using the steel-concrete bond element is compared with the experimental results from [START_REF] Farra | Influence de la résistance du béton et de son adhérence avec l'armature sur la fissuration[END_REF] on a monotonic reinforced concrete tie

Presentation of the test

The reinforced concrete tie experimentally studied in [START_REF] Farra | Influence de la résistance du béton et de son adhérence avec l'armature sur la fissuration[END_REF] has the same geometry as presented in Figure 10 (1.15m x 0.1m x 0.1m). Compared with the results presented for the verification, the mesh is here refined in the section (Figure 15). To reproduce the experimental behavior, the steel bar is represented using an elastic-plastic model with linear hardening. Concrete is modeled using a damage constitutive law developed in [START_REF] Faria | A strain-based plastic viscous-damage model for massive concrete structures[END_REF] and implemented in the finite element code Cast3M (2014). This constitutive law was chosen because it was successfully applied in previous works for structural applications ( [START_REF] Jason | Cracking behavior of reinforced concrete beams. Experiment and simulations on the numerical influence of the steel-concrete bond[END_REF] for example). It includes damage in compression and in tension, which is regularized using the Hillerborg concept of fracture energy that guarantees a constant energy release, independently from the mesh size [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanic and finite elements[END_REF]. Parameters given in Table 2 and Table 3 are chosen, in agreement with the experimental data. Numerical responses in tension, compression and pure shear are illustrated in Figure 16.

. A random distribution of the tensile strength is added in order to localize the damage during loading (Figure 17). For the bond model, only the bond stress -bond slip law f has to be provided. A piecewise linear curve is chosen, following the recommendations from (Torre- Casanova et al., 2013).

The parameters are given in Table 4. The resulting curve is illustrated in Figure 18.

A monotonic increasing displacement is applied to the loaded end of the steel bar. 

Results using the bond model

Figure 19 shows the evolution of the stress at the loaded end of the steel bar as a function of the mean concrete strain. The mean concrete strain is calculated from the relative displacement on a length L equal to 1m at the center of the tie.

The expected evolution is obtained including three main steps: a linear regime in which concrete and steel behave elastically, then a nonlinear regime where concrete is gradually damaged (active cracking) and finally a stage where the number of cracks in concrete does not evolve any more (stabilized crack). Some unloading zones are also observed in both experiment and modelling which correspond to the occurrence of a cross-wise damaged zone in the tie ("crack"). A satisfactory agreement is observed between experiment and modelling concerning the crack initiation and the envelope curve. As reported in [START_REF] Farra | Influence de la résistance du béton et de son adhérence avec l'armature sur la fissuration[END_REF], the "brittleness" of the experimental curve at the occurrence of the cracks is directly related to the experimental device and cannot be fully reproduced by the numerical solution. Moreover, on this type of application (reinforced concrete tie), the occurrence of the cracks is directly related to the spatial distribution of the tensile strength and may thus be different between two similar experiments (as observed in [START_REF] Farra | Influence de la résistance du béton et de son adhérence avec l'armature sur la fissuration[END_REF]). That is why a perfect agreement cannot be reached between experiment and modelling. Figure 20 illustrates the evolution of the mean crack opening as a function of the mean concrete strain. In the modelling, the crack opening is calculated from the evolution of the horizontal relative displacement. For the calculation of the mean opening, a crack is taken into account once it has reached a value greater than 50 m. A satisfactory agreement is obtained, especially during the stabilized cracking phase. A correct number of cracks (five) is predicted by the model. As already observed in Figure 19, differences in the evolution of the mean crack opening are partly related to the random distribution of the tensile strength. Finally, local quantities are investigated. Figure 21 provides the evolutions of each crack opening with the mean concrete strain. In both experimental and numerical results, the occurrence of a new crack is responsible for the decrease in the openings of the other cracks.

The number of the cracks yielded by the proposed numerical approach (five at the end of the loading) and their openings are in a quite satisfactory agreement with experiment. It thus validates the ability of the proposed bond model to represent the cracking behavior of this reinforced concrete tie.

Discussion on the bond effect

In this section, the interest of the bond model compared with the "perfect" no-slip relation hypothesis is discussed. To this aim, a second computation is performed on the reinforced concrete tie where each steel node has the same displacement as the concrete element in which it is included (zero slip). This so-called "perfect" bond is applied using additional cinematic relations. It is to be noted that the random distribution of the tensile strength is particularly useful in this case as it avoids a homogeneous damage field along the reinforced concrete tie (excepted for the end of the tie) (Figure 22). Figure 23 illustrates the evolution of the steel stress at the loaded end of the bar as a function of the mean strain in concrete. As already reported in [START_REF] Richard | A multi-fiber approach for modeling corroded reinforced concrete structures[END_REF] for example, a smother behavior is obtained when a no-slip relation is considered. In this case, the no-slip relation only reproduces the envelope behavior. Nevertheless, the time of first cracking is the same and the evolution up to the end of the loading remains similar compared with the bond model and to the experiment.

Figure 24 gives the evolution of the mean crack opening as a function of the mean strain in concrete. Compared with the global behavior, more significant differences appear. For a given mean strain in concrete, the mean crack opening is clearly underestimated by the no-slip "perfect" relation compared with the experiment or the bond model. For the same loading, more cracks appear with the no-slip "perfect" relation with smaller openings. This is partly related to a wrong representation of the stress transfer between steel and concrete. This effect is underlined in Figure 25. Contrary to the experiment and to the situation in which the bond model is used, the no-slip relation induces the simultaneous occurrence of cracks, especially during the initiation. As a consequence, the mean crack opening is significantly lower than the experimental value. At the end of the loading (stabilized cracking phase), six cracks are modelled while five cracks are experimentally observed. For a mean concrete strain equal to 1.4 0 /00, the modelled maximum crack opening using the no-slip relation is 275 m. The corresponding experimental value is 324 m while the value obtained with the bond model is 298 m. The bond model is thus clearly more appropriate to describe the local behavior of the reinforced concrete structure. Finally, Figure 26 illustrates the damage distributions using the no-slip relation (left) and the bond model (right). The same tendency is observed with a higher number of heavily-damaged zones (indirectly representing crack positions) when the no-slip relation is considered. In this case, one can also notice a concentration of damage at each end of the structure that reaches the whole section.

On the contrary, with the bond model, the damage is only localized around the steel bar.

Conclusions

A new interface element has been proposed to take into account the effect of the steel-concrete bond. It is adapted to large scale applications as it has been developed to relate 1D truss elements for steel to 3D concrete elements, even in a case of non-coincident meshes. Its implementation was verified by comparison to an analytical solution in the case of a simplified reinforced concrete tie with elastic materials. The model is able to reproduce the effects of the steel-concrete bond with the stress transfer between steel and concrete during loading and after crack occurrence. It was also validated on a reinforced concrete tie by a comparison to experimental results. A satisfactory agreement was observed both on global (steel stress -mean strain curve) and local results (evolution of the local and mean crack openings). It thus succeeded in describing the behavior of this reinforced concrete structure, contrary to the no-slip "perfect" relation that induced a higher number of cracks.

In this case, including the bond behavior through the proposed model enables to obtain more realistic results concerning the crack properties (crack opening and spacing).

Future work will concern the validation of the cyclic part of the model that has been implemented but not totally validated with the concrete tie (only partly during the partial unloading). To this aim, more complicated structures like cyclic shearing wall with more complex crack pattern could be investigated.
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  of the problem), we finally obtain for the steel stress, the concrete stress c and the slip:
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Figure

  Figure 15. Mesh of the reinforced concrete tie Young modulus Poisson ratio Limit of elasticity Hardening slope Es s e s  Eh 200 GPa 0.3 500 MPa 3245 MPa

Figure 16 .FigureFigure 18 .

 1618 Figure 16. Uniaxial compression (left), tension (middle) and pure shear (right) responses for the concrete model
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 19 Figure 19. Plot of the stress in the reinforcement as a function of the mean strain in concrete according to the numerical solution and the experiment
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 20 Figure 20. Plot of the mean crack opening as a function of the mean concrete strain according to the numerical solution and the experiment
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 22 Figure 22. Example of a damage distribution obtained without the random distribution of the tensile strength (no-slip perfect bond)
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 23 Figure 23. Plot of the steel stress as a function of the mean concrete strain according to the numerical solutions (using the bond model or the no-slip "perfect relation) and the experiment
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 25 Figure 25. Plot of the crack opening as a function of the mean concrete strain according to the numerical solution, using the no-slip "perfect relation

  

  

Table 2 . Steel parameters
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	Young modulus	Poisson ratio	Tensile strength	Compressive strength	Fracture energy
	Ec	c	ft	fc	Gf
	30.4 GPa	0.2	2.6 MPa	56.9 MPa	150 N/m

Table 3 . Concrete parameters
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