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The ASBM-SA turbulence closure: Taking advantage of structure-based

modeling in current engineering CFD codes

C.F. Panagiotou a, S.C. Kassinos a,⇑, B. Aupoix b

aComputational Sciences Laboratory, UCY-CompSci, Department of Mechanical & Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678, Cyprus
bONERA, The French Aerospace Lab, F-31055 Toulouse, France

Structure-based turbulence models (SBM) carry information about the turbulence structure that is needed for the prediction of complex non-equilibrium 

flows. SBM have been successfully used to predict a number of canonical flows, yet their adoption rate in engineering practice has been relatively low, 

mainly because of their departure from standard closure formulations, which hinders easy implementa-tion in existing codes. Here, we demonstrate the 

coupling between the Algebraic Structure-Based Model (ASBM) and the one-equation Spalart–Allmaras (SA) model, which provides an easy route to 

bringing structure information in engineering turbulence closures. As the ASBM requires correct predictions of two turbulence scales, which are not taken 

into account in the SA model, Bradshaw relations and numer-ical optimizations are used to provide the turbulent kinetic energy and dissipation rate. 

Attention is paid to the robustness and accuracy of the hybrid model, showing encouraging results for a number of simple test cases. An ASBM module in 

Fortran-90 is provided along with the present paper in order to facilitate the testing of the model by interested readers.

1. Introduction

Currently, the computation of turbulent flows in industrial

design and engineering applications relies heavily on the use of

simple turbulence models in the Reynolds-Averaged Navier Stokes

(RANS) equations. This has been a long-standing trend and is sus-

tained by practical considerations. For example, the computational

resources needed by Direct Numerical Simulations, and even by

Large-Eddy Simulations, are still excessive for routine use in many

engineering applications.

The class of RANS models most often used in engineering appli-

cations is that of Eddy Viscosity Models (EVM). One of the most

popular EVM is the Spalart–Allmaras (SA) one-equation model

(Spalart and Allmaras, 1994). The SA model is often favored by

practicing engineers because it exhibits superior robustness, low

CPU time requirements and substantially lower sensitivity to grid

resolution compared to two-equation models. On the other hand,

one has to recognize that, despite its computational and imple-

mentational attractiveness, the eddy viscosity assumption is also

the source of some of the most important performance limitations.

For example, like other EVM, the SA model fails to capture

important flow features, such as turbulence anisotropy or the

effects of mean or system rotation.

The widespread use of EVM in engineering practice, despite

their inherent limitations, is sustained by the lack of clearly

superior alternatives that would justify the extra computational

complexity required. For example, efforts to circumvent the limita-

tions of the eddy viscosity assumption usually proceed along one

of three paths. One path is that of Differential Reynolds Stress Mod-

els (DRSM), where the closure carries the Reynolds Stress Trans-

port (RST) equations. DRSM closures allow the prediction of

stress anisotropy, account for history effects on the anisotropy,

and afford improved handling of rotational and curvature effects.

However, robustness issues and performance inconsistencies have

prevented this class of models from penetrating further into the

mainstream of engineering practice. For example, a number of

large European research projects were aimed at introducing DRSM

models in industrial codes (FLOMANIA and ATAAC), but did not

lead to a significant change in industrial CFD practice. A second

common choice is to use one of the Explicit Algebraic Reynolds

Stress Models (EARSM), which are based on a weak equilibrium

assumption that leads to a constitutive equation between the tur-

bulence stresses and the mean deformation field. In addition,

EARSM involve the transport of two turbulence scales. The

anisotropy equilibrium assumption that is inherent to EARSM has

been a known source of performance limitations in complex
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non-equilibrium flows. A third option is resort to Nonlinear Eddy

Viscosity Models (NLEVM), where the stress–strain relation is

extended with additional terms. NLEVM and EARSM models can

be made to show sensitivity to curvature and rotation, but cannot

handle consistently complex rotational effects.

A common feature of the classical closure approaches described

so far is the assumption that all key information about the turbu-

lence is contained in the scales of the turbulence and in the turbu-

lence stress tensor. However, one should consider that the

turbulent stresses contain information only about the componen-

tality of the turbulence, i.e. about the directions in which the tur-

bulence fluctuations associated with large-scale eddies are most

energetic. Thus, traditional closures do not take into account the

morphology of the energy-containing eddies. Yet, eddies tend to

organize spatially the fluctuating motion in their vicinity. In doing

so, they eliminate gradients of fluctuation fields in some directions

(those in which the spatial extent of the structure is significant)

and enhance gradients in other directions (those in which the

extent of the structure is small). Thus, associated with each eddy

are local axes of dependence and independence that determine

the dimensionality of the local turbulence structure. This structure

dimensionality information is complementary to the componental-

ity information contained in the Reynolds stresses, and as Kassinos

and Reynolds (1994) and Kassinos et al. (2001) have shown it is

dynamically important.

Reynolds and Kassinos identified this common limitation of

classical closures and introduced an alternative modeling

approach, the Structure-Based Turbulence Models (SBM), which

today provide a promising route for devising improved RANS tur-

bulence closures. SBM can be envisioned in two complementary

ways. The first is to use directly the structure tensors that charac-

terize the morphology of the turbulence. The transport of these

tensors is governed by exact partial differential equations that

have been derived and this provides the starting point for differen-

tial SBMs, such as the Q-model (Poroseva et al., 2002). In general,

differential SBMs involve a large number of transport equations,

which can be unattractive for routine engineering computations.

Hence, a second way is to assume that the turbulence can be mim-

icked by ensembles of simplified structures, hypothetical 2D

eddies, whose axis of independence is given by an eddy-axis vec-

tor. The orientation of the eddy-axis can be obtained through

model equations, either differential or algebraic. These eddies are

2D, but they can be jetal 2D–1C (motion only along the eddy-axis),

vortical 2D–2C (motion in planes normal to the eddy-axis) or heli-

cal 2D–3C (correlated motion along and normal to the eddy axis).

Averaging over ensembles of eddies produces statistical quantities

representative of the field and allows one to relate the Reynolds

stress tensor to the statistics of the turbulence structure

(Kassinos and Reynolds, 1994). The Algebraic Structure-Based

Model (ASBM) (Kassinos et al., 2006; Langer and Reynolds, 2003)

is an engineering structure-based turbulence model that follows

this second approach. It is a fully realizable two-equation struc-

ture-aware model that provides the full Reynolds stress tensor.

In the ASBM, the eddy-axis is obtained through an algebraic

equation that takes into account asymptotic rapid distortion the-

ory (RDT) limits. Under RDT, the governing equations are linearized

by neglecting products of turbulent fluctuations. This linearization

is based on the assumption that the turbulence does not have time

to interact with itself because the eddy turnover timescale is much

longer than that of the mean distortion. Near solid boundaries, the

model is sensitized to the wall-blocking effect through an elliptic

relaxation equation that is based on the physical argument that

eddies must be realigned parallel to the wall as the wall is

approached. While the ASBM comes with its own transport

equations for the turbulence scales (notably the Large-Scale

Enstrophy Equation LSE) (Reynolds et al., 2002), it has recently

been successfully coupled with the scale equations of popular

Eddy-Viscosity Models (EVM), such as the v
2–f (Kalitzin et al.,

2004), the k–e–/–a (Benton, 2011) and the k–x models

(Kassinos et al., 2006; Aupoix et al., 2009; Kalitzin et al., 2004).

Inspired by these considerations, here we present the coupling

of the ASBM with the one-equation SA model. The motivation is

that the hybrid ASBM-SA model can potentially combine the

numerical robustness and stability of the SA model along with

the deeper physical content of the ASBM that ensures full realiz-

ability. Because the coupling can be added to existing SA imple-

mentations with minimal additional effort, such an approach

could provide immediate access to ASBM technology in engineer-

ing codes. Thus, the main objectives of this work are (a) to describe

the coupling of the ASBM and SA closures, (b) to outline the

implementation of ASBM-SA model in our solver and evaluate its

computational characteristics, such as numerical stability, and

speed of convergence, and (c) to evaluate the performance of the

model in a number of standard benchmark cases.

2. ASBM modeling

The ASBM belongs to the family of Structure-Based turbulence

Models (SBM) that are designed to include information about the

morphology of the energy-containing turbulence eddies. ASBM

has been built as an engineering simplification to more complex

differential structure-based turbulence models (Kassinos et al.,

2000; Poroseva et al., 2002), and requires two turbulence scales

and the mean velocity gradients as inputs. Given these inputs, it

uses algebraic relations to return the normalized structure tensors,

including the Reynolds stresses, as output.

2.1. Structure parametrization

The fundamental idea behind the algebraic structure represen-

tation in ASBM is that any three-dimensional three-component

(3D–3C) turbulent field can be constructed by the superposition

of an ensemble of simpler 2D–3C fields representing individual

eddies. Thus, individual eddies can be envisioned as building

blocks that are used in ensembles to represent complex turbulence

fields. Individual eddies can differ in character according to their

componentality (C) and dimensionality (D). Averaging over an

ensemble of eddies yields an algebraic constitutive equation that

relates the normalized Reynolds stress tensor rij to the other

structure parameters of the ensemble

rij ¼
1

2
ð1� /Þðdij � aijÞ þ /aij þ ð1� /Þv e�

2
dij �

eþ

2
aij � bij þ ½ab�ij

� �

� ckð�iprapj þ �jprapiÞ
ð1� ve�Þ

2
dkr þ vbkr � vaknbnr

� �

; ð1Þ

where we have used

e� ¼ 1� anmbmn; ½ab�ij ¼ ainbnj þ ajnbni: ð2Þ

To compute the Reynolds stress tensor one has to know the struc-

ture parameters that appear on the R.H.S. of Eq. (1), namely the

eddy-axis tensor aij, the jetal parameter /, the helical parameter

c, the flattening tensor bij and flattening scalar v. These are obtained

through model functions that are based on the asymptotic states

produced by the RDT of homogeneous turbulence and adjusted

for the effects of weak deformation and wall-proximity, where

appropriate. A brief description of these structure parameters and

of the model functions used to compute them is given below and

in greater detail in (Langer and Reynolds, 2003; Aupoix et al., 2009).
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2.1.1. Eddy-axis tensor

The unit eddy-axis vector ai describes the orientation of individ-

ual eddies. The eddy-axis tensor aij is the energy-weighted, ensem-

ble-averaged direction cosine tensor of the eddies,

aij ¼ Aij=q
2 Aij ¼ hu2aiaji; ð3Þ

where the angled brackets denote averaging, u2 ¼ uiui is the magni-

tude of the fluctuating velocity and q2 ¼ hu2i is twice the turbulent

kinetic energy. In differential SBM, the evolution of aij is based on

the transport equation for a material line in homogeneous turbu-

lence. In the ASBM, aij is obtained by following the weak-equilib-

rium procedure of Rodi (1976), where it is assumed that

variations in Aij are due to variations in q2 only, while variations

in aij are neglected. Thus,

dAij

dt
� 2aijðP � eÞ; ð4Þ

where P and e are the production and dissipation rates of the tur-

bulent kinetic energy. Furthermore, the algebraic procedure is split

into two steps, based on the assumption that the effects of irrota-

tional mean deformation and mean rotation on the eddy axis tensor

can be decomposed. This splitting is justified by the observation

that the orientation of the eddy-axis must be computed in the anal-

ysis frame where the flow is in equilibrium or very close to it. This is

typically a rotating frame. The eddy axis is computed with no refer-

ence to the frame rotation, as it is only kinematically rotated by it

(Kassinos and Reynolds, 1994; Haire and Reynolds, 2003). The

two evaluation steps are summarized next.

The irrotational contribution is calculated using the implicit

algebraic expression

asij ¼
dij

3
þ s

S�ika
s
kj þ S�jka

s
ki � 2

3
jSasjdij

ao þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ s2S�kpS
�
kqa

s
pq

q ; ð5Þ

where s is a turbulent time scale, S�ij ¼ Sij � Skkdij=3 is the anisotropic

part of the mean strain rate tensor Sij, and jSasj ¼ S�pqa
s
qp. Here,

ao ¼ 1:4 and a1 ¼ ð2:1� aoÞ=2 are ‘‘slow’’ parameters whose values

were determined by considering the initial growth rate of the Rey-

nolds stress anisotropy when Ss is very small. Moreover, these

parameters were optimized simultaneously with other model con-

stants to ensure the model satisfies a canonical boundary-layer

state.

Next, mean rotation effects are included through a rotation

operator Hij that is applied to asij in order to yield the final homoge-

neous eddy-axis tensor

aij ¼ HikHjma
s
km; ð6Þ

where Hij is the rotational transformation tensor, given by

Hij ¼ dij þ a1

Xij
ffiffiffiffiffiffiffiffiffiffiffiffiffi

XstXst

p þ a2

XipXpj

XstXst

: ð7Þ

Here, Xij is mean rotation tensor. The requirement that Hij obeys the

orthonormality conditions HipHjp ¼ dij and HpiHpj ¼ dij enforces a

dependence between the two coefficients a1 and a2, namely

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2 � a2
2=2

q

: ð8Þ

Matching the RDT limiting states under the combined action of

mean plane strain and rotation determines a2 (Haire and

Reynolds, 2003)

a2 ¼
2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi

1� r
pq

Þ if r 6 1

2� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=r
p

q

Þ if r P 1;

8

>

<

>

:

where r ¼ ðapqXqrS
�
rpÞ=ðS

�
knS

�
nmamkÞ.

2.1.2. Jetal parameter

Motion around the eddy-axis is called vortical, whereas the

motion aligned to it is called jetal. The eddy jetal parameter

0 6 / � 1 represents the fraction of the energy in the jetal mode.

Of course, the energy fraction in the vortical mode is given by

1� /. In the ASBM, it is assumed that homogeneous isotropic tur-

bulence is composed entirely of vortical eddies. The vortical char-

acter of the turbulence (/ ¼ 0) is preserved by rapid irrotational

strain, but in the presence of mean rotation the jetal component

is activated.

2.1.3. Helical parameter

Under rapid irrotational strain the turbulence is assumed to be

vortical. Jetal turbulence results from the breaking of reflectional

symmetry (Kassinos and Reynolds, 1994; Kassinos et al., 2001)

caused by mean or frame rotation. Furthermore, in the presence

of mean shear, the vortical and jetal components of motion are cor-

related. In the ASBM, the correlation between the vortical and jetal

components is related to the stropholysis vector ck. The stropholy-

sis vector is zero for purely vortical or purely jetal turbulence, lead-

ing to

c ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2/ð1� /Þ
1þ v

s

; ck ¼ c
X

T
k

ffiffiffiffiffiffiffiffiffiffiffiffi

X
T
sX

T
s

q ; ð9Þ

where c is the helical parameter, b is a parameter indicative of the

degree of correlation between fluctuating velocities at different

directions. XT
k is the total rotation vector given by the sum of the

frame and the mean rotation vector. v is the eddy flattening param-

eter introduced next.

2.1.4. Eddy flattening

If the motion is not axisymmetric around the eddy, the eddy is

called flattened. This asymmetry occurs when rotation is present

and is incorporated in the model through a scalar, called flattening

parameter v, and a tensor, called the flattening tensor bij. The flat-

tening tensor bij is modeled in terms of the mean and frame vortic-

ity vectors Xi and X
f
i ,

bij ¼
X

�
iX

�
j

jX�2j
; X

�
i ¼ Xi þ CbX

f
i : ð10Þ

To capture the correct sign of the secondary shear stress for the case

of shear with streamwise frame rotation, Cb is set equal to �1. Thus,

bij is a frame-dependent parameter, sensitized to the particular

frame choice.

2.2. Computation of the structure scalars

Completion of the homogeneous formulation of the ASBM

requires the specification of the scalar structure parameters /; b,

c and v. In the general case, these are defined in a three-dimen-

sional space in terms of

gm ¼

ffiffiffiffiffiffiffi

X̂2
m

Ŝ2

s

gf ¼ gm � signðXÞ

ffiffiffiffiffiffi

X̂2
T

Ŝ2

s

a2 ¼ aijaji; ð11Þ

where, X̂2
m ¼�aijXikXkj; X̂

2
T ¼�aijX

T
ikX

T
kj, Ŝ

2 ¼ aijS
�
ikS

�
kj, and X¼ aijX

T
ikS

�
kj.

Functional forms for the scalar structure parameters, such as

/¼/ðgm;gf ;a
2Þ, and b¼bðgm;gf ;a

2Þ, are chosen with reference to

RDT limiting states, while interpolation functions are chosen to

bridge between these limiting RDT states and isotropy. The details

of the functional forms can be found in (Langer and Reynolds,

2003) and are also given in Appendix A.
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2.3. Near-wall effects

In theASBM, it is assumed that as a solid boundary is approached,

the turbulence eddies are forced bywall blocking to become parallel

to the plane of the wall, as shown in the diagram of Fig. 1. At the

same time, the eddies become jetal because of the blocking on the

wall-normal velocity component. As described below, the parame-

trization of the turbulence structure is adjusted for thesewall-prox-

imity effects through an elliptic blocking procedure.

2.3.1. Blocking parameter

The blocking scalar parameter U provides a measure of the

proximity to the wall. This parameter is computed through an

elliptic relaxation equation

L2
@2
U

@x2j
¼ U; L ¼ 0:17max

k
3=2

e
;80:0

ffiffiffiffiffi

m3

e
4

r
 !

; ð12Þ

where k; e are the turbulent kinetic energy and the dissipation rate

respectively.

2.3.2. Blockage tensor

The blockage tensor is computed from the scalar blocking

parameter

Bij ¼
U;iU;j

U;kU;k
U; if U;kU;k > 0

0; if U;kU;k ¼ 0;

(

ð13Þ

and gives the strength and the direction of the wall projection. Thus,

depending on the distance from the wall as measured through U,

the eddies are partially projected onto a plane parallel to the wall,

through the operation

aij ¼ PikPjla
h
kl; ð14Þ

where the eddy projection tensor Pij is given by

Pik ¼
ðdik � BikÞ

Da

; D2
a ¼ 1� ð2� BkkÞahmnBnm: ð15Þ

Note that the eddies are renormalized during the operation so that

the eddy axis tensor is maintained as the energy-weighted direction

cosine tensor of unit trace. The ‘‘jetalization’’ of the eddies due to

the preferential blocking of the wall-normal velocity component

is accomplished through the blocking of the jetal and helical scalar

eddy parameters

/ ¼ 1þ ð/h � 1Þð1� BkkÞ2; c ¼ chð1� BkkÞ: ð16Þ

Additional details on the ASBM formulation can be found in

Appendix A, while a Fortran-90 module containing the ASBM

implementation is also provided (ASBM, 2014).

3. Coupling with the SA model

The Spalart–Allmaras (SA) closure is a one-equation turbulence

model developed primarily for application in aerodynamics, but

which has been successfully applied in a wider range of flows.

The main limitation of SA (and any other one-equation model) is

that it does not provide of a complete set of turbulence scales.

On the other hand, the ASBM closure relies on the availability of

suitable turbulence scales and this was the key stumbling block

in trying to couple the ASBM and SA closures.

3.1. The Bradshaw hypothesis

As early as the 1940s, a number of authors (Dryden, 1948) had

made the observation that in attached boundary layer flows the

turbulent shear stress can be assumed to be approximately propor-

tional to the turbulent kinetic energy and proposed simple models

based on this approximation

j � uv j=k ¼ a1: ð17Þ

Later Bradshaw et al. (1967) elaborated this approach further and

used it as the basis for constructing a one-equation turbulence clo-

sure based on the assumption of a constant a1, and as a result Eq.

(17) is often referred to as ‘the Bradshaw relation’. This relation is

the starting point for coupling of the SA closure to the ASBM

because it provides the framework for extracting the two turbu-

lence scales needed by the ASBM from the SA closure.

Early attempts to use Eq. (17) for the construction of one-equa-

tion closures were based on the assumption of a constant a1
throughout the flowfield. However, DNS and experimental data

indicate that a1 is not a constant in the near wall regime, neither

in the viscous sublayer of the turbulent boundary layer, nor at

the edge of the boundary layer, as indicated by Fares and

Schroder (2005) and Nagano et al. (2000). In their work, Nagano

et al. provided a variable a1 for the Bradshaw relation through

the use of Boussineq approximation,

j � uv j
k

¼ a1 ¼ mT
k

@ut

@yn
; ð18Þ

where ut is the tangential component of the mean velocity and yn is

the normal to the wall component of the local coordinate system,

x
1

 x
2

x
3

Fig. 1. An eddy becomes jetalized due to the blocking effect of a solid boundary.

Fig. 2. Schematic description of the structure of the coupling algorithm.
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and where the turbulence structure parameter is assumed to have

the functional form

a1 ¼
ffiffiffiffiffiffiffiffiffiffi

Clf a

q

: ð19Þ

Here, the role of the model function f a is to account for the variation

of a1 in the viscous sublayer and the edge of the boundary layer.

3.2. Adaptation to the Spalart–Allmaras model

Traditionally, the Bradshaw hypothesis has been used as the

starting point for transforming k–e closures to one equation mod-

els. Here, our objective is to use the same phenomenology in order

to extract the turbulence scales (k and e) from the SA one-equation

closure. Hence, we next require that the eddy viscosity as defined

in the context of the SA closure (Spalart and Allmaras, 1994),

mT ¼ f
v1
~m; ð20Þ

be consistent with the eddy viscosity arising in the low Reynolds

number k–e model, namely

mT ¼ Clf lR; R ¼ k
2

e
; ð21Þ

which yields the relation

f
v1
~m ¼ Clf lR ¼ mT : ð22Þ

Using Eqs. (19) and (22) in (18), allows the turbulent kinetic energy

to be expressed in the form

k ¼ ~m

ffiffiffiffiffiffiffi

f
v1

Cl

s

f vsa S; f vsa ¼
ffiffiffiffiffiffiffi

f
v1

f a

s

; ð23Þ

where the strain invariant S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2SijSij
p

has been used in place of the

velocity gradient @ut=@yn for generality. The function f vsa accounts

for the variation of the turbulence structure parameter in both

the viscous sublayer and the boundary layer edge and in general

is depended on the SA parameter vsa and on Cl. Based on numerical

optimizations the functional form

f vsa ¼ 1þ C0:8
vsa
; Cvsa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
l þ 1=ð1þ vsaÞ

2
q

; Cl ¼ 0:09; ð24Þ

has been adopted (Rahman et al., 2011).

3.2.1. Specification of the effective strain contributions

Two important limitations of Eq. (23) is that it does not hold

true in regions where S tends to zero and it does not adequately

account for rotational effects. To overcome these limitations, and

thus extend the range of applicability of the coupled closure, a

modified strain rate Svsa is introduced in Eq. (23), given by

Svsa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~S2 þ ~S2a

q

: ð25Þ

Here, ~S represents an effective strain rate corrected for rotational

effects, while ~Sa provides an effective strain contribution in regions

where S tends to zero.

Following the approach of Rahman et al. (2011), the effective

strain contributions are evaluated according to

~S ¼ f k S� jn1j � n1

CT

� �

; ð26Þ

with

n1 ¼ S�W ; f k ¼ 1�
~f a
CT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxð1� Ra;0Þ
p

;

Ra ¼ jW=Sj; ~f a ¼ 1� exp � lT

36l

� �

; ð27Þ

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XijXij

p

and CT ¼ 2:0. In Eq. (26), the term inside the

parenthesis considers the region where Ra > 1, such as in the vortex

core, whereas function f k accounts for Ra < 1 and ensures a smooth

transition between the two regions. The second contribution to the

modified strain rate, which provides a correction away from the

wall, is given by

~Sa ¼
2Cvsa

~f a

3m

ffiffiffiffiffiffiffiffiffiffiffi

~u2
i =2

q

1þ lT=l

0

@

1

A

2

; ð28Þ
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Fig. 3. Fully-developed turbulent channel flow at (a) Res ¼ 180 (b) Res ¼ 550 and (c) Res ¼ 2000. Model predictions (lines) for the streamwise mean velocity are compared to

the DNS results (symbols) (Alamo and Jimenez, 2003; Hoyas and Jimenez, 2006).
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where Cvsa is given in Eq. (24) and ~ui is the mean velocity vector rel-

ative to the wall. Summarizing, k is obtained from the equation

k ¼ ~mf vsa

ffiffiffiffiffiffiffi

f
v1

Cl

s

Svsa ; ð29Þ

along with the set of relations (24)–(28).

3.2.2. Consistent computation of the dissipation rate

In addition, a consistent evaluation of the dissipation rate e is

necessary in order to ensure realizable time and length scales. Fol-

lowing similar arguments as for the kinetic energy case (Rahman

et al., 2011), an algebraic expression for the reduced dissipation

rate ~e is adopted

~e ¼ f
1:3
v1

~mS2vsa ; ð30Þ

where the exponent of f
v1 is chosen through numerical

optimizations.

Solid wall corrections. At a solid wall, both k and ~e tend to zero,

but the vanishing of the reduced dissipation leads to numerical sin-

gularities and thus an additional correction is needed. The remedy

is the addition of a term ew, which signifies the equality between

the wall dissipation rate to the viscous-diffusion rate (Patel et al.,

1985; Rahman et al., 2011), given by

ew ¼ 2Ae m
@ut

@yn

� �2

w

� 2Ae mS
2
vsa
; ð31Þ

where m is the kinematic viscosity of the fluid. Experimental and

DNS data for channel flows and flow over a flat plate indicate a

range for Ae between 0:05 < Ae < 0:11. In the current computations,

Ae ¼ Cl ¼ 0:09 is adopted.

Summing all parts that contribute to the dissipation rate yields

the final modeling expression

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2w þ ~e2
q

: ð32Þ

3.3. Determination of the ASBM time scale

The coupling of ASBM to the SA closure is completed by using

Eqs. (29) and (32) to obtain k and e respectively, which are then

used for computing the turbulence time and length scales through

the expressions (Lien et al., 1998),
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Fig. 4. Fully-developed turbulent channel flow at (a) Res ¼ 180 (b) Res ¼ 550 and (c) Res ¼ 2000. The predictions of the ASBM-SA model (solid lines) for the streamwise

intensities are compared to the DNS results (dashed lines) (Alamo and Jimenez, 2003; Hoyas and Jimenez, 2006).
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Fig. 5. Turbulent boundary layer at Red ¼ 4772. SA and ASBM-SA model predictions

(lines) for (a) the streamwise mean velocity and ASBM-SA model predictions (lines)

for (b) the rms and shear stresses. Comparison is made to the experimental values

of Loureiro et al. (2007), shown as symbols.
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s ¼ max
k

e
;CT

ffiffiffi

m
e

r

 !

; L ¼ CL max
k
3=2

e
; Cn

m3

e

� �1=4
!

; ð33Þ

where CL ¼ 0:17; Cn ¼ 80:0; s is the time scale and L is the charac-

teristic length scale. For near-wall turbulence, a lower bound based

on the Kolmogorov scales is imposed on the time and length scales.

This procedure ensures proper near-wall behavior of the turbulence

scales. Fig. 2 demonstrates a schematic description of the numerical

procedure that was followed in the current work.

Fig. 6. Geometry and grid design for RANS computations of turbulent flow over a backward facing step at inlet Reh ¼ 5100. The domain inlet is located at a distance of 3H

upstream of the step corner, while the outlet is at a distance 40H downstream the corner. The ratio between inlet-step height is 4. Data is extracted at two stations located

within the re-circulation region (A, B) and one station located at the recovery region (C). The location of the experimental reattachment point (R) is also shown.
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Fig. 7. Turbulent flow over a backward facing step at Reh ¼ 5100. Model predictions

for the streamwise mean velocity at streamwise locations: (a) x/h = 4, (b) x/h = 6

and (c) x/h = 10. Comparison is made to the experiments of Jovic and Driver (1995),

shown as symbols.
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Fig. 8. Turbulent flow over a backward facing step at Reh ¼ 5100. ASBM-SA model

predictions for the normalized streamwise Reynolds stress (Rxx=U
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o) at different

streamwise locations: (a) x/h = 4, (b) x/h = 6 and (c) x/h = 10. Comparison is made to

the experiments of Jovic and Driver (1995), shown as symbols.
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4. Computations

In order to test the efficiency and performance of the proposed

ASBM-SA model, we consider a series of two-dimensional flows,

namely a fully-developed channel flow, a turbulent boundary layer

over a flat plate, a backward-facing step, an asymmetric diffuser

and a smooth steep hill. The model is validated against DNS and

experimental data and compared to the standard SA model. In all

cases, the computations were repeated on progressively finer grids

till a grid independent solution was achieved. An unstructured,

nodal-based finite-volume code called CDP that has been devel-

oped at the Center of Turbulence Research (Stanford/NASA) is used

as a general platform. For the discretization of the diffusive and

advection terms in both the mean and turbulent transport

equations, a second-order accurate centered-difference scheme

with skewness corrections has been used. The coupling of the

transport equations is done through a fractional-step method,

while a Crank–Nicholson scheme is used for time integration.

Details of the code have been described extensively in (Ham

et al., 2006).

4.1. Fully-developed channel flow

Computations are carried out for fully-developed turbulent

channel flow at a Reynolds numbers Res ¼ 180; Res ¼ 550 and

Res ¼ 2000, based on the channel half-height d and friction
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Fig. 9. Turbulent flow over a backward facing step at Reh ¼ 5100. SA and ASBM-SA

predictions for the normalized turbulent shear stress (�Rxy=U
2
o) at three x-stations:

(a) x/h = 4, (b) x/h = 6 and (c) x/h = 10. Comparison is made to the experiments of

Jovic and Driver (1995), shown as symbols.
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Fig. 10. Turbulent flow over a backward facing step at Reh ¼ 5100. ASBM-SA

predictions for the transverse Reynolds stress (Ryy=U
2
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velocity us. The profiles are compared to the DNS data of Alamo

and Jimenez (2003) and Hoyas and Jimenez (2006). The flow is

maintained by a uniform mean pressure gradient imposed along

the streamwise direction x. No-slip boundary conditions are

applied at the top and bottom walls and periodic conditions along

the other two directions. Computations are carried on a

1 � 105 � 1 nonuniform grid based on the grid independence test

and in order to ensure proper near-wall resolution, the first cells

adjacent to the walls are placed at yþ < 1:0. Results are non-

dimensionalized using the friction velocity, as Uþ
x ¼ Ux=us; urms ¼

ffiffiffiffiffiffiffi

Rxx

p
=us; v rms ¼

ffiffiffiffiffiffiffi

Ryy

p

=us; wrms ¼
ffiffiffiffiffiffi

Rzz

p
=us and uv ¼ �Rxy=u

2
s .

Fig. 3a–c show the mean velocity profile for the low

(Res ¼ 180), the intermediate (Res ¼ 550) and the high

(Res ¼ 2000) Reynolds number cases, respectively. In all cases,

the predictions of both the ASBM-SA and SA models agree well

with the DNS data. As shown, in the buffer and log-layer regions

(30 < yþ < 50), the ASBM-SA coupling produces a marginal

improvement relative to the SA predictions.

Corresponding profiles for the rms quantities are displayed in

Fig. 4a–c, where again good agreement of the model predictions

with the DNS data is noted. The SA closure cannot provide predic-

tions for the rms turbulence quantities and thus the comparison is

made only between the ASBM-SA closure and the DNS results.

4.2. Turbulent boundary layer

Next, we consider the case of a turbulent boundary layer flow

over a flat plate, for which many experimental datasets are avail-

able. Here, we have chosen to validate the model against the exper-

iments of Loureiro et al. (2007), since these are related to the inlet

conditions used later for the ‘Witch of Agnesi’ case. The Reynolds

number is Red ¼ 4772, based on freestream velocity ud and the

boundary thickness d, corresponding to a friction-velocity

Reynolds number of Res ¼ 277. At the inlet, Dirichlet boundary

conditions are imposed for ~m and Ui, while zero-flux is used for

the other variables. For all flow variables, a penalty condition is

applied at the outlet to ensure mass conservation and a zero-flux

at the top free surface, while symmetry conditions are used in

the spanwise direction. Finally, a no-slip condition is used at the

bottom wall. In order to ensure adequate resolution, the cells adja-

cent to the wall are placed within yþ < 0:9. The computations are

carried on a nonuniform grid of size 63 � 104 � 1 in the stream-

wise, wall-normal and spanwise directions, respectively. The grid

is stretched along the wall-normal direction, but kept uniform

along the streamwise. Finer grids were also considered, which all

converged to the same solutions, indicating grid-independence

for our results.

Fig. 5a highlights the performance of the ASBM-SA closure. In

the case of the mean velocity Uþ
x , the predictions lie very close to

those of the SA model and are in good agreement with the exper-

iments. As shown in Fig. 5b, the ASBM-SA predictions for the rms

turbulent fluctuations are in very good agreement with the exper-

imental values for yþ > 10.

4.3. Backward facing step

To ascertain the performance in separated flows, the proposed

model is applied to the flow over a backward facing step. This is

the simplest benchmark case with flow separation, since the sepa-

ration point is fixed. Computations are conducted for flow condi-

tions that correspond to the experiment performed by Jovic and

Driver (1995) and the DNS computations by Le et al. (1997). At

the inlet, a zero-pressure-gradient (ZPG) boundary layer profile is

imposed, corresponding to a Reynolds number Reh ¼ 5100 based

on the step size h and the freestream velocity uo, and taken from

an SA computation of a ZPG boundary layer. The same (SA based)

inlet profile was used for both the SA and the ASBM-SA computa-

tions in order to make the comparison more meaningful. The ratio

between the inlet height and the step height is 4. In the current

computations, the grid is arranged in two blocks. The upper block

(the area above the step) contains a 160 � 91 � 1 nonuniform grid,

while the lower one contains a 134 � 31 � 1 nonuniform grid

respectively. Both grids are stretched in both the streamwise and

the crossflow directions. The grid independence of our results

was verified by computing the flow on a finer grid containing an

upper block of 161 � 153 � 1 and a lower one of 134 � 63 � 1

and demonstraing that the solution remained unaffected. The max-

imum distance between the first grid cell and the wall is kept

within yþ 6 0:75. Details of the flow geometry and grid design

are shown in Fig. 6.

The inlet conditions are specified at a distance of 3h upstream of

the corner, whereas the outlet boundary conditions are imposed at

40h downstream of the corner. The imposed boundary conditions

correspond to slip conditions at the top surface of the domain,

no-slip conditions at the bottom wall, and periodic conditions in

the spanwise direction.

Fig. 12. Geometry and mesh details for RANS computations of turbulent flow in an asymmetry diffuser. The domain inlet is located at a distance of 3H upstream the point at

the beginning of the expansion region, while the outlet is at a distance 49H downstream that point. The expansion domain is 21H long at the streamwise direction, yielding an

expansion ratio of 4.7. Data is extracted at four stations located within the re-circulation region. The re-attachment point(R) is also shown.
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Fig. 13. Time history of the mean velocity residual for the ASBM-SA. The
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coupling is turned on.
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All the quantities reported are normalized by the step size h and

the reference freestream velocity uo. The distance x/h is measured

exactly from the step corner. The streamwise mean velocity

profiles at three representative positions are shown in Fig. 7a–c.

The first two positions, x/h = 4 and x/h = 6 are located inside the

recirculation region, whereas the third, x/h = 10, is within the

recovery region. As shown, both the SA and ASBM-SA models

capture accurately the profiles in the separation region. In the

recovery region, a slight underestimation of the freestream value

is observed.

Comparisons for the distributions of Reynolds stress compo-

nents at the three reference locations are shown in Fig. 8–10. The

ASBM-SA closure provides encouraging results in both the recircu-

lation and recovery regions. It captures both the peak magnitudes

and the freestream values, proving its sensitivity to the anisotropic

nature of this flow. The re-attachment length Xr predicted by DNS

is Xr ¼ 6:39 in step-height units. Both SA and ASBM-SA predict the

same Xr ¼ 6:51.

The variation of the skin-friction coefficient Cf with streamwise

distance along the bottom wall is shown in Fig. 11. Both the SA and

ASBM-SA closures are in reasonable agreement with the

experimental and DNS results, but the ASBM-SA produces slightly

improved Cf levels in the recirculation bubble and after

reattachment.

4.4. Asymmetric diffuser

Steady flow in a two dimensional asymmetric diffuser is consid-

ered next. In this type of flow, adverse pressure gradients are gen-

erated leading to a large recirculation bubble. The flow conditions

are chosen to correspond to the reliable and detailed experimental

database of Buice and Eaton (2000). The profile specified at the inlet

is obtained from an SA solution for a fully-developed channel flow

corresponding to a Reynolds number of Re = 20,000 based on the

channel height and the centerline velocity. At the bottom and top

walls a no-slip condition is applied, whereas periodic conditions

are used in the spanwise direction. Finally, a penalty condition is

used at the outlet, ensuring mass conservation. A 148 � 68 � 1

non-uniform grid is used, stretched along the transverse direction

so that the yþ < 1 of all grid points adjacent to the walls. Fig. 12

shows details of the computational grid, where the stations marked

with letters A through D correspond to the positions
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Fig. 14. SA and ASBM-SA model predictions at the bottom wall for (a) the wall static-pressure coefficient and (b) the wall skin-friction coefficient. Comparison is made to the

experimental values of Buice and Eaton (2000).
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Fig. 15. Turbulent flow over the asymmetry diffuser. Model predictions for the streamwise mean velocity Ux at various x-stations for SA and ASBM-SA closures. Comparison is

made to the experimental values of Buice and Eaton (2000).
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x=h ¼ 6; x=h ¼ 16; x=h ¼ 24 and x=h ¼ 29 respectively, which are

all located inside the recirculation region. Station A roughly corre-

sponds to the experimental flow separation point. Finally, station

R corresponds to the location of the experimental re-attachment

point, which was located approximately at x=h ¼ 30. Comparisons

between model predictions and experimental results are done at

these locations.

Fig. 13 demonstrates the time development of the maximum

velocity residual, ensuring that fully converged, steady solutions

are reached. The residual is normalized by its initial value and is

given by

Res ¼ max
V � DU=Dt

ðV � DU=DtÞo

� �

; DU ¼ Unþ1 � Un; ð34Þ
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Fig. 16. Model predictions for the streamwise components Rxx at various x-stations for SA and ASBM-SA closures. Comparison is made to the experimental values of Buice and

Eaton (2000).
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Fig. 17. Model predictions for the streamwise components Ryy at various x-stations for SA and ASBM-SA closures. Comparison is made to the experimental values of Buice and

Eaton (2000).
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where n is the number of iteration, Dt is the uniform time step, U is

the streamwise mean velocity and V is the volume of the corre-

sponding cell. As shown in Fig. 13, the ASBM-SA model achieves

the same final residual levels as the SA closure, an observation that

applies to all cases considered in this work.

Both mean and turbulent quantities are normalized by the

channel height H and the reference bulk velocity Uo, obtained from

the channel simulation. The origin of the x coordinate (x=h ¼ 0) is

located at the beginning of the expansion section.

Fig. 14 showcases the predictions of the ASBM-SA and SAmodels

for the wall static-pressure coefficient Cp ¼ ðp� poÞ= 1
2
qU2

o and the

skin-friction coefficient Cf along the bottomwall. The ASBM-SA clo-

sure yields a significant improvement in the prediction of Cp rela-

tive to SA, especially after reattachment (see Fig. 14a). The ASBM-

SA model correctly predicts both the drop and the subsequent

recovery of the pressure, with only a slight overestimation of the

Cp near the outlet. This difference between experiments and predic-

tions has also been observed in the LES results of Kaltenbach et al.

(1999) The two models produce similar Cf predictions that are in

good agreement with the experiments. Based on these skin-friction

results, the separation and re-attachment points are predicted by

both the SA and ASBM-SA models to be approximately at

x=h ¼ 3:6 and x=h ¼ 33:5 respectively. Thus, both models over-pre-

dict the size of the recirculation bubble. These results are consistent

with those of DalBello et al. (2005)who has also computed the same

case using the SA model. A slight Cf oscillation is observed in the

solution of both models at x=h � 20. This wiggle in the Cf profile

is located around the point x=H ¼ 21, which is the point where

the geometry exhibits a sharp change (end of expansion region).

Thus, these oscillations in the Cf profile seem to be associated with

the sudden change of the geometry and are most likely caused by

the recirculating flow encountering the inclined wall. These distur-

bances in the Cf profile are also known to be exhibited in the solu-

tions of other RANS models (DalBello et al., 2005).

Fig. 15 shows the predictions for the mean streamwise veloci-

ties at the reference stations. As shown, the ASBM-SA predictions
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Fig. 18. Model predictions for the shear stress component Rxy at various x-stations for SA and ASBM-SA closures. Comparison is made to the experimental values of Buice and

Eaton (2000).

Fig. 19. Geometry and grid design for RANS computations of turbulent flow over the ‘Witch of Agnesi Hill’ at inlet Red ¼ 4772. The domain inlet is located at a distance of

12.5H from the hilltop, while the outlet is at 15.23H. The domain height is 4H. Data is extracted at three stations located within the re-circulation region (A, B, C) and one

station located near the experimental re-attachment point.
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are in better agreement with the experiments than the SA predic-

tions at all stations, except at the last one that is located at the edge

of the recirculation region.

Comparisons between the ASBM-SA predictions and the exper-

iments for the diagonal Rxx and Ryy Reynolds stress components are

shown in Figs. 16 and 17 respectively. The closure is in fair

agreement with the experiments, capturing the peak levels and

saddle points in the profiles. Fig. 18 shows comparison between

ASBM-SA predictions and SA for the shear stress component Rxy.

At the first two stations, ASBM-SA overestimates the near wall

peak magnitude at the bottom wall, whereas SA captures the cor-

rect magnitudes. At the last two-stations however, the closure

recovers and provides better agreement with experiments than

the SA closure.

SA

ASBM-SA

ASBM-BSL

EXPERIMENT

y
/H

0

1

2

3

4

Ux/Uo

0.2 0.2 0.6 1.0 1.4

(a) station A, x/h = 1.25

SA

ASBM-SA

ASBM-BSL

EXPERIMENT

y
/H

0

1

2

3

4

Ux/Uo

0.2 0.2 0.6 1.0 1.4

(b) station B, x/h = 2.5

SA

ASBM-SA

ASBM-BSL

EXPERIMENT

y
/H

0

1

2

3

4

Ux/Uo

0.2 0.2 0.6 1.0 1.4

(c) station C, x/h = 3.75

SA

ASBM-SA

ASBM-BSL

EXPERIMENT

y
/H

0

1

2

3

4

Ux/Uo

0.2 0.2 0.6 1.0 1.4

(d) station D, x/h = 6.67

Fig. 20. Turbulent flow over the ‘witch of Agnesi’ smooth hill. Model predictions for the streamwise mean velocity Ux at various x-stations for SA and ASBM-SA closures.

Comparison is made to experimental values (Loureiro et al., 2007) and the predictions of ASBM-BSL model.
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Fig. 21. Model predictions for the streamwise mean velocity Uy at various x-stations for SA and ASBM-SA closure. Comparison is made to experimental values and the

predictions of ASBM-BSL model.
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4.5. Smooth hill

To further evaluate the model performance in configurations

involving flow separation, we consider next a case in which the

separation point is not fixed. Thus, the ASBM-SA and SA models

are applied to a model complex terrain, specifically to flow over

a steep smooth hill. The shape of the hill is defined using a

modified ‘Witch of Agnesi’ profile. Detailed near-wall experimental

data (Loureiro et al., 2007) provide a good data set for model

validation. For the sake of comparison, additional computations

for the same case were performed using the ASBM-BSL model,

which is a two-equation hybrid closure that was implemented by

us in the same code. We have chosen to compare to this particular

closure because it had previously been shown that among ASBM
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Fig. 22. Model predictions for the streamwise Reynolds stress Rxx at various x-stations for SA and ASBM-SA closure. Comparison is made to experimental values and the

predictions of ASBM-BSL model.
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Fig. 23. Model predictions for the transverse Reynolds stress Ryy at various x-stations for SA and ASBM-SA closure. Comparison is made to experimental values and the

predictions of ASBM-BSL model.

14



couplings it is the one that produces the most reliable results for

this case.

The computational domain and its mesh details are shown in

Fig. 19. Domain dimensions are expressed in terms of the hill

height H. Thus, the domain has a total height and length of 4H

and 27:73H, respectively, and is divided into three sections. First

form left to right is the inlet section that has a length of 7:5H

and contains 64 � 119 � 1 grid cells. A second section with a

length of 10H encloses the hill and contains 169 � 119 � 1 cells,

and finally the outlet block is 10:23H in length and contains

74 � 119 � 1 cells. A grid sensitivity analysis was used in order

to ensure grid independence of the solution. For this purpose, addi-

tional computations on both a coarser (with blocks of

50 � 100 � 1, 120 � 100 � 1 and 60 � 100 � 1) and a finer grid

(with blocks 97 � 125 � 1, 331 � 125 � 1 and 158 � 125 � 1) were

performed. It was confirmed that the same solution was obtained

when using the two finer grids, thus verifying that our solutions

are grid converged.

At the inlet, the height of the cell adjacent to the wall is placed

at a yþ � 0:25. The inlet profile is extracted from a flat-plate

boundary layer simulation at Red ¼ 4772, where the Reynolds

number is based on the freestream velocity ud and the boundary

layer thickness d. An outflow penalty condition was used at the

outlet, a no-slip condition at the bottom wall, a slip condition at

the top free surface, and periodic conditions were imposed in the

spanwise direction.

In the figures that follow, all quantities are normalized using

the hill height H and the reference inlet freestream velocity ud.

Measuring streamwise distance x=h from the top of the hill, profiles

are extracted at four different stations inside the recirculation

region (from x/h = 1.25 up to x/h = 6.67), where the most notable

discrepancies between the models are expected to occur. The four

stations A;B;C, and D correspond to x=h ¼ 1:15;2:5;3:75 and 6:67

respectively.

Fig. 20 shows results for the mean streamwise velocity Ux. In all

cases, comparison is made to experimental measurements and the

predictions of the ASBM-BSL model. As shown, the predictions of

all three closures are comparable.

Fig. 21 shows the corresponding comparison for the case of the

wall-normal mean velocity, Uy. Again, the predictions of the three
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Fig. 24. Model predictions for the shear stress at various x-stations for SA and ASBM-SA closure. Comparison is made to experimental values and the predictions of ASBM-BSL

model.
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and ASBM-SA closure. Comparison is made to experimental values and the
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SA

ASBM-SA

ASBM-BSL

EXPERIMENT

c
f

0.025

0

0.025

0.050

x/H

15 10 5 0 5 10 15

Fig. 26. SA and ASBM-SA model predictions for the skin-friction coefficient.

Comparison is made to experimental values and the predictions of ASBM-BSL

model.

15



closures are comparable, but overall the ASBM-SA and ASBM-BSL

closures seem to provide somewhat improved predictions in the

recirculation zone relative to the SA model.

Next, we compare the predictions of the ASBM-SA model for the

turbulent intensitieswith experimentalmeasurements and the cor-

responding predictions of the ASBM-BSLmodel. The SAmodel is not

included in this comparison because it cannot predict the turbulent

intensities. Figs. 22 and 23 show the streamwise (Rxx) and wall-nor-

mal (Ryy) Reynolds stress components respectively. In the case of

Rxx, the ASBM-SA closure provides slightly better agreement with

the experiments than the ASBM-BSL model throughout the recircu-

lation zone. For example, at the first station A inside the recircula-

tion region, the ASBM-SA is able to capture more satisfactorily the

near-wall peak in Rxx, while at the last station D it slight improves

the predicted Rxx profile. Overall, the ASBM-SA closure exhibits sat-

isfactory agreement with experiments.

Fig. 24 shows a comparison of the shear stress predictions of

ASBM-SA with the corresponding experimental measurements

and the predictions of the SA and ASBM-BSL closures. In the middle

of the recirculation zone (stations B and C), the hybrid closures

ASBM-SA and ASBM-BSL are able to capture the peak of the shear

stress more accurately than SA, but they overpredict the peak at

station D, which coincides with the experimental re-attachment

point. Overall, the predictions of the two hybrid closures are com-

parable and they are both able to capture the near-wall peak in the

shear stress reasonably well. However, as shown in Fig. 25, at the

top of the hill (station x=h ¼ 0), we notice a problem with both

model predictions, where positive magnitudes for the shear stress

are predicted. These might be related to the local nature of the

ASBM closure and the lack of memory effects.

Fig. 26 shows the variation of the skin-friction coefficient along

the hill surface. The hybrid ASBM-SA and ASBM-BSL closures give

comparable results that are in reasonable agreement with experi-

ments. It is worth noting that in the recirculation zone, the hybrid

closures are in better agreement with experiments than the SA

closure.

Overall the ASBM-SA closure provides comparable or slightly

improved predictions relative to the ASBM-BSL closure. On the

other hand, one has to take into account that ASBM-SA is a one-

equation model and as such exhibits some computational perfor-

mance advantages relative to the two-equation ASBM-BSL.

5. Conclusions

A new coupling between ASBM and the SA one-equation model

was presented. To implement the coupling, consistent profiles for

the turbulence scales were extracted from the SA predictions and

fed to ASBM through a set of algebraic expressions, applicable for

a large range of turbulent flows. The ASBM-SA closure preserves

(not shown here) the full realizability enjoyed by the ASBM closure

and exhibits improved numerical robustness and speed of conver-

gence relative to other couplings such as the ASBM�v2–f and even

the ASBM-BSL.

The performance of the hybrid model was evaluated in several

standard benchmark cases. First, a fully-developed turbulent chan-

nel flow was considered, for which model predictions have shown

satisfactory agreement with the experimental data for both mean

and fluctuating quantities. Then a boundary layer simulation was

performed, revealing good matching between CFD and experiment

measurements for rms and shear correlations, especially for

yþ > 10. Then the simplest case of separated flow, that of a back-

ward facing step, was examined. The coupled model managed to

capture both peak magnitudes and freestream values of the mean

and fluctuating variables, both in and out the recirculation region,

exhibiting its sensitivity in anisotropic features. The ASBM-SA

model was also evaluated for a case of turbulent flow in a planar

asymmetric diffuser, where its predictions were found to be in fair

agreement with experiments. Predictions for the static-pressure

and skin-friction coefficients were within 4% of the experimental

values. Finally, the model was challenged in a more difficult case

involving separation, that of flow over a steep hill. Again, an overall

good agreement between model and experimental predictions was

achieved.

Concluding, the new coupling preserves the superior robustness

of the SA closure, providing smooth converged solutions with a

good convergence rate. At the same time, the hybrid closure has

been able to capture effectively the turbulence anisotropy in all

the flows considered as a result of the ASBM contribution. Future

work will focus on testing the coupling over two-dimensional air-

foil surfaces and three-dimensional smooth hills.

A Fortran-90 module containing our implementation of the

ASBM is being made available online (ASBM, 2014). Researchers

interested in implementing the ASBM-SA closure in their own

CFD codes can contact the authors for assistance.
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Table 1

Structure scalars: auxiliary functions along shear line, gM ¼ 1.

gM ¼ 1 /1 b1 v1

gf < 0 gf�1

3gf �1 1� b0
gf

ð1�a2Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � 1=3Þ
p

	 
h i�1 b1b1

0 < gf < 1 ð1� gf Þ 1
b1 þ ð1� b1Þ 1� ð1�gf Þ2

1þb2gf =ð1�a2Þ

� �

gf > 1 gf�1

3gf �1 1þ b3
ðgf �1Þ
ð1�a2Þgf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � 1=3Þ
p

h i�1
1� ð1�b1Þðgf �1Þ

b4ð1�a2Þþðgf�1Þ

Table 2

Structure scalars: auxiliary functions along plane strain line, gM ¼ 0.

gM ¼ 0 /0 b0 v0

2gf 6
ffiffiffi

3
p

=2
0:145

ð2gf Þ2
3=4 � ð2gf Þ2

3=4

� �9
" #

1
� 0:342

ð2gf Þ2
3=4 þ ð1� 0:342Þ ð2gf Þ2

3=4

� �6
" #

2gf >
ffiffiffi

3
p

=2 ð1þ v0Þ=3 �v0 � 1þ b5
ð2gf �

ffiffi

3
p

=2Þ
ð1�a2Þ 2gf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � 1=3Þ
p

� ��1
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Appendix A. Structure scalars

In addition to the description given in the introductory section

of the paper, the determination of the structure scalar parameters

/; v, and b is needed in order to bring the model into a closed

form. This is done through a set of functions which take into

account specific simplified turbulent states at the RDT limit. A spe-

cific care was given such that the model remained realizable for a

wide range of mean deformations. The determination of a general

turbulent state was obtained by interpolating between the target

turbulent states through interpolation functions (along with model

constants). The structure scalars are parameterized in terms of

gm; gf , and a2, representatives of the ratio of mean rotation to

mean strain, frame rotation to mean strain rate, and a measure

of anisotropy respectively. These in turn are defined in terms of

X̂2
m, X̂

2
T , and Ŝ2; measures of the strength of the mean rotation, total

rotation, and mean strain respectively:

gM 	

ffiffiffiffiffiffiffi

X̂2
m

Ŝ2

s

; ð35aÞ

gf 	 gM � signðXÞ

ffiffiffiffiffiffi

X̂2
T

Ŝ2

s

; ð35bÞ

a2 	 apqapq; ð35cÞ

X̂
2
m 	 �aijXikXkj; ð35dÞ

X̂
2
T 	 �aijX

T
ikX

T
kj; ð35eÞ

Ŝ2 	 aijSikSkj; ð35fÞ

X 	 aijX
T
ikSkj: ð35gÞ

gM expresses the relative strength between the deformation and the

rotation effects, while it conserves the material indifference prop-

erty through the presence of the eddy-axis tensor aij in the invari-

ants. for example gM ¼ 1 refers to pure shear flow(S), whereas

gM ¼ 0 corresponds to purely irrotational flows, sensitized to plane

strain flow(PS). Similarly, the dimensionless parameter gf refers to

rotated frames, for which the total rotation tensor is used instead

of rotation tensor.

Tables 1 and 2 give the auxiliary functions for computing the

structure scalars along the gM ¼ 1 and gM ¼ 0 lines respectively.

The constants ba appearing in these Tables are given by

b0 ¼ 1:0; b1 ¼ 0:2; b2 ¼ 3, b3 ¼ 0:8; b4 ¼ 1:0; b5 ¼ 1:0, and

b6 ¼ 0:5.

For gM < 1, the scalars are found by the following interpolation

functions

/� ¼ /0ðgPS
f Þ þ /1ðgS

f Þ � /0ðgPS
f Þ

h i 0:82g2
M

1� ð1� 0:82Þg2
M

; ð36aÞ

v� ¼ v0ðgPS
f Þ þ ½v1ðgS

f Þ � v0ðgPS
f Þ�g2

M; ð36bÞ

b� ¼ b0ðgPS
f Þ þ ½b1ðgS

f Þ � b0ðgPS
f Þ�g2

M : ð36cÞ

To completely determine the interpolation, the most appropri-

ate values of gS
f and gPS

f have to be chosen. When gM < 1, the

possible choices for gM are given below:


 if gf < ðgM � 1Þ
ffiffiffi

3
p

=4,

gS
f ¼ gf � ðgM � 1Þ

ffiffiffi

3
p

=4; gPS
f ¼ gf � gM

ffiffiffi

3
p

=4;


 else (I) if ðgM � 1Þ
ffiffiffi

3
p

=4 < gf < 0,

gS
f ¼ 0; gPS

f ¼ gf =ð1� gMÞ;


 else (II) if 0 < gf < gM ,

gS
f ¼ gf =gM; gPS

f ¼ 0;


 else (III) if gM < gf < gM þ
ffiffiffi

3
p

=4ð1� gMÞ,

gS
f ¼ 1; gPS

f ¼ 1� ð1� gf Þ=ð1� gMÞ;


 else if gf > gM þ
ffiffiffi

3
p

=4ð1� gMÞ,

gS
f ¼ 1þ gf � ðgM þ

ffiffiffi

3
p

=4ð1� gMÞÞ;
gPS
f ¼ gf � gMð1�

ffiffiffi

3
p

=4Þ:

Otherwise, if gM > 1, we have the following options.


 if gf < 1,

/� ¼ ½1=3þ ð/1ðgf Þ � 1=3Þ � f R�;
b� ¼ b1ðgf Þ � f R; v� ¼ v1ðgf Þ � f R


 else if 1 < gf < gM ,

/� ¼ ½1=3þ ð/1ðgf ¼ 1Þ � 1=3Þ � f R� � ðgM � gf Þ;
b� ¼ b1ðgf ¼ 1Þ � f R � ðgM � gf Þ; v� ¼ v1ðgf

¼ 1Þ � f R � ðgM � gf Þ


 else if gM < gf ,

/� ¼ ½1=3þ ð/1ðgf Þ � 1=3Þ � f R� � ðgf � gMÞ;

b� ¼ b1ðgf Þ � f R � ðgf � gMÞ; v� ¼ v1ðgf Þ � f R � ðgf � gMÞ

where f R ¼ 1=ð1þ 0:5ðgM � 1Þ=ð1� a2Þ5=2Þ.

Finally, we need to specify the interpolation to the isotropic

state for no mean deformation, where the structure scalars are

chosen to be / ¼ 0 (only vortical eddies), b ¼ 1 (irrelevant), and

v ¼ 0 (no flattening). This is done according to:

/ ¼ /� � f slowða2Þ; ð37Þ

b ¼ b�; ð38Þ

v ¼ v� � f slowða2Þ; ð39Þ

where f slowða2Þ ¼ 0:35f
5=2
iso ða2Þ þ ð1� 0:35Þf 1=2iso ða2Þ, and f isoða2Þ ¼

3
2
ða2 � 1

3
Þ.
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