Mehdi Kaytoue
email: mehdi.kaytoue@insa-lyon.fr

Yoann Pitarch
email: yoann.pitarch@irit.fr

Marc Plantevit
email: marc.plantevit@liris.cnrs.fr

Céline Robardet
email: celine.robardet@insa-lyon.fr

Elucidating relationships between vertex attributes and the graph structure

Keywords: Data mining, Mining methods and analysis, Attributed graph mining, Topological patterns, Dynamic graphs

come

What effects topological changes in dynamic graphs?

Introduction

In the last years, graph mining has become a critical area of research but also an important tool for uncovering phenomena hidden in social networks. It allows a better understanding of their nature but also of the Human interactions and behaviors on the Web, and provides a support for many tasks such as social recommendations [START_REF] Jiang | Social contextual recommendation[END_REF], community discovery [START_REF] Girvan | Community structure in social and biological networks[END_REF], social influence propagation [START_REF] Goyal | On minimizing budget and time in influence propagation over social networks[END_REF], and link prediction [START_REF] Bringmann | Learning and predicting the evolution of social networks[END_REF]. Indeed, real-world phenomena such as social interactions, are often depicted by graphs whose vertices represent entities and edges represent their relationships or interactions. With the rapid development of social media, sensor technologies and bioinformatic assay tools, such kind of graph abstraction has become ubiquitous. By nature, most of these systems are dynamic. Vertices and edges may appear or disappear in time. Besides, the status of a vertex is often described by attributes whose values also change over time. A timely challenge is thus the design of effective graph mining methods to discover actionable insights in such dynamic attributed graphs, to bring new knowledge on the common rules that govern the networks transformations.

In data mining, dynamic graphs have been analyzed from two main research tracks: (a) the study of the properties that describe the topology of the graph [START_REF] De Melo | Human dynamics in large communication networks[END_REF][START_REF] Tong | Colibri: fast mining of large static and dynamic graphs[END_REF], or (b) the extraction of specific sub-graphs to describe the graph evolution [START_REF] Berlingerio | Mining Graph Evolution Rules[END_REF][START_REF] Robardet | Constraint-based pattern mining in dynamic graphs[END_REF][START_REF] You | Learning patterns in the dynamics of biological networks[END_REF]. Very few approaches [START_REF] Desmier | Trend mining in dynamic attributed graphs[END_REF] extract patterns that combine information about attribute values and graph topology, but fail to identify the temporal relationships that may exist between the changes of these two components. In this paper we strive to elucidate the temporal relationships between the evolution of vertex attribute values and the graph structure. Let us first illustrate this idea. Figure 1 depicts a social network whose users are linked if they mutually follow their blogs and evolves over 6 timestamps. Attributes a, b, and c denote the number of status updates, positive opinions sent to others and negative opinions received from other users. At each timestamp, each vertex is also naturally provided with topological properties giving his role in the current graph (centrality measures, clustering coefficient, etc.). To ease reading, only vertex degrees deg are represented. From this dynamic attributed graph, we consider that an attribute (or a topological property) strongly varies for a given vertex if the absolute difference between its current value and the one at the previous timestamp is at least of two. These variations are represented by dotted lines. It makes it possible to represent temporal relationships between the vertex attributes and their topological properties as a triggering pattern: a sequence of variations that is supported by a given proportion of vertices. In the example, such a sequence is denoted as {a + , b + }, {c -}, {deg + } and is supported by the two vertices u 1 and u 3 . It can be interpreted as updating his status more often while giving positive opinions about others and then receiving less negative opinions from the others is often followed by an increase of user's popularity.

We define the problem of finding temporal relationships between the vertex attributes and their topological properties as the triggering pattern mining problem. A given (possibly oriented) dynamic attributed graph is mapped into sequences of variations of both vertex attributes and topological properties. Each sequence is thus related to a vertex and describes its history. We consider this information to identify the sequences of attribute variations that are generally followed by a topological variation.

To this end, we use the notion of emerging patterns in the framework of supervised descriptive rule discovery [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF][START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF] where class labels are given by topological variations. To assist an in-depth analysis, we propose to examine the vertices that supports such an emerging subsequence, by considering several aspects: How many vertices support the subsequence? Are those vertices highly connected? Do they convey a high diffusion potential? Are the variations synchronized or spread through time as in Figure 1? Therefore, during the extraction, the mining algorithm has to consider not only the supporting vertices of the subsequence (e.g. [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF]), but also the structure of the subgraph induced by them. Additionally, we enhance patterns with semantics, through the definition of several measures and constraints. Furthermore, we introduce a particular representation of sequential patterns (prefix-closed patterns), that are the best non-redundant and most discriminant patterns highlighting temporal relationships.

The main contributions of this paper are threefold:

-The introduction of a novel problem, the discovery of triggering patterns of topology changes, defined as a suitable mathematical notion for the study of dynamic networks; -The design of TRIGAT, an efficient algorithm jointly rooted in sequence mining and graph analysis that benefits from various properties of closed sequential pattern mining; -An extensive empirical study that evaluates the efficiency and the effectiveness of the devised algorithm on three real-world dynamic graphs of different natures: A co-authoring network, an airline network, and a social bookmarking system.

The rest of this paper is organized as follows. The related work is reviewed in Section 2. Section 3 states the pattern domain defined to capture dynamic graph topology changes and their potential causes. Section 4 introduces several measures and constraints used to enrich the semantics of the extracted patterns. Section 5 presents an efficient algorithm designed to mine triggering patterns and Section 6 reports experimental results. The last section concludes the paper.

Related Work

Many works dealing with dynamic graphs have been proposed for a decade aiming at characterizing either the graph evolution by focusing on some topological properties [START_REF] Tong | Colibri: fast mining of large static and dynamic graphs[END_REF], or the graph evolution by means of patterns/rules. Borgwardt et al. [START_REF] Borgwardt | Pattern mining in frequent dynamic subgraphs[END_REF] introduce the problem of mining frequent sub-graphs in dynamic graphs, i.e. isomorphic graphs that appears in consecutive timestamps. In [START_REF] Lahiri | Mining periodic behavior in dynamic social networks[END_REF], Lahiri and Berger-Wolf also extract frequent sub-graphs but at periodic or near-periodic timestamps. Inokuchi and Washio [START_REF] Inokuchi | Mining frequent graph sequence patterns induced by vertices[END_REF] define frequent induced subgraph subsequence, i.e. subgraph subsequence whose isomorphic occurrences appear frequently in a graph sequence collection. In [START_REF] Prado | Mining spatiotemporal patterns in dynamic plane graphs[END_REF], the authors extract frequent planar sub-graphs in a sequence of planar graphs and propose spatio-temporal patterns extracted from the occurrence graph. [START_REF] Robardet | Constraint-based pattern mining in dynamic graphs[END_REF] proposes an algorithm to extract evolving patterns, i.e. pseudo-cliques which appear in consecutive timestamps with slight evolutions. [START_REF] Ahmed | Algorithms for Mining the Evolution of Conserved Relational States in Dynamic Networks[END_REF] mines the evolution of conserved relational states, i.e. sequences of time-conserved pattern on consecutive time. Yang et al. devise an algorithm to identify the most frequently changing component [START_REF] Yang | Mining most frequently changing component in evolving graphs[END_REF]. You and Cook [START_REF] You | Learning patterns in the dynamics of biological networks[END_REF] compute graph rewriting rules that describe the evolution between consecutive graphs. These rules are then abstracted into patterns representing the dynamics of graphs. Berlingerio et al. [START_REF] Berlingerio | Mining Graph Evolution Rules[END_REF] extract patterns based on frequency and derive evolution rules to solve prediction problems [START_REF] Bringmann | Learning and predicting the evolution of social networks[END_REF]. In [START_REF] Nguyen | Discovering descriptive rules in relational dynamic graphs[END_REF], the authors study dynamic graphs by means of descriptive n-ary association rules.

All the above works only focus on the graph structure and its evolution. They do not take into account the existence of attributes related to the vertices. Several approaches have been proposed to discover new insights in static attributed graphs with several applications in social or biological networks but also in computer vision [START_REF] Zhang | Attributed graph mining and matching: An attempt to define and extract soft attributed patterns[END_REF]. The pioneering work [START_REF] Moser | Mining cohesive patterns from graphs with feature vectors[END_REF] proposes a method to find dense homogeneous subgraphs (i.e., subgraphs whose vertices share a large set of attributes). Similar to this work, Günnemann et al. [START_REF] Günnemann | Subspace clustering meets dense subgraph mining: A synthesis of two paradigms[END_REF] propose a method based on subspace clustering and dense subgraph mining to extract non redundant subgraphs that are homogeneous with respect to vertex attributes. In [START_REF] Zhou | Graph clustering based on structural/attribute similarities[END_REF], the authors propose a new method to partition a graph based on both structural and attribute similarities through a unified distance measure. Silva et al. [START_REF] Silva | Mining attribute-structure correlated patterns in large attributed graphs[END_REF] extract pairs of dense subgraphs and Boolean attribute sets such that the Boolean attributes are strongly associated with the dense subgraphs. Similarly in [START_REF] Mougel | Finding maximal homogeneous clique sets[END_REF], the authors introduce the problem of mining maximal homogeneous clique sets. Another approach is presented in [START_REF] Khan | Towards proximity pattern mining in large graphs[END_REF] in which the authors propose a probabilistic approach to both construct the neighborhood of a vertex and propagate information into this neighborhood. Following the same motivation, Sese et al. [START_REF] Sese | Mining networks with shared items[END_REF] extract (not necessarily dense) subgraph with common itemsets. In [START_REF] Prado | Mining graph topological patterns: Finding co-variations among vertex descriptors[END_REF], the authors propose to mine the graph topology of a large attributed graph by finding regularities among vertex descriptors that are of two types: vertex attributes and topological properties.

None of work mentioned above attempts to rely the graph structure change to the one of vertex attribute values. In [START_REF] Desmier | Trend mining in dynamic attributed graphs[END_REF], the authors define a new kind of pattern that relies on the graph structure and the temporal evolution of the attribute values. It enables to discover set of vertices satisfying a maximum diameter constraint that follow the same trends w.r.t. some attributes. However, these patterns lack expressiveness. They cannot characterize local structure changes by sequence of trends. Indeed, these patterns cannot depict attribute that follow several variations through time.

Mining topological changes

A dynamic attributed graph is a sequence of attributed graphs where each vertex takes a value for all the different attributes. Values vary in time as well as edges that may appear or disappear.

Definition 1 (Dynamic attributed graph) Let G = {G 1 , . . . , G t } be a sequence of t static attributed graphs G i = (V, E i , F) with T = {1, . . . , t} the set of timestamps, V the set of vertices, E i the set of edges that connect vertices of V at time i ∈ T (E i ⊆ V × V) and F the set of numerical attributes that map each vertex-time pair to a real value: ∀f ∈ F, f :

V × T → R.
The structure of each static graph can be characterized by some topological measures [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF][START_REF] Leskovec | SNAP: A general purpose network analysis and graph mining library in C++[END_REF][START_REF] Prado | Mining graph topological patterns: Finding co-variations among vertex descriptors[END_REF] that convey important information on the connectivity of the vertices within the graph at different granularity levels. For instance, the degree describes the close neighborhood of a vertex, whereas the centrality measures depict the role of the vertex in the whole graph. We denote by M the set of topological measures m, with m : V × T → R.

Example 1 Figure 1 illustrates a dynamic attributed graph G = {G 1 , ..., G 6 }, with t = 6 timestamps. Each graph G i = (V, E i , F) shares the set of vertices V = {u 1 , ..., u 5 } and the set of attributes F = {a, b, c}. The fact that the vertex u 3 takes the value 6 for the attribute c at timestamp 2 is written c(u 3 , 2) = 6. The topological measure used in this example is the vertex degree: M = {deg} and deg(u

3 , 6) = 4.
A change in the structure of the dynamic graph is observed through a strong variation on some topological measures. Our hypothesis is that those changes can be the consequences of strong variations on vertex attribute values. Let D = F ∪ M be the set of vertex descriptors that are either attributes or topological measures. Our goal is to highlight how variations of descriptor values of a vertex can later impact on its connectivity, that is to say variations on descriptions of D followed by variations on measures of M .

To characterize the vertex descriptor variations, an appropriate discretization has to be used. As such, we can represent, for each vertex, its behavior with a sequence of descriptor values variations between any two consecutive time stamps. This procedure has to be wisely chosen with respect to the goals and the properties of the dynamic graph. This choice has no impact on our problem definition: to ease reading of this section we consider the naive discretization of Example 2 that turns any attribute value into an element of S = {+, -, ∅} to denote increase, decrease or no variation.

Definition 2 (Discretization function) Let discr : V × D × T → S be a discretization function with S a set of variation symbols. In the following, we call an element (d, s) from D × S a descriptor variation, denoted d s .

Example 2 Let S = {+, -, ∅} be a simple discretization function defined as, with

v ∈ V , d ∈ D, i an index of T : discr(v, d, i) =        + if d(v, i) -d(v, i -1) ≥ 2 and i > 1 -if d(v, i) -d(v, i -1) ≤ -2 and i > 1 ∅ otherwise
The dynamic graph can thus be viewed as a set of vertex descriptive sequences defined as follows:

Definition 3 (Vertex descriptive sequence) The set of all variations for a vertex v

at time i is a set vars(v, i) = {d discr(v,d,i) , ∀d ∈ D}. A vertex v is described by a sequence δ(v) = vars(v, 2), . . . , vars(v, t) . We note ∆ = {δ(v) | v ∈ V } the set of all sequences.
Example 3 The graph in Figure 1 is transformed into

∆ = { δ(u1) = {a + , b + , c ∅ , deg ∅ }, {a ∅ , b ∅ , c -, deg ∅ }, {a ∅ , b ∅ , c ∅ , deg + }, {a ∅ , b ∅ , c ∅ , deg ∅ }, {a ∅ , b ∅ , c ∅ , deg ∅ } , δ(u3) = {a ∅ , b ∅ , c ∅ , deg ∅ }, {a + , b + , c ∅ , deg ∅ }, {a ∅ , b ∅ , c ∅ , deg ∅ }, {a ∅ , b ∅ , c -, deg ∅ }, {a ∅ , b ∅ , c ∅ , deg + } }
For the sake of simplicity, we drop any description variation with the symbol (.) ∅ , i.e. we exclude the description of attribute that has no variation between two consecutive time stamps. We obtain for the vertex u 1 the descriptive sequence δ(u 1) = {a + , b + }, {c -}, {deg + } . It means that we observe, for this vertex, an increase of the values of attribute a and b simultaneously, then an decrease of the value of c and finally an increase of the degree of the vertex (deg). Note that in this sequential representation, we do not encode the time stamps of the variations, but simply keep their ordering of appearance. This allows to find later patterns that generalize both (almost) synchronous and asynchronous vertex behaviors. The notion of synchronicity is formalized in the next section. Now that we properly encode the vertices temporal behavior with a sequence database, we are looking for possible explanations of a topological variation. Such an explanation is given by a sub-sequence (or sequential pattern [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF]) of descriptors variations L that happen before the considered topological variation R. It follows that a triggering pattern is formalized as a sequence L, R which is supported by a certain number of vertices. It makes it possible to represent temporal dependencies between D and M , and the confidence or strength of such dependency has to be high.

Definition 4 (Triggering pattern)

A triggering pattern is a sequence P = L, R where L is a sequence of sets of descriptor variations L = X 1 , . . . , X k with ∀j ≤ k, X j ⊆ (D × S), and R a single topological variation, R ∈ (M × S).

Definition 5 (Triggering pattern support) We say that

Q 1 = X 1 , . . . , X k is a sub-sequence of Q 2 = Y 1 , . . . , Y , Q 1 Q 2 , if there exists i 1 , . . . , i k a strictly increasing sequence in N such that X j ⊆ Y ij , ∀j = 1, . . . , k.
The support of a pattern P = L, R is the set of vertices for which P is a sub-sequence of their descriptive sequence:

SUPP(P, ∆) = {v ∈ V | P δ(v)}. Example 4 With P 1 = {a + }, {deg + } and P 2 = {a + , b + }, {c -}, {deg + } , it fol- lows that SUPP(P 1 , ∆) = {u 1 , u 3 } and SUPP(P 2 , ∆) = {u 1 , u 3 }.
We adapt a well known measure, the growth-rate1 [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF][START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF], to characterize patterns L, R whose left part L strongly discriminates the topological variation R. Definition 6 (Triggering pattern growth rate) Let P = L, R , we denote by ∆ R ⊆ ∆ the set of vertex descriptive sequences that contain R. The growth rate of P is given by:

GR(P, ∆ R) = |SUPP(L, ∆ R)| |∆ R | × |∆ \ ∆ R | |SUPP(L, ∆ \ ∆ R)|
The triggering pattern mining problem. Given a dynamic attributed graph G, a minimum growth rate threshold minGR and a minimum support threshold minSup, the problem is to find all triggering patterns P = L, R such that |SUPP(P, ∆)| ≥ minSup and GR(P, ∆ R) ≥ minGR. The support measure is defined by the vertices that satisfy the pattern, while the growth rate gives the discriminating power of the sequence variations L to explain a topological change R.

Non redundant triggering patterns with semantics

The triggering pattern problem is actually defined in the previous section as a well known frequent sequential pattern mining problem [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF]. After a data transformation into a database of (vertex descriptive) sequences, the goal is to find all frequent patterns with the particularity that they must finish with a particular item (a topological change) and being provided with a growth rate higher than a given threshold. However, this comes with several problems and limitations that we develop now and propose solutions to.

Mining covering triggering patterns

The first main problem is that the support and the growth rate are not enough for producing intelligible patterns: additional measures are required. We propose in this section several examples of meaningful measures. The most important one is the coverage of a pattern (vertex cover [START_REF] Cormen | Introduction to Algorithms[END_REF]): given a graph, the coverage counts the proportion of nodes that can be directly reached from the nodes of the support. The coverage can be generalized to the nodes reachable at a distance n from nodes of the support. When n = 0, the coverage is exactly the support. The coverage provides better insights than the support, since it allows to express how the nodes of the support are rooted into a global behavior. However, triggering patterns appear at different time stamps in their supporting descriptive sequences and the set of connected vertices cannot be defined in the dynamic graph: the coverage of a pattern has to be defined up to an aggregated static graph G aggr that sums-up the connectivity of each vertex along time. In the following we use G aggr = (V,

t i=1 E i).
Definition 7 (Coverage of a triggering pattern) Let G aggr = (V, E aggr) be an aggregated graph of the dynamic graph G. The coverage of a pattern P is defined by: COV(P, ∆, G aggr) = SUPP(P, ∆)∪{v ∈ V | ∃w ∈ SUPP(P, ∆)s.t.(w, v) ∈ E aggr }.

Example 5 For P = {a + , b + }, {c -}, {deg + } , we have cov(P, ∆, G aggr) = V .

The coverage gathers the vertices that have a geodesic distance of 1 with at least one vertex of the pattern support. This measure can be generalized to any geodesic distance value n as follows:

Definition 8 (n-coverage of a triggering pattern) The n-coverage of a pattern P is recursively defined as COV n (P, ∆, G aggr) with COV 0 (P, ∆, G aggr) = SUPP(P, ∆)

and COV i (P, ∆, G aggr) = COV i-1 (P, ∆, G aggr)∪{v ∈ V | ∃w ∈ COV i-1 (P, ∆, G aggr) s. t. (w, v) ∈ E aggr }.
The n-coverage measure is important for two reasons: (1) It conveys per se insights on the possibilities for dissemination of a pattern; (2) It makes it possible the definition of additional interestingness measures to focus on specific kinds of triggering patterns. Since the coverage is a generalization of the support,we propose to mine covering triggering patterns, i.e. patterns whose coverage is higher than a given threshold minCov and provided with a growth rate higher than minGR.

Additional measures that convey semantics and constraints

The definition of coverage enables to define several measures and constraints on the pattern domain. This is interesting for two reasons: firstly, triggering patterns are provided with more semantics, secondly, the expert can specify some constraints on the patterns to drive her analysis and partly face the classical pattern flooding problem. Indeed, the n-coverage of a triggering pattern can be viewed as a set of nodes inducing a subgraph of G aggr . Constraining such subgraphs makes it possible to mine topological changes whose coverage has a specific structure. We can distinguish two types of constraints, those that rely on the vertices (see Definition 9) and the others that restrict the structure of the subgraph (see Definition 10).

Definition 9 (Constraint on vertices) Let µ be a centrality measure of a vertex v in the aggregated graph G aggr , such as:

-The vertex degree: deg(v, G aggr) = |{u ∈ V, {u, v} ∈ E aggr }| -Clustering coefficient: CLUST(v, G aggr) = 2|{{u,w}∈Eaggr, {u,v}∈Eaggr∧{v,w}∈Eaggr}| deg(v)(deg(v)-1) -Closeness centrality: CLOSE(v, Gaggr) = n u∈V |shortest path Gaggr (u,v)| -Betweeness centrality: BETW(v, G aggr) = u,w δ v∈shortest path Gaggr (u,w)
The constraint on the vertices of the n-coverage of a triggering pattern is as follows: -Diameter: let d G(V) (u, v) be the shortest path length between the vertices u and v in G(V). The diameter of G(V) is thus defined by

C(P, ∆, G aggr , µ, m, n) iff ∀v ∈ COV n (P, ∆) | µ(v, G aggr)} θ m with θ ∈ {≤, <, ≥ , >} Definition
diam(V, G aggr) ≡ max u,v∈V d G(V) (u, v)
The constraint on the structure of the n-coverage of a triggering pattern is as follows:

C(P, ∆, G aggr , ρ, m, n) iff ρ(COV n (P, ∆), G aggr) θ m with θ ∈ {≤, <, ≥, >}
Finally, remember that a pattern may appear at different time stamps in the vertex descriptive sequences that make its support. This is the case in the example of Figure 1: the pattern {a + , b + }, {c -}, {deg + } is supported by both vertices u 1 and u 3 . However, these appearances are not synchronized. We propose a measure that allows to quantify the notion of synchronicity.

Definition 11 (Synchronicity) Let P = L, R be a triggering pattern supported by the set of vertices SU P P (P) = {u 1 , ..., u n }. We introduce the set A = {a 1 , a 2 , ..., a n } where a i ∈ T is the first time stamp where P occurs in the vertex descriptive sequence δ(u i). Similarly, we introduce B = {b 1 , b 2 , ..., b n } ⊆ T where b i is the index of R in the first occurrence of P in δ(u i). The synchronicity measure is given by:

sync(P) = avg({|a i -a j |} i,j∈1...n,i =j) + avg({|b i -b j |} i,j∈1...n,i =j) avg({|(b i -a i) -(b j -a j)|} i,j∈1...n,i =j)
where avg(.) is the mean function. The numerator is 0 if the time stamps of the supporting sequences are fully synchronous. The denominator normalizes w.r.t. the average lengths.

Limiting redundancy with closed triggering patterns

To limit more strongly the problem of pattern flooding, we propose here to define a condensed representation of triggering patterns, to avoid to output them all, while not loosing the information they convey. To this end, we adapt the notion of closed sequential patterns [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF] to the case of triggering patterns. This solution is not straightforward and requires to develop a new algorithm called TRIGAT in Section 5.

Classical closed sequential patterns are indeed chosen to limit redundancy: any sequential pattern is closed w.r.t. the support if it does not exist a super-sequence with the same support [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF]. Furthermore, the growth-rate is always maximized by those closed patterns [START_REF] Plantevit | Condensed representation of sequential patterns according to frequency-based measures[END_REF] and most of the constraints given above are necessary to be evaluated on closed patterns only (the case of the anti-monotone constraints, defined hereafter). We show how to define closed triggering patterns w.r.t. to the coverage measure that maximize the GR measure. As triggering patterns are particular sequences ending on a topological variation, one cannot trivially apply any closed sequential pattern mining algorithm. Instead, we prove several properties that allow to define closed triggering patterns as prefix-closed patterns, and that the latter can be defined from closed sequential patterns. Interestingly, the coverage measure still follows an anti-monotone behavior.

Definition 12 (Prefix-closed pattern) We say that a pattern P = L P , R is prefixclosed w.r.t. SUPP iff Q = L Q , R such that L P L Q and SUPP(P) = SUPP(Q): P cannot be extended on its left part L P without changing its support.

In Example 4, P 2 is a closed triggering pattern, i.e. a prefix-closed sequential pattern, while P 1 is not.

Property 1 Let P = L P , R and Q = L Q , R be two triggering patterns. If L P L Q and SUPP(L P , ∆ R) = SUPP(L Q , ∆ R), then GR(L P , ∆ R) ≤ GR(L Q , ∆ R). Proof We have SUPP(L P , ∆ R) = SUPP(L Q , ∆ R). As L P
L Q , we obtain that SUPP(L P , ∆) ⊇ SUPP(L Q , ∆) thanks to the anti-monotonicity of the support. By definition 6, we conclude that GR(L P , ∆ R) ≤ GR(L Q , ∆ R).

Property 1 makes it possible to only focus on prefix-closed patterns as they maximize the growth-rate. To extract prefix-closed patterns, we exploit the property asserting that prefix-closed patterns can be retrieved from closed patterns.

Property 2 For any prefix-closed pattern P , there exists a closed pattern Q such that P Q and SUPP(P) = SUPP(Q).

Proof Prefix-closed patterns cannot be extended to the left without changing their support. However, they can be extended to the right while preserving their support. Thus, a closed pattern Q can be seen as a simultaneously prefix and suffix-closed: Q is included in a closed pattern. Property 3 states that COV is anti-monotone with respect to (directly from Definition 7). Since by definition we have that for any pattern P , SUPP(P) ⊆ COV(P), one can choose to enumerate the closed triggering patterns based either on support or coverage. This is made precise in the next section.

Property 3

The coverage is anti-monotone w.r.t. , i.e., ∀P Q, COV(P, ∆, G aggr) ⊇ COV(Q, ∆, G aggr).

The same property applies for COV n . Constraints µ and ρ presented in the previous subsection however, can be or not anti-monotone. When this is the case, we can use a conjunction of several constraints as a main constraint. Indeed, a conjunction of antimonotone constraints is anti-monotone and it can be also used to prune the search space in the algorithm we develop in the next section [START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF]. When a constraint is not anti-monotone, we check it in a post-processing by removing afterwards the patterns that do not satisfies it.

Mining triggering patterns with the algorithm TRIGAT

We introduce TRIGAT to mine the complete and correct collection of all coveragebased closed triggering patterns P = L, R such that |COV n (P, ∆)| ≥ minCov and GR(P, ∆ R) ≥ minGR. The algorithm takes benefits from the properties given in Section 4.3 to efficiently prune the pattern search space while pushing anti-monotone constraints among which the coverage constraint. Algorithm 1 presents the main steps of TRIGAT, including the necessary pre-and post-processing steps. It first builds each vertex descriptive sequence of the dynamic graph (line 1). Covering 1-item sequences, that are sequences of a single descriptor variation satisfying the coverage constraint, are computed in one scan on ∆ (line 2) and uncovering items are removed for any sequence of ∆. Then, TRIGAT EN U M is called. It achieves a depth-first search on a given prefix sequence using a pattern-growth approach that works on projected databases according to a prefix sequence s, denoted ∆ |s which returns all the suffixes of s in ∆ TRIGAT EN U M exploits the pruning techniques based on closed patterns (lines 1 to 3) while pushing the coverage constraint (line 4). We use the early termination by equivalence pruning technique, first proposed in the CloSpan algorithm [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF] 2 . The coverage is computed w.r.t. the union of the adjacency lists of vertices whose projected sequences along the prefix sequence s is not empty (i.e., s δ(v)). Finally, as prefix sequences can grow either by adding a single descriptor variation in the last set of s, or by adding a new set made of this single descriptor variation at the end of the sequence, these two patterns are recursively considered (lines 5 to 10). TRIGAT EN U M returns all covering sequences of prefix s . Algorithm 1 ends with a post-processing of C to retain only closed patterns (line 7). To avoid expensive tests that aim at comparing each sequence of C with other sequences in C, we adopt the fast subsumption checking algorithm [START_REF] Zaki | Charm: An efficient algorithm for closed itemset mining[END_REF] using a hashmap with a sparse key distribution. Closed triggering patterns are then built from C (line 8). From lines 9 to 11, prefix-closed sequences ending by a topological variation are built from closed sequences, and the growth-rate is computed (in negligible time, see section 6).

Experiments

We provide an empirical evaluation of our methodology. Experiments were performed on 2.5GHz and 16GB of RAM machines and TRIGAT is written in C++ 3 . The topological measures considered are: degree, closeness, betweenness, eigenvector, network constraint, clustering coefficient, PageRank, hub score, and authority score [START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF] 4 .

Dynamic attributed graphs:

We experiment on three real-world datasets of different natures to provide a performance study as well as some qualitative results. ([1990-1994], [1992][1993][1994][1995][1996],..., [2006][2007][2008][2009][2010]). Air traffic: The Research and Innovative Technology Administration (RITA) maintains a public database giving the U.S. air carrier traffic statistics 6 . We derive three dynamic graphs whose vertices are the airports, the vertex attributes describe traffic aspects (number of departures/arrivals, number of cancelled flights, number of flights diverted at destination, the mean delay of departure/arrival and the ground waiting at time departure/arrival) and the edges represent air lines. Before extracting triggering patterns from these dynamic graphs, we need to characterize the strength of the attribute value variations as stated in Definition 2. As we are interested in significant variations of vertex attribute values w.r.t. the proper history of each vertex between consecutive timestamps, we consider, for each attribute d ∈ D and vertex v ∈ V , the set {d(v, i) -d(v, i -1), 1 < i ≤ t} of time derivatives of d(v). Such a discrete set of values can be characterized by its mean d(v), that refers to the central value of the set, and its standard-deviation std(d(v)) that gives a hint to the homogeneity or heterogeneity of the set. Based on these values, we devised two discretization functions discr 1 and discr 2 :

Algorithm TRIGAT

Require: G = {(V, E i , F)},
discr1(v, d, i) =                    ++ if d(v, i) -d(v, i -1) ≥ d(v) + 3 • std(d(v)) + if d(v, i) -d(v, i -1) ≥ d(v) + std(d(v)) -if d(v, i) -d(v, i -1) ≤ d(v) -std(d(v)) --if d(v, i) -d(v, i -1) ≤ d(v) -3 • std(d(v)) ∅ otherwise discr2(v, d, i) =        + if d(v, i) -d(v, i -1) ≥ d(v) + 3 • std(d(v)) -if d(v, i) -d(v, i -1) ≤ d(v) -3 • std(d(v))
∅ otherwise discr 2 is used on RITA1 and RITA2 air traffic networks since we aim at characterizing a locally high-impact event. discr 1 is used on DBLP, RITA3 and del.icio.us dynamic graphs where the temporal variations of values are much more progressive. For the coverage computation, we use in these experiments the aggregated graph G sum .

Table 1 reports the main characteristics of the studied dynamic graphs. |V |, |F | and |T | are respectively the number of vertices, attributes and timestamps. |D| is the number of descriptor variations, S is the average number of descriptor variations per vertex, I is the average number of timestamps having more than one variation. deg sum (resp. density sum) is the average degree (resp. density) of G sum .

Finally, observe that a topological variation may appear several times in a vertex descriptive sequence, for example a vertex may experience a large increase in its degree twice over time. We assume that each occurrence of a topological variation in δ(v) is distinct from the others: adding an index to those variations is enough to differentiate them and does neither change the problem definition or its resolution. 1: Main characteristics of the dynamic graphs (for each column, the maximum value is in bold).

Quantitative experiments:

In this section, we aim to provide some answers to the following questions regarding scalability and efficiency of TRIGAT:

-What is the impact of the minCov parameter on both the running time and the number of triggering patterns? -What is the impact of the generalized coverage on both the running time and the number of triggering patterns? -How is the execution time distributed among the variation calculation (pre-processing), the pattern mining step, and the growth rate and the non anti-monotone constraint calculation (post-processing)? -How are the patterns distributed w.r.t. their support? -How are the patterns distributed over the 2-dimensional space (Support, Growthrate)? -How robust is our approach w.r.t. the number of vertices? For all quantitative experiments, we set minGR = 0 and do not use non antimonotone constraints to be fair on the reported results, since they are computed in a post-processing. Impact of the generalized coverage: We first observe on Figure 2 the impact of the generalized coverage on the running time and the number of discovered patterns. Obviously, considering a more general definition of the coverage drastically increases the search space. Therefore, the number of patterns and the time consumption highly increases when considering generalized coverage. Two points are worth to be discussed regarding this experiment. First, setting n to 2 or 3 allows the discovery of patterns that would not have been discovered otherwise, i.e., when n = 1. Second, as it can be seen on Figures 2a and2b, the same patterns are mined whatever the value of n when n > 1 but with a much more higher time consumption when n goes up. This point shows that vertices supporting these patterns are member of some very dense parts of the graph, i.e, the diameter of each connected components within the subgraph induced by the supporting vertices equals 2. However we will see in the qualitative interpretation of the results that the integration of more semantic constraints on vertices and on the subgraph structure during the mining phase compensates for this point and limit the number of triggering patterns. Note that in Figure 2 the minimum coverage thresholds minCov are chosen such that the computations are feasible for n ∈ {1, 2, 3}. Impact of minCov parameter: As stated in the previous results, considering n > 1 without additional constraints can lead to non-tractable experiments. For this reason, we consider n = 1 in the rest of the quantitative experiments. We observe on Figure 3 the impact of the minCov value on the running time and the number of discovered patterns. The pruning ability of the minCov parameter is verified. The figures show that considering low minCov values is difficult, but Figure 4 provides the explanation: it often happens that the support is much more smaller than the coverage. as follows. Let r be a replication factor, each graph is copied r times resulting in r disconnected graphs at each timestamp: it is guaranteed that the set of triggering patterns remains identical whatever the value of r. We now present some triggering patterns L, R , written L → R to ease reading, and study their usefulness on the aforementioned networks.

DBLP:

We set the minimal coverage threshold to 10%. One may argue that this threshold is too high when dealing with real-world data. However, we have shown that the support of a pattern can be much more smaller than its coverage: In Figure 9, port of the support is connected to 29 airports that do not belong to the support. By considering the sequences of ∆ that support this pattern, we observe that the two first itemsets always appear on days 11 and 12 while the last itemset appears on days 13 or 14. This pattern tells us that between September 11 and 12 an increase of canceled flights has been observed, followed the next day by a decrease of several centrality indexes, which triggered a degree increase one or two day later8 .

RITA2: This dynamic graph is set up to analyze the impact of 09/11 event on the US air traffic with a higher temporal granularity and a larger interval of time surrounding 09/11. We set the minimum coverage threshold to 10% and extract 278 patterns and keep the 208 jumping ones. As we a priori know that 09/11 led to an important number of canceled flights, we only retain the 25 patterns that contain this descriptor variation and sort them by support. For the 20 first patterns, it appears that the increase of canceled flights arises at the time of the tragedy. For example, the pattern {#Canceled + }{#Canceled -}, {numCliques -, Betweeness + } → numCliques + with (support=8, coverage=61) means that 8 airports, covering more than 25% (61 234) of the network, underwent an increase of their canceled flights, followed in another month by a decrease of this quantity and next by a topological variation. This lead some months later to an increase of the number of cliques. Now we should pay attention to when those variations happened. The first itemset always happened in September 2001. The second appeared at different months between De-cember 2001 and January 2002 while the last itemset arose the month after the second itemset. In all the cases, the triggered topological variation happened in March 2002, which suggest a back to the normal of the US air traffic, which is not contradicted by the IATA conclusions 9 .

RITA3: On this network, TRIGAT extracts 185, 486 patterns with minCov = 10%. To observe the impact of the Katrina hurricane on the US airport traffic, we filter the patterns with a syntactic constraint enforcing an increase on the number of canceled flights and on the number of diverted flights. It selects 7, 427 patterns among which 16 have a support higher than 5. Their coverage varies between 25% and 35%, with small growth rate, except the jumping pattern: {Cancelled + , DelayAtDeparture + }, {#Diverted -, #Departure -, #Arrival -} → {closeness - 1 }. All the airports supporting this pattern are located in the US West coast where Katrina raged. The itemset {#Diverted -, #Departure -, #Arrival -} happened during the week of Katrina's highest activity. del.icio.us: We are here interested to discover topics of bookmarks (i.e. user tags) that may trigger a topological change. For example, if a user has more bookmarks of a given topic, does it make this user more followed by the others? We set the minimum coverage to 10% and extract 27, 048 patterns among which 1, 424 ones conclude on a positive variation of a topological attribute. We ranked them w.r.t their growth rate. The 30 first patterns have a growth rate higher than 2.5 with a maximum of 12 and an average of 4.16. Support and coverage cardinalities are roughly the same with an average of respectively 13 and 198 (out of 1867 users). Each pattern contains at most two attributes that denotes a variation of a topic, and there is no negative variation. Interestingly, most of those topics are either among how-to, tutorial, web design, visualization, which denote probably a "teaching triggering", or among video and community which are more "social triggering".

Synchronized and non synchronized patterns. TRIGAT is able to identify synchronous triggering patterns, whose vertex attributes change at the same timestamps in the supporting sequences of ∆. This phenomenon was observed in RITA networks. Besides, TRIGAT is also able to discover asynchronous triggering patterns, whose vertex attributes change at different timestamps in the supporting sequences. This is the case for the DBLP network, since it depicts scientific careers of researchers with different experiences (PhD student, junior scientist, professor, etc.). This can be observed on Figure 10: the RITA1 patterns (with a growth rate higher than 1) have a synchronicity between 1 and 3 while it is more spread for DBLP.

Conclusion

Triggering patterns are sequences of variations of vertex attribute values that may trigger topological changes in a dynamic attributed graph. Our methodology relies on closed sequence mining, where each vertex is encoded by a sequence of its variations. To assess the interest of a pattern, both growth-rate and coverage are studied: the growth-rate gives the discrimination power of a sequence of variations to explain a topological change, while the coverage tells us about the diffusion potential of the attributes changes towards vertices of its neighborhood. Several measures on the patterns (and associated constraints) provide the pattern with semantics and are useful in application scenarios. We experimented with this original approach, and demonstrate the capability of triggering patterns to explain topological changes by attribute variations in real-world dynamic graphs. These case studies show the capability of TRIGAT to discover sensible patterns in feasible time.

Fig. 1 :

 1 Fig. 1: A dynamic attributed graph on 6 timestamps entailing the triggering pattern {a + , b + }, {c -}, {deg + } . To ease reading, only attributes for vertices u 1 and u 3 are shown. Colors and bold attribute values indicate strong variations for supporting vertices.

10 (

 10 Constraint on the subgraph structure) Let ρ be a measure on a subgraph G(V) induced by the set of vertices V in the aggregated graph G aggr . Examples of such measure are: -Density: density(V, G aggr) = |V ×V ∩Eaggr| |V |×(|V |-1)

Algorithm 1 :

 1 The TRIGAT algorithm DBLP: The Digital Bibliography & Library Project 5 covers an important part of the computer science bibliography. All references published between 1990 and 2010 by 2,723 authors (recording more than 10 publications) are elected among 43 conferences/journals. Two additional attributes sum the publications resp. in conferences and journals. The dynamic attributed graph, with authors as vertices and edges as co-authoring, entails 9 time stamps of 5 years half-overlapping intervals

Fig. 2 :

 2 Fig. 2: Impact of the coverage.

Fig. 3 :Fig. 4 :

 34 Fig. 3: Impact of minCov parameter (considering Cov 1).

Fig. 5 :

 5 Fig. 5: Runtime distribution.

Fig. 6 :

 6 Fig. 6: Distribution of pattern supports.

Figure 8

 8 reports experiment results with different minCov values. The results are very similar for all datasets. As expected, the running time is linearly correlated with the replication factor. The higher the minCov, the stronger is the slope of the curve: TRIGAT can deal with dynamic graphs having up to 150K vertices.

Fig. 7 :

 7 Fig. 7: Growth rate vs support.

Fig. 8 :

 8 Fig. 8: Scalability test with n dates replication.

Fig. 9 :

 9 Fig. 9: The patterns ranked 1 st (left) and 8 th (right) from the DBLP network w.r.t. growth rate. Labeled vertex (in red) represent the support, while all vertices form the coverage.

Fig. 10 :

 10 Fig. 10: Synchonicity measure (sync Y -axis) vs. grow rate (gr X-axis) for patterns extracted from the DBLP dataset with minCov = 20% (left) and the RITA1 dataset with minCov = 20% (right).

 minGr, minCov, Gaggr, n, a set C of constraints Ensure: P the set of closed triggering patterns 1: ∆ ← {δ(v)|v ∈ V } 2: I ← all covering 1-item sequences (items α s.t. COV n (α) ≥ minCov) 3: Filter ∆ with only covering 1-item sequences w.r.t. minCov and verifying the anti-monotone constaints from C 4: for all s ∈ I do 5: C ←TRIGAT enum(s, ∆ |s , Gaggr, minCov, n, C) 6: end for 7: Eliminate non-closed sequences from C 8: C ← prefix closed patterns s, X k ∈ C, s.t.X k ∈ (M × S) 9: for all P = s, X k ∈ C do 10: Add P to P if GR(s, X k , ∆ X k) ≥ minGr and non anti-monotone constraints from C are verified. 11: end for Procedure TRIGAT EN U M Require: s = S 1 , . . . , S , ∆ |s , Gaggr, minCov, n, C Ensure: C the set of covering sequences of prefix s 1: if not closed based prunnable(s) and s verifies all the anti-monotone constraints from C then 2: insert s in C 3: end if 4: Scan ∆ |s , find each α ∈ (D × S) s.t. COV n (α) ≥ minCov and s can be extended to S

1 , . . . , S -1 , {S ∪ α} or S 1 , . . . , S , α 5: for all valid α do 6: s ← S 1 , . . . , S -1 , {S ∪ α} 7: TRIGAT enum(s, D |s , Gaggr, minCov, n, C) 8: s ← S 1 , . . . , S , α 9: TRIGAT enum(s, D |s , Gaggr, minCov, n, C) 10: end for

 The 3 resulting dynamic attributed graphs differ by their time scale: in RITA1, attribute values are summed over days of September 2001; in RITA2, the values are accumulated over months from September 2000 to September 2002; and in RITA3, they are aggregated over weeks between 01/08/2005 and 25/09/2005 (Katrina hurricane). Social bookmarking: Del.icio.us 7 provides social networking, bookmarking, and tagging information [5]. In the resulting dynamic graph, edges represent mutual fan relationships. Users are described by the numbers of bookmarks they shared for different categories (art, car, student, etc.). Due to the long tail principle, only categories used at least by 500 are kept. Timestamps are aggregated by year on a period spanning from 2006 to 2010 for the quantitative experiments.

The term growth-rate may be misleading: it is not related to time, but to the appearance of a target attribute in a sub group of objects w.r.t. the rest of the database.

This enables to avoid to consider any prefix sequence s having an equivalent projected database than a sequence s discovered before, i.e., ∆ |s = ∆ |s . Two cases are possible. Either s ≺ s (backward subpattern) or s ≺ s (backward super-pattern). In case of backward sub-pattern, the exploration of s and its descendants is stopped. In case of backward super-pattern, the descendant of s are transplanted to s instead of exploring an already scanned projected database.

[START_REF] Borgwardt | Pattern mining in frequent dynamic subgraphs[END_REF] See materials at: http://liris.cnrs.fr/ ˜mplantev/doku/doku.php?

id=trigat[START_REF] Bringmann | Learning and predicting the evolution of social networks[END_REF] Measures computed with SNAP http://snap.stanford.edu/

http://www.informatik.uni-trier.de/ ˜ley/db/

http://http://transtats.bts.gov/

http://www.delicious.com/

As reported at http://en.wikipedia.org/wiki/Closings_and_cancellations_ following_the_September_11_attacks#North_American_airspace

http://www.iata.org/pressroom/documents/impact-9-11-aviation.pdf

This work has been partially supported by the project GRAISearch -EU Marie Curie Actions -FP7-PEOPLE-2013-IAPP.

These patterns explicit the conferences or journal venues that strongly impact and/or explain one's collaborations or authority in the DBLP network. For example, the first pattern tells us about the impact of publishing more in the IEEE Transactions on Knowledge and Data Engineering. The Figure 9 (left) gives the subgraph induced by the support (labeled in red), and the coverage: the high density reveals a community aspect. In contrast, the graph of pattern 8 is much more sparser (Figure 9 right) which may reflect that publishing at VLDB triggers a positive variation of the author degree in the graph, for authors that cover well the graph (high coverage) but do not collaborate together (low density). As such, one can be interested in querying about a specific conference. Let us continue with the example of the VLDB conference: we wonder if publishing in VLDB, and probably presenting there, could be an interesting start for increasing one's degree, i.e. making collaborations. We query the top-k patterns w.r.t. growth rate that involve VLDB in the left hand-side and the degree in the right-hand side. All the patterns returned have a growth rate higher than 20. Consider now the IEEE ICDM conference: the top pattern that involves it has a growth rate of 5 and tells us that publishing at ICDM may help to be more central in the co-authoring graph. The lower growth rate (5) when comparing with VLDB (20) can be explained by the fact that ICDM is younger than VLDB.

RITA1: With minCov = 10%, TRIGAT extracts 1, 922 jumping patterns (i.e. having an infinite growth rate value). To retrieved the most influential airports that were disturbed by 09/11 event, we compute the ratio α of coverage divided by support: the higher this ratio, the more potentially influential. The top extracted pattern is {#Canceled + }{Degree -, Closeness -, N umCliques -, P agerank -, Betweennes -} → Degree + which has a support of 5, a coverage of 144, and α = 28.8, i.e. in average an air-