N

N

Sensitivity analysis of human motion for the automatic
improvement of gestures

Pauline Maurice, Vincent Padois, Yvan Measson, Philippe Bidaud

» To cite this version:

Pauline Maurice, Vincent Padois, Yvan Measson, Philippe Bidaud. Sensitivity analysis of human
motion for the automatic improvement of gestures. 2015. hal-01221647v1

HAL Id: hal-01221647
https://hal.science/hal-01221647v1
Preprint submitted on 28 Oct 2015 (v1), last revised 6 Feb 2019 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01221647v1
https://hal.archives-ouvertes.fr

Sensitivity analysis of human motion for the
automatic improvement of gestures

Pauline Maurice, Vincent Padois Member IEEE, Yvan Measson, and Philippe Bidaud Member IEEE,

Abstract—Enhancing the performances of technical gestures is
a great concern for human beings, and aims both at improving the
operational results and at reducing the associated biomechanical
demands. Thanks to the advances in human biomechanics and
modeling tools, human performances can be evaluated with more
and more details. However, finding the right modifications which
improve such performances is still addressed with extensive time-
consuming trial and error processes. This paper presents a
method for automatically providing recommendations to improve
human gestures. An optimization-based whole-body controller
is used to dynamically replay human gestures from motion
capture data, in order to acquire and evaluate the initial gesture.
Virtual human simulations are then run to estimate performance
indicators, when the gesture is performed in many different
ways, in order to compute sensitivity indices for quantifying
the influence of the gesture parameters on the performances.
Based on this sensitivity analysis, recommendations for gesture
improvement are provided. The whole method is validated on
a drilling gesture. The consistency of the replayed motion and
the significant increase in the performances of the gesture
modified according to the provided recommendations confirm
the relevance of the proposed approach.

Index Terms—Sensitivity analysis, Motion capture, Motion
replay, Virtual human simulation, Whole-body control, Motion
analysis, Ergonomics.

I. INTRODUCTION

Enhancing performances of technical gestures has always
been a great concern for human beings. Such performances
consists in a potentially conflicting combination between the
achievement of some operational goal, and the minimization
of the biomechanical demands experienced by the person.
Numerous applications are concerned by such dual-objective
performances. At work, the exposure to musculoskeletal disor-
ders (MSD) risk factors is now often considered, in addition to
the productivity of the worker, when designing workstations
[1], [2]. In sports, coaches aim at finding the right gesture
in order to improve athletes’ results, while preventing injuries
[3], [4]. In rehabilitation (e.g. after injury or surgery), knowing
what motion patterns alleviate the stress on a weakened body
part can help provide exercises or recommendations to prevent
further injury [5].

The assessment and improvement of a gesture are usually
conducted under the supervision of an expert (ergonomist,
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physiotherapist...), who observes the gesture and provide rec-
ommendations based on his/her knowledge and experience.
However, the availability of experts may be limited (e.g. during
the design process of a workstation), and besides, observa-
tional methods can provide qualitative but no quantitative
measures of the biomechanical demands to which a person is
exposed during a technical gesture. Therefore, in order to assist
and complete the work of experts, digital human software tools
have been developed, such as OpenSim [6] or AnyBody [7], in
which the human gesture is reproduced with a virtual manikin.
Indeed, the use of a virtual manikin enables easy access to
detailed force and motion-related biomechanical quantities,
which otherwise cannot be measured on real humans, or
only with heavy instrumentation (e.g. muscle or joint forces).
However, such tools do not necessarily guarantee the reliability
of the biomechanical quantities measured on the manikin [8].
One key factor is the mapping of the human motion onto the
manikin: it should result in a dynamically consistent motion
(i.e. which respects the laws of physics), but existing software
cannot fully guarantee such consistency.

Fig. 1: Two different ways of pushing a heavy object, result-
ing in different biomechanical demands on the human body
(inspired from [9]).

Moreover, beyond the evaluation of an existing gesture, a
crucial question is the modification of the way the gesture
is performed, in order to improve the performances (Fig. 1).
Despite the advances in human biomechanics and modeling
tools, such enhancements are still generally achieved through
an intensive trial and error process. Indeed, the analytical
relation between the macroscopic parameters of the gesture
(i.e. the parameters defining the way the gesture is performed,
and which can be altered) and the resulting performances is
often complex. In [9], Demircan proposes a tool for analyzing
the relation between the way athletes (novice and experts)
perform a gesture and the resulting operational performance,
in terms of operational acceleration. This analysis enables to



understand the features which differentiate an efficient gesture
from a non-efficient one, but it does not explicitly provide
recommendations about how to execute an optimal motion
(the analyzed motions are recorded on real subjects, thus still
requiring experts). Besides, a single performance criterion is
considered, whereas a detailed assessment of biomechanical
performances often requires to take several quantities into ac-
count (e.g. joint loads, joint positions, energy consumption...).
Such quantities can be differently affected by a same parameter
of the gesture, which requires compromises and renders the
identification of a better solution even less straightforward.

This paper presents a method to automatically identify how
the performances of a given technical gesture can be improved,
from very few input data. The proposed tool consists in two
components:

o A method for dynamically replaying pre-recorded human
motions, which ensures the dynamic consistency of the
resulting motion. Such a replay enables both the acquisi-
tion of the technical gesture to execute (e.g. trajectories
to follow and forces to exert), and the evaluation of
an existing situation. The chosen approach relies on an
optimization-based controller which enables to track the
subject’s motion in the operational space, while imposing
dynamic and biomechanical constraints (i.e. joint and
actuation limits).

o A method for analyzing the dependence of the perfor-
mances on the parameters of the gesture. Such an analysis
enables the identification of the parameters which most
affect the overall performance, in order to provide rec-
ommendations for improving the situation. The proposed
approach relies on a virtual human simulation framework,
in which a variety of situations can be automatically
created and simulated. Thus a sensitivity analysis can
easily be conducted, without the need for much input
data.

Thanks to these measurement and analysis tools, enhancing the
performance of technical gestures is facilitated. The gesture is
acquired on the initial situation, and serves as an input for the
sensitivity analysis, which results provide recommendations
for improvement. The modified situation is then evaluated and
compared to the initial situation, in order to verify the positive
effect of the proposed modifications.

In this work, the human body is represented with rigid
bodies, and does not include muscle actuation: the manikin is
actuated by a single actuator at each joint. Indeed, even though
muscle-related quantities cannot be estimated with such a
model, numerous quantities can still be measured for repre-
senting the biomecahnical demands that occur during whole-
body activities (e.g. joint loads, joint dynamics, mechanical
energy...). Besides, while musculoskeletal models have proved
valid and insightful in some cases, no criterion has been estab-
lished yet to solve the muscle recruitment problem in general.
So the realism of the muscle-related measurements cannot be
ensured in all possible whole-body situations [7], [8], [10],
[11]. The questionable gain of information, associated with a
much more important computational cost, therefore reduces
the interest of musculoskeletal models in the current context.

The paper is organized as follows. Section II presents the
dynamic replay method. Section III presents the method for
analyzing the performances with respect to the gesture pa-
rameters. Section IV describes the experimental set-up which
is used for validating the proposed methods. The results are
presented in section V and discussed in section VI.

II. DYNAMIC REPLAY OF HUMAN MOTION

Virtual manikins are commonly used for estimating biome-
chanical quantities during the execution of human motions.
However, the accuracy of the human gesture reconstruction,
both in terms of motion and force, strongly affects the re-
liability of the measures'. Human motion is often captured
through optical motion capture techniques, in which markers
are positioned on the body of the subject, and cameras record
the 3D Cartesian positions of the markers. Though mapping of
motion capture data onto virtual avatars has been extensively
used for several decades, the current mapping techniques still
lack physical consistency, especially when the motion is highly
dynamic and/or involves significant interaction forces with the
environment.

A. Related work

Mapping the recorded human motion onto a virtual manikin
is commonly done with inverse kinematics techniques (IK),
which convert the markers operational space trajectories into
joint space trajectories. With IK, biomechanical quantities such
as joint positions or velocities can be measured, but the driving
forces (joint torques here) cannot be estimated. Therefore an
inverse dynamics (ID) step - in which the driving forces are
computed from the dynamic model and the joint space trajec-
tories resulting from the IK - must be performed afterwards.
Though widely used, the IK+ID process has several draw-
backs. Firstly, the inversion in the IK step requires intensive
computations and is therefore time consuming. Secondly, the
IK solution is not unique, so the resulting motion may not
be plausible. Therefore many studies propose modifications
of the IK, so that the resulting motion matches a given set of
constraints [12], [13]. However, the dynamic properties of the
human body are not considered (such techniques are especially
used in computer animation, where the visual realism is the
main concern), so the motion computed through IK is hardly
ever dynamically consistent. This results in the impossibility
to achieve the force equilibrium in the ID step, when the
experimental external forces (e.g. ground contact forces) are
added. For instance, in OpenSim, this inconsistency appears
in residual forces [8].

In order to improve the dynamic consistency of the replayed
motion, some studies include dynamic considerations in the
motion computation process. Some combine IK with dynamic
corrections in order to modify motion capture data to respond
to physical collision forces [14]. Others directly use controller-
based techniques including dynamic constraints to animate

IThe retargetting problem (i.e. mapping the motion of a subject onto an
avatar with a different morphology) is not considered here. The work presented
here assumes that the virtual manikin morphology can be adapted to each
subject, and that its kinematics is very similar to the human body kinematics.



the manikin [15], [16]. However, the controller requires the
desired joint trajectories as an input, so a preliminary IK step
is still needed.

In order to avoid the computationally expensive IK step,
John and Dariush [17], Ott et al. [18], and Demircan et al.
[19] propose to work directly in the operational space. In [17],
John and Dariush utilize a task space kinematic control method
(closed-loop inverse kinematics) and dynamic constraints, to
track the motion directly in task space. In [18], Ott et al.
connect the markers to the manikin body with virtual springs,
and use the generated forces to compute the manikin motion
through the dynamic model equation. In [19], Demircan et
al. use an operational space approach based on null-space
projection [20] to track the Cartesian markers trajectories.
However, all these techniques either omit certain constraints,
or they do not take them explicitly into account (especially
inequality constraints). They resort to suboptimal heuristic
ways to account for inequality constraints through avoidance
tasks [21].

B. Virtual human controller

The dynamic replay method proposed in this work is
based on a direct control of markers in the operational
space, through an optimization-based controller. Contrarily to
analytical techniques (explicit null-space projection), such a
numerical technique enables to solve the human kinematic
redundancy, while considering both equality and inequality
constraints. The dynamic and the biomechanical consistency
of the resulting motion is thus ensured.

The motion of the manikin is computed with the linear
quadratic programming (LQP) controller framework developed
by Salini et al. [22]. Linear quadratic programming handles
the optimization of a quadratic objective that depends on
several variables, subjected to linear equality and inequality
constraints. The variables here are the joint torques, the contact
forces, and the joint accelerations (though the latter could
be excluded from the optimization variable and computed
with the equation of motion). The recording of the contact
forces (especially the ground contact forces) is therefore
not necessary to replay the motion, which is a significant
advantage compared to IK+ID methods, since it simplifies
the experimental set-up. The control problem is formulated
as follows:

argmin w; T (X
en Z (X)

M(@)§+C(q,q) +g(@) =ST—>_ J (q)w,,

S.t. J
GX=<h

(D
where 7 is the joint torques, w. the contact forces, q the
generalized coordinates of the system, with ¢ and q its first
and second derivatives, and X = (7,we,§)?. The equality
constraint is the equation of motion: M is the inertia matrix of
the system, C the vector of centrifugal and Coriolis forces, g
the vector of gravity forces, S the actuation selection matrix,
and JI the Jacobian of contacts. The inequality constraint
includes the bounds on the joint positions, velocities, and

torques (all formulated with 7 and §), and the contact ex-
istence conditions for each contact point, according to the
Coulomb friction model:

Coywe; <0 Vj
Je, ()8 + Je, (4, 0)g =0 Vj

where c; is the jth contact point, C., the corresponding
linearized friction cone, and W, the contact wrench.

The objective function is a weighted sum of tasks T;
representing the squared error between a desired acceleration
or wrench and the system acceleration/wrench (w; are the
weighting coefficients). The solution is then a compromise be-
tween the different tasks, based on their relative importancez.
The following tasks are defined:

2

e Operational space acceleration 17:4 + Jiq — X5|)?

e Joint space acceleration IFE=x% H2
e Operational space wrench |w; — Wi*Hz
e Joint torque |7 — 7|2

where X; is the Cartesian acceleration of body ¢, and w; the
wrench associated with body <. The superscript * refers to the
desired acceleration/force, which are defined by a proportional
derivative control. For instance, the desired acceleration is:

X* = Xsoal | g, (X8°al _ X)) 4 K, (X8 —X) (3)

where K, and K, are the proportional and derivative gains.
The superscript 9°% indicates the position, velocity and accel-
eration wanted for the body or joint.

C. Tasks for motion replay

In order to track the markers trajectories, an operational
acceleration task is created for each marker positioned on
the subject/manikin’s body (Fig. 2). The reference trajectory
corresponds to the recorded marker trajectory. Depending on
the total number of markers and their respective placement
on the subject, the problem can be over constrained (i.e. not
all markers trajectories can be accurately followed). However,
the weighting strategy of the LQP controller allows to deal
with conflicting objectives. Nevertheless, the weights of the
different markers tasks must be wisely chosen, since they
affect the resulting motion. The markers tasks are not all
assigned the same weight: the markers associated with distal
bodies are given the largest weight, and the weight decreases
when the body on which the marker is set is further away
from the extremities (in accordance with the recommendations
of Demircan et al. [19]). Extremities are more affected by
cumulative errors on the preceding joint positions, so assigning
the largest weights to the operational position tasks of the limb
extremities tends to reduce this bias.

The markers tracking tasks are generally not sufficient to
maintain the balance of the manikin, especially in motions
where the balance is strongly solicited. Indeed, without any

2More generally, any optimization-based controller which enables to prop-
erly consider all kinds of constraints can be used, whether the tasks are ordered
with a weighting strategy like here, or with strict priorities, such as hierarchical
quadratic programming [23].
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Fig. 2: Joint space and operational space tasks used in the
LQP controller for dynamically replaying human motion.

balance task, the balance control is only an open-loop control
(the manikin is not instructed to keep its balance). Due to
the imprecisions in the human model and markers positions
measurements, the open-loop balance control generally results
in the fall of the manikin. A balance task is therefore added
in the controller, through a center of mass (CoM) task. The
reference CoM acceleration is obtained from the CoM jerk
computed using a ZMP preview control method® [24]. Given
the non strict hierarchy between the tasks, the balance task
may alter the markers tracking tasks. So the weight of the
balance task results from a compromise between the accuracy
of the replay and the balance preservation. Such a compromise
is achieved by giving the balance task a weight smaller than
the distal extremities markers tasks.

If an intentional force is to be exerted on the environment by
the manikin hand (e.g. pushing an object), an operational force
task is created. The reference force must be given as an input
to the controller (e.g. thanks to a force sensor measurement).
The hand force task weight is similar to the distal markers
tasks weights.

Low weight joint position tasks are added to define a
natural reference posture (standing, arms along the body)
which should be adopted by the manikin when no specific
activity is performed. It ensures a rather natural motion in
case some bodies are not entirely constrained by the markers
tasks.

Finally, joint torque tasks are added for each joint. They
aim at minimizing the joint torques to prevent useless effort,
and ensure the uniqueness of the solution to the optimization
problem. The weights of these tasks are the smallest since they
must not hinder the other tasks.

3The original ZMP preview control scheme is slightly modified in this
work, so that it takes into account known external forces which affect the
manikin balance.

III. SENSITIVITY ANALYSIS OF HUMAN PERFORMANCES

Thanks to the dynamic replay method described in the
previous section, performances (operational and biomechan-
ical) can be measured with the virtual manikin. However,
these measurements do not provide any hints about how to
modify the gesture for enhancing the overall performances. In
order to provide such recommendations, the influence of the
gesture parameters on the performances must be known. Since
no straightforward analytical relation between parameters and
performances can generally be established, a statistical sensi-
tivity analysis must be conducted [25].

A. Method overview

Statistical sensitivity analyses rely on the numerical eval-
uation of the output (here the indicators of performance) for
many values of the input parameters. Having a real subject
execute the gesture in each situation would be too time con-
suming, since sensitivity analyses often require a large number
of trials. Furthermore, if recommendations are to be provided
not for one specific subject, but for subjects of different
morphologies (e.g. workers in an industrial plant), parameters
representing the diversity of subjects should be added, so as to
ensure that human features do not have a strong impact on the
results*. Given that the purpose of the present work is not to
establish general guidelines on how to perform some kinds of
gestures, but to provide a tool for easily analyzing any given
gesture, the execution of the gesture is rather simulated with
an autonomous virtual manikin. Indeed, the virtual manikin
enables to test a lot of situations, including different human
morphologies, without the need for any human subjects.

The whole process for analyzing the dependence between
the parameters of the gesture and the performances can be
summarized as follows (Fig. 3):

1) Define the parameters which characterize the way the
gesture is performed, and which can be altered (and
possibly the human parameters as well).

2) Select, among all the possible combinations of parame-
ters values, those that should be tested.

3) Simulate the execution of the activity with the virtual
manikin, for each selected combination of parameters
values, in order to measure the indicators of perfor-
mance.

4) Compute sensitivity measures for the performance indi-
cators, based on their values in all the tested cases.

Step 1 depends on the gesture which is studied and is
therefore left to the user. Steps 2 and 4 are detailed in the
following sections. The simulation step 3 is performed with
an autonomous virtual manikin (i.e. no motion capture). The
manikin is animated with the same LQP controller as the
one used for the motion replay (see section II-B), but the
tasks included in the controller are slightly different. The
markers tracking tasks are removed, and replaced by a hand
(and possibly other body parts, depending on the gesture)

4Otherwise, morphology-specific recommendations should be provided,
possibly with modifications of the environment (e.g. adjustable parts in a
workstation).
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Fig. 3: Flow chart of the method for analyzing the de-
pendence between parameters of the gesture and resulting
operational/biomechanical performances.

operational acceleration task. The reference trajectory - and
force profile if required - of the hand task is either obtained
from the motion recorded on a human subject (especially if
a very specific trajectory must be followed), or it can be
interpolated from start and end points defined by the user (for
instance, in less specific gestures such as reaching motions).

B. Parameters space exploration

The parameters which represent the way the gesture is
performed take continuous values, so they must be discretized
to form the different combinations of parameters values to
be tested. However, though it depends on the length and
complexity of the activity that is simulated, the computational
cost of a simulation is always quite expensive: with most
physics engine based robotic simulators, simulations cannot
run faster than real time, and in many cases (multiple contacts,
many tasks in the manikin controller...), the simulation is even
slower. Therefore the number of situations which are tested is
limited and the values of the parameters must be carefully
selected.

Optimizing the exploration of the parameters space requires
a compromise between the number of trials and the precision
of the resulting information, and is therefore strongly influ-
enced by the objective of the study [25]. In this work, the
analysis aims at quantitatively estimating the influence of each

parameter on the performance indicators, in order to identify
which parameters should mainly be modified. The computation
of Sobol indices, which relies on the decomposition of the
output variance of the considered function (functional ANOVA
decomposition), is then well adapted5 [26], [27]. Indeed, Sobol
indices allow a precise ranking of the influence of the differ-
ent parameters, without requiring specific hypotheses on the
monotony of the performance indicators. Furthermore, their
interpretation is quite straightforward: each index measures
the percentage of variance of an indicator that is explained by
the corresponding parameter(s).

The first order indices S; represent the variance of a per-
formance indicator explained by one single parameter X; (no
interaction). Indices of superior order consider the interactions
between parameters. The total indices ST, represent all the
effects of X; on the indicator, including all interactions with
other parameters. The first order and total indices are of
particular interest for ranking the parameters, since they give
information about the ith parameter, independently from the
influence of the other parameters. A high S; means that X;
alone strongly affects the performance indicator, whereas a
small S7, means that X; has very little influence on the
indicator, even through interactions. Only these indices are
considered in this work. The mathematical definition of Sobol
indices is given in appendix A.

The extended FAST (Fourier amplitude sensitivity testing)
spectral method is used for choosing the appropriate param-
eters values to test, and for computing Sobol indices [28].
The exploration method used for the FAST analysis is a
good compromise between the comprehensiveness of the space
exploration (FAST uses space-filling paths) and the number of
trials (about one thousand trials per parameter, whereas Monte
Carlo methods - the main alternative for the computation of
Sobol indices - often requires about ten thousand trials per
parameter).

C. Performances analysis

Once the simulations are performed for all the selected
combinations of parameters values, Sobol indices can be
computed. However, Sobol indices only address single-output
models, whereas the performances of a gesture are often
evaluated with several indicators with different meanings.
For instance, a detailed assessment of the biomechanical
performances requires one indicator per kind of biomechanical
demand: position, effort, energy... for the different body parts.
Even though Sobol indices can be computed separately for
each indicator, no global sensitivity index can be obtained for
a parameter by aggregating the indices relative to different
indicators (the comparison of the indices referring to different
indicators is meaningless). Therefore, in order to estimate the
global influence of a parameter on the overall performance
of the gesture, the most relevant performance indicators must
first be identified.

SIf the number of parameters is too large, (typically more than a dozen),
a preliminary screening analysis can be performed to eliminate parameters
with very little influence. A more detailed analysis can then be conducted on
a reduced number of parameters only.



In the context of performance improvement, the relevance
of an indicator is not related to its value, but to its variations
when the gesture is performed in different ways. Indeed, if
the value of an indicator remains unchanged, whichever the
way the gesture is performed, this indicator is not useful
to compare different executions of the gesture. Furthermore,
many indicators only give a relative information (no absolute
reference value is available to determine an absolute level of
risk), therefore, the value in itself is meaningless.

The problem of reducing the number of performance indi-
cators to keep only the ones that best explain the disparity
has been addressed by Campbell er al. [29] and Lamboni
et al. [30] in the context of sensitivity analysis for multiple-
output models. They propose to decompose the model outputs
in a well-chosen basis before applying sensitivity analysis to
the most informative components individually, which comes
down to a dimensionality reduction problem. However most
dimensionality reduction methods form composite variables
(i.e. combinations of the initial variables), which would result
in physically meaningless results here. Indeed, the original
indicators potentially have very different physical meanings,
and the influence of a parameter may vary much from an
indicator to another. So standard dimensionality reduction
methods (such as principal components analysis) cannot be
used. Instead the importance of each performance indicator is
represented directly by its variance. The indicators can thus
be ordered, and the most discriminating ones (i.e. those with
the highest variance) can easily be identified. A sensitivity
analysis can then be performed separately for each one of the
most discriminating indicators. The sensitivity indices relative
to different indicators still cannot be compared, however the
overall number of indices is reduced, making the interpretation
of the results easier for the user.

Before ranking the performance indicators based on their
variance, they must be scaled because they have non-
homogeneous units. Therefore they do not have the same order
of magnitude, so they cannot be compared as such. In standard
dimensionality reduction methods, this is often done with the
variables standard deviation, but then the scaled variables all
have a unit variance. Since the variance is precisely what repre-
sents the indicators global sensitivity to the gesture parameters,
this scaling would result in the loss of relevant information.
Another option is to use physiological limit values relative to
each indicator for the scaling. However, some indicators do
not have well-defined limits. Instead, the order of magnitude
of an indicator can be roughly estimated by measuring the
indicator in many different situations (which is quite easy with
the virtual manikin simulation), and taking its average value. If
gestures of many different kinds are considered and performed
in many different ways, it can be assumed that the range of
values of each indicator is covered quite exhaustively.

Depending on what they represent, performance indicators
may be measured for each time step of the simulation (e.g
joint loads). However, the ranking method described here - as
well as the computation of Sobol indices - requires that each
indicator (for each situation) is represented by a single value.
The indicator must then be summarized in a single value,
e.g. with its time-integral value on the whole duration of the

gesture, or its maximal value.

Once the performance indicators are ranked according to
their variance, the number of indicators that are kept must be
decided. The objective is to limit the number of indicators
that are considered, while sufficiently accounting for the
global performance of the gesture. This problem is similar to
selecting the number of dimensions in principal components
analysis, therefore a related criterion - the Scree test - is used
[31]. The variance associated with each indicator is plotted in
decreasing order. The curve first drops, then makes an elbow
toward less steep decline. Only the indicators before the curve
elbow (usually excluding it) are kept.

IV. EXPERIMENTAL SET-UP

The whole method for guiding the performance enhance-
ment of a gesture, presented in the previous sections, is applied
to a real gesture. Firstly, the motions of human subjects are
recorded and replayed, in order to evaluate the consistency
of the proposed replay method. Part of the recorded gesture
is then used as an input for the sensitivity analysis, which
is conducted to identify the discriminating performances indi-
cators and the influential parameters. Based on these results,
recommendations on how to improve the performances of the
gesture are provided. The modified gesture is then compared
to the original one, in order to ensure that the proposed rec-
ommendations indeed enhance the performances, and thereby
to demonstrate the usefulness of the proposed method.

A. Task description

The gesture considered in this experiment is an industrial
manual task which requires non-negligible efforts, and in
which the main concern are ergonomic performances. The
tasks consists in drilling six holes consecutively in a vertical
slab of autoclaved aerated concrete, with a portable electric
drill. The locations of the holes are imposed, and depicted on
Fig. 4. They are chosen so that the task demands significant
changes in the subjects’ posture, yet remains feasible without
feet motion.

The drill weights 2.1 kg. The average normal force needed
to drill a hole in these conditions is about 40 N. There is no
constraint on the task duration, however it takes about 1 min
to perform the whole task: take the drill, drill the six holes,
and put the drill down.

B. Motion capture set-up

1) Subjects: Five right-handed healthy subjects (3 males
and 2 females) ranging from 25 to 30 years old take part in the
experiment. Their average height is 1.72m (SD 0.1, min 1.53,
max 1.82), and their average body mass index is 22.6 kg.m 2
(SD 0.8, min 21.7, max 23.8). Each subject performs the task
ten times, with a resting period between each performance.
The subjects choose their feet positions, and are allowed to
change them between each performance. However, they are
instructed not to move their feet during one performance.
The drill is held with the right hand only. Before starting the
experiment, the subjects train several times in order to find
a comfortable feet position, and to limit the learning effect
during the recording.
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Fig. 4: Motion and force capture instrumentation for the
drilling task. A commercial drill has been modified in order
to embed a force sensor. The red circles on the slab represent
the drilling points.

2) Instrumentation: The subjects’ motions are recorded
with a CodaMotion® system. The subjects are equipped with
25 markers spread all over their body (both legs, both arms,
back and head). They stand on an AMTI force plate’ while
performing the task, in order to measure the contact forces
with the ground. A 6 axes ATI force sensor® is embedded in
the drill handle, in order to measure the drilling forces. The
drill is equipped with 3 CodaMotion markers so that the force
sensor position and orientation is known. The acquisitions of
the force sensor, the force plate and the CodaMotion data are
synchronized thanks to an external trigger. The instrumentation
used to record the forces and motions is displayed in Fig. 4.
The recorded CodaMotion and force sensors data are filtered
with a zero-phase 10 Hz low pass 4th order Butterworth filter
(no delay is introduced between the raw and the filtered data).
The markers velocities and accelerations are then computed
from the markers positions with finite differences.

3) Replay: The motions recorded on the human subjects are
replayed with the manikin and the LQP controller, according to
the dynamic replay method described in section II. In addition
to the markers tracking tasks, the balance task, the postural
task and the joint torque minimization task, an operational
force task is added for the right hand (same weight as the
wrist markers tasks). This force task corresponds to the drilling
force: its reference value is provided by the measures from the
force sensor. On the contrary, the ground contact forces mea-
sured with the force plate are not used in the simulation, since
they are automatically computed by the manikin controller.
The experimental values are used for validation purpose only.

The simulations are run in the XDE® dynamic simulation
framework , developed by CEA-LIST [32]. The XDE manikin

Swww.codamotion.com

Thttp://www.amti.biz/
8http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma
9www.kalisteo.fr/Isi/en/aucune/a- propos-de-xde

consists of 21 rigid bodies linked together by 20 compound
joints with a total of 45 degrees of freedom (DoF), plus
6 DoFs for the free floating base. Each DoF is a revolute
joint controlled by a sole actuator. Given a subject size and
mass, the manikin is automatically scaled according to average
anthropometric coefficients. Each body segment can be further
manually modified to match the subject morphology when
needed.

C. Sensitivity analysis set-up

1) Parameters: Given the considered activity, the parame-
ters which can be modified are mostly related to the position
of the person relative to the work area, and to posture-
related preferences. Nine parameters are defined (including
parameters related to the person’s morphology), and are listed
in table I.

Parameter Min. | Max.
person’s height (m) 1.65 1.85
person’s body mass index (kg.m~2) 21.0 27.0
reference position for elbow flexion (°) 10 135
drill handle orientation in slab plane / vertical (°) 0 90
stab center height / shoulder height (m) -0.2 0.1
offset distance pelvis - center of stab (m) -0.3 0.0
angle pelvis - normal to stab (°) -30 30
inter-feet distance in frontal plane (% of hip width) 100 200
inter-feet distance in sagittal plane (m) -0.25 0.25

TABLE I: Parameters minimum and maximum values. The
pelvis position is given in polar coordinates with respect to
the center of the stab. The offset for the pelvis-stab distance is
added to the manikin arm length to define the real pelvis-stab
distance. The right foot is at the front when the feet distance
in the sagittal plane is positive.

The choice of the parameters values for the extended FAST
analysis is generated through the R software!’. The sample
size and set of frequencies (depending on the number of input
parameters) are chosen according to the recommendations of
Saltelli et al. [28]. It results in a total number of 11601
trials. One simulation takes approximately 2 min total (the real
activity lasts 75 s), on one core of a 2.4 GHz Intel R CoreTM i7
laptop, and the simulations can be parallelized.

2) Simulations: The drilling activity is simulated with the
autonomous virtual manikin (in the XDE framework as well),
animated with the LQP controller. The following tasks are in-
cluded, in decreasing order of importance: balance, right hand
trajectory and force, gazing, posture and torques minimization.
An average hand reference trajectory - as well as profile and
magnitude of the drilling force - are estimated from the data of
the five human subjects. The position of the manikin feet are
imposed and are not supposed to move during the simulation
(except if the dynamic balance cannot be maintained and the
manikin falls).

3) Performance indicators: Ergonomic indicators aim at
quantifying the effects of the physical demands on the worker.
Most ergonomic assessment methods exclude dynamic phe-
nomena though they also generate MSD [33], [34]. Here on the
contrary, the following biomechanical quantities are measured

10http://www.1-project.org
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thanks to the dynamic simulation framework: joint position,
velocity, acceleration, power and torque. Similarly to what is
done for robot manipulators [35], each one of these quantities
is then summed up on all the joints of a given body part,
in order to form more synthetic performance indicators. The
mathematical form of a indicator is

P

> (i) @)

1
P

where s; is the biomechanical quantity (position, velocity...)
of joints ¢, and p the number of joints in the considered body
part: torso, right arm, left arm, or legs. When physiological
limit values are available, s; is normalized by its limit value
siat before the summing [34]. However these limits are
strongly person-dependent, and maximum values are often
not well-documented in the literature (e.g. joint velocities or
accelerations), making the normalization impossible.

In addition to these local indicators, global quantities which
represent the ability of the person to comfortably perform cer-
tain actions are considered. The balance is estimated through
two indicators: the sum of the square distances between the
ZMP and the base of support boundaries (balance stability
margin) [36], and the time before the ZMP reaches this
boundary (dynamic balance), assuming its dynamic remains
the same. The first quantity represents the capacity to with-
stand external disturbances, whereas the second evaluates the
dynamic quality of the balance. The capacity to produce force
(resp. movement) in a given direction is evaluated with the
force (resp. velocity) transmission ratio of the right hand
proposed by Chiu [37], except that the dynamic manipulability
[38] is used instead of the kinematic one. The considered
directions are the drilling and motion directions. Eventually the
kinetic energy of the whole body is added to the indicators list.
All the global indicators (except the kinetic energy) should be
maximized in order to improve the situation, whereas the local
indicators should me minimized. For the sake of homogeneity,
the inverse value is considered when needed, so that a good
ergonomic situation always corresponds to a small value of
the indicator.

In order to summarize each one of these time-dependent
indicators with a single value, the time-integral value over
the whole gesture is used. Besides, the reference values used
for the scaling are estimated with the average values of the
indicators measured on a set of different gestures, performed
in different ways!' (such as walking, bending, reaching, fol-
lowing trajectories, pushing and carrying objects) [39].

V. RESULTS

The comparison of the recorded and replayed motions,
the output of the sensitivity analysis, and the comparison of
the initial and modified gestures are presented and discussed
hereafter.

A video of the some of the corresponding simulations is avail-
able here: http://pages.isir.upmc.fr/~padois/website/fichiers/videos/maurice_
humanoids_2014.mp4

Fig. 5: Motion capture (left) and dynamic replay with the LQP
controller (right) of the drilling activity.

A. Dynamic replay validation

The consistency of the replay (Fig. 5) is evaluated regarding
both the motion and the forces. The reliability of the replayed
motion is evaluated through the comparison between the
experimental (recorded with the CodaMotion) and simulated
(points on the manikin body for which tracking tasks have
been created) markers positions. The reliability of the force
data should be estimated through the comparison between the
manikin joint torques computed with the controller, and the
joint torques measured on a human subject (via the muscle
forces). However, such measurements on a real subject are
hardly possible in practice. On the contrary, the contact forces
exerted by a human subject on its environment (e.g. the
ground) are easily measured, and they are linked to the joint
torques through the equation of motion (equality constraint in
Eq. 1). So, provided that the human model and the joint motion
are known, the measurement of the contact forces enables an
indirect estimation of the joint torques. The force validation
therefore focuses on the comparison between the experimental
(measured through the force plate) and simulated (computed
with the manikin controller) ground contact forces. The results
are presented and discussed hereafter'?.

1) Motion: The RMS errors between the experimental and
simulated markers positions are presented in table II, for each
subject. The tracking error is globally small - less that 3 cm
for almost all joints - and there is no significant differences
between the subjects. The tracking error is the smallest for
the distal parts of the body (ankle, hand and head), which is
in accordance with the tasks weights distribution used in the
controller (higher weights for the distal body parts).

The tracking is much better for the left arm than for the right
arm, because the left arm does not move much, whereas the
motion of the right arm is significant: the overall length of the
right hand trajectory is about 1 m. A tracking error around 1 cm
(for the right hand) is therefore satisfying. On the contrary, the
tracking error of the right shoulder is not insignificant. One
reason to this error is the deformation of the human skin -
on which the markers are set - during gestures including a

12A video of the recorded and replayed motions is available here:
http://pages.isir.upmec.fr/~padois/website/fichiers/videos/maurice_drilling_
dyn_replay.mp4
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Position RMS error (cm)

S1 Sa S3 S4 Sy Mean SD
Ankle 1.5 1 1.0 | 09 | 1.1 1.3 1.2 0.2
Knee 46 | 49 | 3.7 | 3.8 | 4.8 44 0.5
Back 29 | 32 | 1.7 ] 25| 3.1 2.7 0.5
Head 1.6 | 1.6 | 06 | 1.5 | 1.0 1.3 0.4

R. Shoulder 78 1 69 | 20 | 6.8 | 7.0 6.1 2.1
L. Shoulder 39 | 27| 1.9 | 22 | 35 2.8 0.8
R. Elbow 29 | 3.0 | 27 ] 29 | 3.1 2.9 0.1
L. Elbow 08 | 05| 03] 08| 0.7 0.6 0.2
R. Wrist/Hand | 0.8 | 1.0 | 1.5 | 0.7 | 1.3 1.1 0.3
L. WristHand | 0.5 | 04 | 0.2 | 0.3 | 0.2 0.3 0.1

TABLE II: RMS errors between the experimental and sim-
ulated 3D positions of the markers, for each joint and each
subject (.S; stands for subject i, L for left and R for right). For
each subject, the value displayed is the average value of the
ten trials. For each joint, the value displayed corresponds to
the biggest error of all markers placed on the corresponding
body/joint (the error is approximately the same for all markers
placed on a same joint).

wide range of joint motions (right shoulder and elbow here).
This deformation results in a variation of experimental inter-
markers distances which can reach several centimeters. Since
the tracking tasks of the elbow markers are given higher
weights than the shoulder marker task, the variation of the
inter-marker distance is almost entirely transmitted to the
shoulder position. Another reason to the significant shoulder
tracking error may be the complexity of the human shoulder
joint [40], which is only roughly modeled in the current
manikin kinematics.

The tracking error of the knee markers is particularly big,
given the small overall displacement of these markers during
the drilling activity. This is very likely due to the balance task
in the controller, which affects the execution of the other tasks,
due to the non-strict priority between the tasks. Due to the
imprecisions in the human model, and the markers placement,
and the lack of decision skills of the manikin regarding how
to recover balance, the ZMP preview control scheme in the
balance task is tuned to be quite conservative. Most unstable
situations are thus avoided, as long as the original motion
itself is not too unstable. However, the balance improvement is
achieved only at the cost of a modified motion, hence of a less
accurate replay. The knee markers and, to a lesser extent, the
back markers are the most affected because the feet and arms
Cartesian positions are either fixed or strongly constrained by
high weight tasks, so the balance regulation is mainly carried
out with the pelvis.

Though evaluated through Cartesian position errors, the
similarity observed between the experimental and replayed
motions is also valid at joint level, given the high number of
markers that are positioned all over the human body. Moreover,
since the position errors remain quite small even during
dynamic motions, the joint velocities and accelerations are
also likely to be quite similar to those of the human subjects.
Therefore, the replayed motion is overall very similar to the
original one, as long as the balance is not strongly solicited:
reliable motion-related biomechanical quantities are measured
on the virtual manikin. Nevertheless, the data measured on

Force Moment
FX FY FZ MX MY MZ
Subject No.1 | 0.82 | 0.98 | 0.70 | 0.78 0.98 | 0.96
Subject No.2 | 0.82 | 0.98 | 0.62 | 0.95 0.98 | 0.95
Subject No.3 | 0.62 | 098 | 0.57 | 0.96 0.98 | 0.96
Subject No.4 | 0.78 | 0.98 | 0.91 0.96 0.98 | 0.98
Subject No.5 | 0.77 | 098 | 0.82 | 0.96 0.98 | 0.97
Average 076 | 098 | 0.72 | 092 | 098 | 0.97
SD 0.07 0 0.13 | 0.07 0 0.01

TABLE III: Pearson’s correlation coefficient between the
ground contact forces computed with the manikin controller
and those measured experimentally. Y is the drilling direction,
and Z the vertical. For each subject, the value displayed is the
average value of the ten trials.

the manikin remain approximations of the reality, since the
manikin kinematics is a simplified version of the human
kinematics, and since the controller does not ensure that
the tasks are entirely fulfilled. Therefore, the virtual manikin
simulation does not enable a fine comparison of situations
which are quite close. The small differences between the
two situations may as well come from model or controller
inaccuracies, as from real differences in the gesture.

2) Forces and Moments: In the simulation, the contact sur-
face between the manikin foot and the ground is approximated
by several contact points distributed under the foot. However
the force plate only measures the global contact wrench, so all
the contact forces from the simulation (i.e. computed in the
controller) are gathered to form the global equivalent contact
wrench. It should be noted that, though the value of the
foot/ground friction coefficient in the simulation is only an
approximation of the real value, it has no consequences on
the force values. Indeed, the ratio between the tangential and
normal forces is always far smaller than the sliding limit for
the considered materials.

In order to quantify the similitude between the experi-
mental and simulated data, the Pearson’s (linear) correlation
coefficients are summarized, for each subject, in Table III.
A good correlation - Pearson’s coefficient > 0.70 (0.90 for
four of the components) - is observed for each component
of the contact wrench. Furthermore, as depicted in Fig. 6, no
significant permanent force/moment offset (i.e. vertical offset
on the graphs) is observed. Among the force components,
Fy- (direction of drilling) shows a far better correlation than
Fx and Fz, because the amplitude of its variations is much
bigger (see Fig. 6 for typical ranges of variation of the forces
and moments in the drilling task). Besides, except for the
vertical force F,, there is no significant differences between
the subjects. The disparity of the F, results is partly caused by
a lower precision of the force plate in this direction, because
of the higher load: the ratio between the average measurement
precision (about 0.1 % of the applied load for each axis) and
the range of variation of the force/moment is smaller than 103
for F'x, Fy, Mx, My and Mz, whereas is it around 0.15 for
Fy.

Since the manikin joint torques result from the dynamic
motion equation (equality constraint in Eq. 1), they are affected
by the external forces, the kinematic and dynamic properties
of the manikin model (coefficients of the M matrix and the
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Fig. 6: Time evolution of experimental and simulated compo-
nents of the ground contact wrench, for one trial of subject
No.5. The moments are expressed at the center of both feet.
The subject and trial are chosen so that the force and moment
errors are representative of their average values over all the
subjects and trials.

C and g vectors), and the joint motions. The length and
mass distributions of the manikin model coming from standard
values, the coefficients of M, C and g can be assumed quite
consistent. Then, according to the motion-related results, the
replayed joint motion is quite similar to the original one.
Finally, the simulated external forces are mostly consistent
with the experimental ones. Therefore, the manikin joint
torques computed with the LQP controller during the dynamic
replay are considered consistent with the human joint torques.

B. Sensitivity analysis

Table IV summarizes the ergonomic indicators that are
identified as relevant according to the proposed analysis, as
well as Sobol first order and total indices corresponding to
these indicators. Six ergonomic indicators are identified as
discriminating, out of 27 indicators in the initial list. These
six indicators together represent 80 % of the total variance
information, therefore only little information is lost by not
considering the other indicators. The selection of the upper-
body torque (right arm and back) and position (right arm)
indicators is not surprising, given that the activity requires the

exertion of a non-negligible force with the right hand, while
covering a quite extended area (25 x 50 ¢cm). The absence of
any velocity or acceleration indicators seems consistent with
the fact that the drilling activity does not require fast motions.

Some parameter-indicator relations - obtained through Sobol
indices - are strongly expected, and confirm the consistency
of the proposed analysis. For instance, inter-feet distances (in
both directions) strongly affect the balance stability, since they
modify the size of the base of support. However, the proposed
analysis also highlights some less straightforward phenomena.
The back torque indicator and the right arm position and torque
indicators are much more affected by the pelvis orientation
relative to the stab, than by the orientation of the drill handle
or the desired elbow flexion. This may be due to the joint and
actuation limits in torsion being much smaller that in flexion
(the indicators being calculated as distances to those limits).
The legs position indicator is significantly affected by the
elbow flexion: the legs are probably used for compensating for
the difference in the arm reach by moving the pelvis forward
or backward. The stab height has very little effect on any
of the relevant indicators. This might however be due to the
chosen range of variation of the stab height which is quite
small compared to the vertical dimension of the drilling area.

In order to enhance the ergonomic performances, the pelvis
orientation, the inter-feet sagittal (and to a lesser extent frontal)
distance, and the desired elbow flexion, should primarily be
considered, since they have a significant influence on the
discriminating indicators. On the contrary, the stab height and
the pelvis-stab distance have little influence (small values of
Sobol total indices), so their values can be freely chosen by the
person performing the activity, depending on what he/she finds
more convenient. The human features also have little effect
on the performances, so recommendations can be provided
independently from the person’s morphology.

Sobol indices provide quantitative information on the im-
portance of the parameters effects on the indicators, but,
they do not inform on the evolution of the indicators vs. the
parameters'3. However, given the large number of trials that
are performed for the sensitivity analysis, trend curves can be
plotted and used to roughly identify optimal parameters values.
For each parameter, only the indicators which are significantly
affected are considered. Nevertheless, compromises may be
necessary if different indicators correspond to different optimal
parameter values (e.g. for the elbow flexion). In such cases, the
indicators ranking can be considered to guide the compromise.
Recommendations for all seven parameters (excluding the
person’s morphology) are provided in table V.

C. Validation of the gesture modification

In order to validate the benefit resulting from the proposed
recommendations, the modified gesture is compared to the
initial one. As a first validation, the modified gesture is
evaluated through an autonomous simulation, since it does
not require any human subject and is therefore much faster

I3In order to estimate such evolution, a metamodel can be used [41],
however building a metamodel requires many more trials.
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Relevant ergonomic indicators
Right Arm Legs Right Arm Back FTR drilling Balance
torque position position torque direction stab. margin

23 % 20 % 15 % 9 % 7 % 6 %
Person’s height 10-3 0.01 10-3 0.02 0.09 0.03
0.02 0.35 0.04 0.10 0.11 0.05

Person’s bmi 104 103 1014 0.01 0.26 10~ %
0.03 0.31 0.10 0.10 0.03

Elbow flexion 0.03 103 0.02 10~ 2
0.67 0.08 0.09 0.06 0.03

@ Drill 0.16 104 0.16 103 103 104
E orientation 0.32 0.24 0.12 0.05 0.02

2 . 0.04 10 % 0.05 0.06 0.04 107 %
g Stab height 0.26 0.09 0.20 0.07 0.02

-V L 0.01 0.06 0.01 0.04 10~ %
Pelvis distance 0.15 0.30 0.19 0.10 0.08 0.03
Pelvis angle 0.32 0.02 0.45 0.43 0.45 0.10
0.37 0.59 0.63 0.52 0.19
Feet sagittal 0.01 0.16 0.08 0.15 103 0.17
distance 0.03 0.66 0.30 0.02 0.23
Feet frontal 10~% 10-3 10—° 0.01 10~ 4 0.53
distance 0.02 0.31 10~3 0.07 0.02 0.60

TABLE IV: Sobol indices for all six ergonomic indicators identified as relevant, for the drilling activity. For each parameter
and indicator, the upper value is the first order index, the lower value is the total index. The ergonomic indicators are presented
in decreasing order of importance (decreasing variance) from left to right: the percentages below their names correspond to
the percentage of the total variance they explain. FTR stands for force transmission ratio. Numbers are colored from blue

(minimum) to red (maximum), to facilitate the reading.

TABLE V: Optimal and initial parameters values for the
drilling activity. The parameters which have the largest effect
on performances enhancement are displayed in bold.

to conduct'*. The initial gesture is also evaluated through
an autonomous simulation, instead of through the replay of
motion capture data, so that both situations are comparable.
One of the five human subject is chosen as the reference for
the initial situation (despite slight differences, all five subjects
perform the gesture in a quite consistent way), in order to
measure the values of the input parameters that must be used
in the simulation. These values are displayed in table V, and
the corresponding situations are illustrated in Fig. 7.

Table VI displays the values of the relevant indicators in
both situations. Out of the six relevant indicators, five are
significantly improved by the proposed modifications, whereas
one - the back torque indicator - is slightly worsened. This
might be due to the pelvis orientation (not facing the stab),
which leads to increased torsion effort in the back.

In order to illustrate the reduced physical demands on
more detailed biomechanical quantities, the evolution of the
shoulder flexion and rotation torques during the whole drilling
activity are plotted in Fig. 8, for the two situations. The shoul-
der joint is chosen as an example, because it is particularly

14A complete validation would however require the recording and replay
of the gesture performed by a human subject following the recommendations.

Parameter Optim. Init. RA Legs RA Back FTR Balance
reference position for elbow flexion (°) 135 100 torque | position | position | torque | drilling | margin
drill handle orientation in slab plane / vertical (°) 0 0 Init. 138 69 126 76 128 106
stab center height / shoulder height (m) -0.1 0 Modif. 98 40 108 83 107 69
offset distance pelvis - center of stab (m) 0.1 0 Lo .
angle pelvis - normal to stab (°) 15 0 TABLE VI: Values of the relevant ergonomic indicators in the
inter-feet distance in frontal plane (% of hip width) 200 120 initial and modified situation. RA stands for right arm and
inter-feet distance in sagittal plane (m) 0.1 0 FTR for Force Transmission Ratio. For each indicator, the

value displayed is the percentage of the indicator reference
value (used for the scaling), so that the comparison is more
understandable (the reference value gives an insight of the
average order of magnitude of the indicator, however it does
not provide any indication of the absolute level of risk).

(b) Modified gesture

(a) Initial gesture

Fig. 7: Snapshots of the initial and modified drilling gesture
simulated with the autonomous manikin.

used in the drilling activity, given both the drill weight to
support and the drilling force to exert. Both joint torques
are reduced during the modified gesture, and the simulation
with the virtual manikin allows a quantitative estimation of



this reduction. The flexion torque decreases mainly because
the increased elbow flexion reduces the moment associated
with the drill weight (smaller lever arm). The rotation torque
decreases mainly because the change in pelvis orientation
(relative to the stab) modifies the transmission of the drilling
force.
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Fig. 8: Time evolution of the shoulder flexion and rotation
torques in the initial and modified situations. The gray areas
correspond to the drilling periods.

VI. DISCUSSION

The physically consistent results, as well as the enhanced
performances obtained by following the recommendations
provided through the proposed analysis demonstrate the use-
fulness of the method presented in this paper. However its
application for the improvement of human gestures should
be considered carefully because of some current limitations
related to the human model and control, which are discussed
thereafter.

A. Musculoskeletal model and motor control

Contrarily to the muscular actuation of the human body, the
actuation of the manikin used in this work is only described
at joint level (joint torques), and each joint is controlled by
a unique actuator (1 per DoF). The biomechanical quantities
measured with such a model are therefore less detailed than
what could be achieved with a musculoskeletal model. For
instance, the manikin joint torques do not fully represent
the overall physical effort exerted by a person. Due to the
redundancy of the human actuation, different combinations of
muscle forces can result in a same joint torque. Internal muscle
forces (i.e. forces which do not generate any joint torques) can
thus be generated by a person, but they do not have any equiv-
alent in the manikin model, and are therefore not accounted
for in the evaluation. Such forces occur during the simul-
taneous contraction of antagonistic muscles (co-contraction
phenomenon) and aim at increasing the joint impedance to
withstand perturbations arising from limb dynamics or due to
external loads [42]. Though especially important in motions
requiring high accuracy, co-contraction occurs in all motions,
in order to stabilize the joint, thus protecting joint structures.
Not taking such forces into account therefore leads to a general
under-estimation of the real human effort.

Nevertheless, the motion replay method presented in
this work decouples the rigid body dynamics from the

actuation dynamics. The output of the dynamic replay
fully describes the evolution of the system dynamics
in terms of state [q”(¢), qT(t)]T, joint torques T(t)
and applied external wrenches wc(t). Given this evolu-
tion, the use of an inverse musculoskeletal model (MM)
could give access to the evolution of muscle activations
u,(t) = £ (qt),at), 7(t),we(t), MM). Muscle-related
performance indicators could thus be estimated. In that sense,
the proposed motion replay method is modular.

However, while replaying a motion does not require a
model of whole-body motor control, such a model is needed
for automatic motion generation. Indeed, simulating highly
realistic human motions requires to account for the redundancy
of the human musculoskeletal model as well as for the slow
dynamics of human muscles activation. The slow dynamics is
particularly limiting as it requires to consider the motor control
problem from an optimal control point of view, rather than
from a purely reactive one. The first consequence is a large
increase in the computational cost, which is not compatible
with running thousands of simulations in a reasonable amount
of time (for the sensitivity analysis). Moreover, solving such
an optimal control problem requires to understand the psy-
chophysical principles that voluntary movements obey. Many
studies have been conducted in order to establish mathematical
formulae of such principles, especially for reaching motions
(Fitt’s law [43], minimum jerk principle [44], two-thirds power
law [45]...). De Magistris et al. [46] have successfully applied
some of them to virtual human simulations. However these
improvements are currently limited to reaching motions, since
driving principles are not yet known for all kinds of whole-
body motions, especially when significant external forces are
at play. Transposed to the manikin, determining the underly-
ing principles of human motion comes down to establishing
which mathematical quantities are minimized when human-
like motions are performed. The determination of such opti-
mality criteria can be investigated through inverse optimization
techniques, as proposed by Clever et al. [47] for human
locomotion, or by Berret et al. [48] for reaching motions, but
it remains an open research problem.

B. Contacts placement

Since the sensitivity analysis is based on virtual human sim-
ulations, the biomechanical reliability of the results strongly
depends on the realism of the autonomous manikin motion.
Though the dynamic consistency of the motion is guaranteed,
and most results presented in section V seem logical, it is not
sufficient to prove the human-like behavior of the manikin.
The realism of the manikin motion is especially significantly
limited by its lack of autonomy regarding feet - as well as
other possible contacts - placement. Indeed, the manikin feet
positions are entirely set by the user and are therefore not
necessarily well-adapted to the task (the manikin can walk or
step, but the stepping time and destination must be specified
beforehand).

In [49], Ibanez et al. propose a method for online adaptation
of feet placement, which determines whether a step should be
triggered, with which foot, and where. Activities including



locomotion, as well as adaptation steps can thus be addressed,
though in the latter case a delay may be observed in the
stepping motion. Indeed, adaptation steps are triggered to
maintain balance while following the hands motion (if the
hand motion is the one specified), whereas human beings
usually anticipate such displacements.

Moreover, the method of Ibanez et al. only partly addresses
the problem of contacts placement. Indeed, it is based on
the ZMP concept and therefore remains limited to coplanar
contacts. On the contrary, numerous gestures require a signif-
icant postural engagement which is achieved through the use
of non-coplanar contacts: the feet can be on different planes
(e.g. walking up stairs) and/or the hands can be used (e.g.
pushing heavy objects, climbing). The problem of optimal -
possibly non-coplanar - contacts placement has been addressed
by Liu et al. [50] in the context of manipulation tasks with
significant external forces. However this method is limited to
activities during which the contacts do not change, because it is
computationally expensive and cannot be run online to modify
contacts placement during the simulation. More generally,
the anticipated (i.e. not purely reactive) optimal placement
of contacts usually requires complex planning methods [51],
which for now are too computationally expensive to be used
in the current context.

Despite the current limitations in the manikin motion, it
should be noted that if the results of the sensitivity analy-
sis presented in this paper (i.e. the relevant indicators and
influential parameters, and their relations) are affected by
these limitations, the method in itself is independent from the
manikin control. Thus in the near future an improved control
law could be used to animate the autonomous manikin, while
the analysis method remains the same.

VII. CONCLUSION

This paper presents a method for automatically enhancing
the performances of human gestures, based on a sensitiv-
ity analysis of human motion through motion replay, and
virtual human simulations. The proposed method includes
two components: one for replaying pre-recorded motions,
and the other for analyzing the influence of the gesture
parameters on the performances. The replay of motion capture
data is achieved with an LQP controller, which guarantees
the dynamic consistency of the resulting motion and forces.
The initial gesture is thus acquired and evaluated through
measurements conducted on a virtual manikin, and serves as
an input for the sensitivity analysis. The analysis is based
on virtual human simulations to estimate the performance
indicators, for varying values of the input parameters, without
the need for much input data. A variance-based analysis is
used to extract the most relevant indicators, and sensitivity
indices are computed for quantifying the influence of the
parameters on the performance. Recommendations for gesture
improvement are thereby provided. The whole method is
applied to a drilling activity. The reliability of the motion
and forces obtained through the replay method is successfully
validated on 5 subjects. The results of the sensitivity analysis
are partly qualitatively expected. However, the experiment

also demonstrates that the proposed analysis highlights and,
most importantly, ranks some non trivial phenomena. Such
phenomena can be explained afterwards, but they cannot be
quantified a priori. In the end, the increased performances
of the gesture modified according to the recommendations
provided by the sensitivity analysis - in comparison with the
initial gesture - demonstrates the usefulness of the proposed
method. The realism of the autonomous manikin motion is
however questioned. As a consequence, future work should be
directed towards the improvement of the autonomous manikin
control, in order to achieve more realistic motions. Neverthe-
less, the proposed sensitivity analysis method is tied neither
to a specific human model, nor to a specific whole-body
controller. As such, the method remains valid, independently
from the model and control that are used.

APPENDIX A
DEFINITION OF SOBOL INDICES

Given X;, 1 <1 < d, d random and mutually independent
inputs of a model (in this work: the parameters of the gesture),
and Y the output of the model (an indicator of performance),
the variance of Y is decomposed as follows:

d
Var[Y] = Z Vi(Y) + Z Z Vi (Y)
i=1 i g

+ Z Z Z Vije(Y) + ...+ Vi q(Y)
' ;]>z ey
where:
Vi(Y) = Var[E(Y'|X;)],
Vij (V) = Var[E(Y | X; X;)] — Vi(Y) = V;(Y),
Vijre(Y') = Var[E(Y]X; X; X)) ©)
— Var[E(Y|X;X;)] — Var[E(Y | X; X})]
— Var[E(Y | X X;)]
—Vi(Y) = V;(Y) = Vi(Y),
and so on. Sobol indices are then defined by:
VY)Y -
Covarly]” Y Varly)’

Each index is between 0 and 1, and the sum of all indices
is equal to 1. .S; is a first order index which represents the
sensitivity of the model to X; alone. A high S; means that X;
alone strongly affects the output. S;; is a second order index
which represents the sensitivity of the model to the interaction
between X; and X;, and so on. In order to simplify the
interpretation of these indices when the model has numerous
inputs, total sensitivity indices are defined as [52]:

St =S+ Sii+ > S+ ... ®)
- —
J#i i ki

k>j
ST, represents all the effects of X; on the model, including all
interactions with other inputs. A small S7, means that X; has
very little influence on the output, even through interactions.
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