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Abstract— In this paper, we use a recent information theoret-
ical result to develop a general framework for finding optimal
power control policies in the case of interference channels.
The aforementioned result characterizes the achievable payoffs
for an N -Agent (transmitters in our application) coordination
problem with a certain information structure. We then provide
an algorithm which exploits the characterization of achievable
payoffs by conditional probability distributions to find optimal
decision functions for the transmitters. Due to its general
nature, the developed framework is conducive for applications
to diverse scenarios in wireless communications. In this article,
we restrict our attention to the case of decentralized power
control in interference channels for different utility functions
namely sum-rate, sum-energy and sum-goodput. Our approach
has the following salient features: 1) The method proposes
optimal power control functions for any given utility function
as opposed to ad-hoc solutions for different utilities proposed in
the literature, and 2) Noise in the channel estimation is taken
into account, thus providing robust optimal solutions.

I. INTRODUCTION

One of the key contributions of this paper is to exploit the
recent theorem derived in [1] to find power control functions
which may exploit the available knowledge optimally (in the
long run). As an example, we treat the well studied problem
of optimal power control in interference channels ([2], [3],
[4]) and show that not only does our framework attain various
payoffs identical to the state-of-the-art, it also provides the
optimal power control functions in diverse scenarios. The
scenarios considered resemble those of [5], [6]. These works
propose ad-hoc solutions for specific utilities but not a
generic framework which directly provides a power control
function that aims at exploiting the available and arbitrary
information as well as possible. Indeed our approach is
very general and can be used to treat more complex and
interesting scenarios, e.g. by considering different kinds of
channel state information available at transmitters, different
common objectives, robust power control taking the noisy
communications into account, vectorial optimization etc.

The generality of the approach is by virtue of exploitation
of some recent information theoretical results [1]. A similar
approach, albeit with a different information structure and
for only 2 transmitter-receiver pairs was proposed in [7].
The information structure considered in this paper is more
adapted for the application proposed under realistic assump-
tions, the important ones being 1) No knowledge of future
realizations of the nature state w.r.t. which the agents are
coordinating, 2) Any number of agents with only a partial
and noisy information about the current nature state, and 3)

Decision functions must be found in a decentralized manner
leading to simpler design architectures to implement.

Indeed, for the case of power control in wireless inter-
ference channels, these assumptions have been paid some
attention. The necessity of minimizing the information re-
quired at the transmitters for coordination led to approaches
proposed in [8], [9], [10]. They consider only local channel
state information at the transmitters (CSIT). This is also
important for reducing the complexity of the optimizations
to be performed. For sum-rate maximization, the scenario
considered here is comparable to a single-carrier version
of the iterative water filling algorithm (IWFA) [11]. In
the case of sum-energy utility, channel inversion strategy
was proposed by [12], whereas the multi-carrier version
of the problem was considered by [13]. Decentralization
of the power control, or for that matter for any wireless
network design, is the reason why game theory has been
extensively applied to such problems [14]. We thus compare
our results to game theoretic equilibria analysis as most
of the decentralized optimization literature only guarantees
convergence to Nash equilibria.

The article follows the structure from more general results
to a specific application of the framework proposed. To this
effect, Sec. II describes the performance limits of a general
coordination problem characterizing the optimal achievable
payoffs. The characterization lays the foundation for an algo-
rithm proposed in Sec. III for finding decentralized decision
policies for the coordinating transmitters. The preceding sec-
tions lay the general framework. In Sec. IV-A we describe the
specific problem of power control in interference channels.
A numerical analysis is conducted for diverse scenarios and
the results are compared to existing literature in Sec. IV-B.
Concluding remarks are provided in Sec. V.

II. PERFORMANCE LIMITS OF AN N -TRANSMITTERS
INTERFERENCE COORDINATION PROBLEM

Consider a coordination problem where N transmitter-
receiver pairs are trying to coordinate the power emitted by
them Xi ∈ Xi, i ∈ N = {1, ..., N}. The coordination is
done with respect to a nature state represented by X0 ∈ X0

with the goal of optimizing a common payoff function
w(x0, x1, x2, ...xn) over a long time period T . The nature
state X0 for applications to wireless communications can be
channel gain coefficients gij = |hij |2, with gij being the
channel gain of the link between transmitter i and receiver
j. X0 = (g11, ..., gNN ) is a random state which affects the



common payoff function for the system and is not controlled
by the coordinating transmitters. The realizations of the
nature state X0,t at each time instant t are i.i.d. and follow
a probability distribution ρ. In wireless communications ρ is
typically an exponential distribution for each channel gain
gij . Our aim is to characterize all the achievable expected
payoffs under a certain information structure over a long time
period T , T →∞.

Firstly, we need to define the information structure under
consideration. At every instant t, transmitter i is assumed to
have an image or a partial observation Si,t of the nature state
X0,t with respect to which all transmitters are coordinating.
In the case of our application, this could be knowledge of
only local CSIT, i.e. transmitter i observes a noisy version
(in general) of only the direct link channel gain gii. One
could imagine other kinds of information available at the
transmitters: for example, transmitter i observes all the links
gji, ∀j. The observations Si,t are assumed to be generated by
a memoryless channel whose transition probability is denoted
by ki(Si,t|X0,t). All transmitters have to choose the power
emitted by them Xi,t based on this information received.
Formally, the sequence of decision functions for agent i, σi,t,
is defined as:

σi,t : Sti × U −→ Xi (1)
(si(1), si(2)...si(t), u(t)) 7−→ xi(t) (2)

where Sti = Si(1)×Si(2)...×Si(t) is the discrete observation
alphabet till the instant t and Xi is the power emitted for
transmitter i with |Si|, |Xi| < ∞. U is the alphabet of the
auxiliary variable U which is discussed in more detail later.
si(t), u(t) and xi(t) are the realizations of the corresponding
variables at instant t.

The problem is said to be decentralized as each transmitter
chooses its power independently based on the information
received by it. Since the channel gains are generated by a
random process, and thus in general also the corresponding
chosen power levels, the quantity to be optimized is the
expected objective function:

EQ[w(X)] =
∑
x∈X

w(x0, x1, ..., xN )Q(x0, x1, ..., xN ) (3)

where X = (X0, X1, ..., XN ), x = (x0, x1, ..., xN ),
and X = X0 ×

∏N
i=1 Xi. Q(x0, x1, ..., xN ) is the joint

probability distribution of the variables affecting the payoff.
An important point to note is that since expectation is a
linear operator, optimizing the expected payoff is equivalent
to finding the optimal distribution Q(x0, x1, ..., xN ). How-
ever, the optimization problem is not so trivial as indeed
there are certain restrictions on the distributions Q that are
implementable given the imposed information structure. We
now define the notion of an implementable distribution.

Definition 1 (Implementability). Let the information struc-
ture be as defined in (1). The probability distribution
Q(x0, x1, ..., xN ) is implementable if there exist decision

functions σi,t such that as T → +∞, we have for all x ∈ X ,

1

T

T∑
t=1

QX0...XN ,t(x0, ..., xN ) −→ Q(x0, ..., xN ) (4)

where QX0X1...XN ,t = QX1,...XN |X0,i × ρ is the joint
distribution induced by σi,t at stage t.

As seen before, the expected payoff is characterized by
the probability distribution Q over all the variables that
intervene in the payoff function. Thus, the time averaged
expected payoff w is said to be achievable, if and only
if the corresponding distribution Q is implementable. The
following theorem characterizes precisely the distributions
that are implementable under the information structure (1).

Theorem 1. [1] Assume the random process X0,t to be
i.i.d. following a probability distribution ρ and the available
information to the transmitters Si,t to be the output of a
discrete memoryless channel obtained by marginalizing the
conditional probability k(s1, ..., sN |x0) . An expected payoff
w is achievable in the limit T →∞ if and only if it can be
written as:

w =
∑

x0,x1,...xN ,
u,s1,...sN

ρ(x0)Pu(u)k(s1, ...sN |x0)×(∏N
i=1 PXi|Si,U (xi|si, u)

)
w(x0, x1, ...xN )

(5)

where U is an auxiliary variable which can be optimized.

The auxiliary variable U is an external lottery known to
the transmitters beforehand, which can be used to achieve
better coordination. An example for how this variable U can
help coordinate better in the case of power control is shown
in Sec. IV-A.

Theorem 1 helps us find the best achievable payoffs for
the expected utility (4) with arbitrary information to the
transmitters as long as it follows the structure (in terms
of when the information is available to whom) defined in
equation (1). However, this theorem does not provide optimal
sequences of decision functions σi,t for the time averaged
expected payoff. In the following section, we shall give an
algorithm which helps find a suboptimal solution for the
decision functions. The suboptimality is due to the high com-
plexity of a multilinear optimization problem. Nonetheless,
In Sec.IV-B we see that the solutions obtained using this
algorithm match the state-of-the-art solutions proposed for
different utilities discussed.

III. ALGORITHM FOR FINDING SUB-OPTIMAL
LOW-COMPLEXITY DECISION FUNCTIONS

As seen from Theorem 1, optimal performance for the co-
ordination problem depends only on the vector of conditional
probabilities (PX1|S1,U , ..., PXN |SN ,U ). Thus, it suffices to
find an optimum vector of lotteries for every action Xi

possible to obtain the best achievable payoff. However, one
can see that this task is computationally very demanding.
Instead, we apply a suboptimal approach by searching for
the conditional probabilities in a distributed manner, thus re-
ducing the complexity of the search. To this effect, we apply



sequential best-response dynamics [14]. This consists of each
transmitter choosing the best corresponding power given
that others keep their powers constant, and each transmitter
doing so sequentially within an iteration. Note that by doing
so, the optimization problem becomes linear, and hence
its solution lies at a vertex, i.e. either (PXi|S1,U ) = 0 or
(PXi|S1,U ) = 1. Thus the search for conditional probability
distributions simplifies to search for decision functions

fi : Si × U −→ Xi
(si(t), u(t)) 7−→ xi(t)

An important point to note is that we search for a stationary
strategy, i.e. fi does not depend on the time instant t.
This simplification is practical as it leads to simpler design
structures and easier to find in terms of complexity. Also,
the auxiliary variable U , which serves as a coordination key,
is exchanged offline beforehand and thus does not entail any
signalling cost.

The procedure outlined below is performed many times
till convergence is achieved, typically in a few iterations.
The number of iterations required for convergence of course
depends on the number of agents coordinating, but it scales
up very slowly as best-response dynamics normally con-
verges very fast [14]. Furthermore, since we are considering
a common ’team’ payoff w(x0, x1, ..., xN ), the convergence
of best-response dynamics is guaranteed [15].

Proposition 1. Algorithm 1 converges for a common perfor-
mance criteria w(x0, x1, ..., xN ).

Proof: The result can be proved by induction or more
generally by calling for an exact potential game property (the
latter argument may hold in the more general case in which
the transmitter have different performance criteria).

For further justification of the simplification made by find-
ing functions fi instead of conditional probability distribu-
tions, note that the optimization problem is linear w.r.t. each
component of the vector (PXi|S1,U ) that we are searching.
The problem is therefore multilinear and Algo 1 will con-
verge to the vertex of the polytope defined by the constraints.
Note however that we might lose out on finding the global
optimum by doing so. Nonetheless, the power control func-
tions obtained by the simplification are sufficient to compare
with the existing literature which typically provide power
control functions and not mixed randomized strategies.

To apply best-response dynamics, we rewrite the expected
utility given by Theorem 1 in the following way:

w =
∑

x0,x1,...xN ,
u,s1,...sN

ρ(x0)PU (u)k(s1, ..., sN |x0)× (6)

(
N∏
i=1

PXi|Si,U (xi|si, u)

)
w(x0, x1, ...xN )

=
∑
ai,bi,u

θai,bi,uPXi|Si,U (xai |sbi , u) (7)

where ai, bi, u are the respective indices of xi, si, u and

θai,bi,u ,

∑
a0

ρ(xa0)ki(si|xa0)
∑
a−i

w(xa0 , xa1 , ...xaN )×

∑
b−i

∏
i′ 6=i

ki′(sbi′ |xa0)
∏
i′ 6=i

PXi′ |Si′ ,U (xai′ |sbi′ , u)

PU (u)

(8)

where a−i, b−i are the indices which represent ai, bi being
constant, while all the other indices are summed over.
Written in this form, the linearity of the problem w.r.t.
any one of the variables PXi|Si,U (xi|si, u) is even more
explicit. Note that we have also assumed the indepen-
dence of the observation channels of all the agents, i.e.
k(s|x0) = k1(s1|x0)× . . .× kN (sN |x0). For interference
channels, this assumption is reasonable as all transmitters
receive independent feedback of the channel gains.

Algorithm 1: Proposed decentralized Algorithm for find-
ing a control function

inputs : Xi, ∀i ∈ {0, ..., N}, w(x0, x1, ...xN ), ∀x,
ρ(x0),kS|X0

(s|x0), ∀x0, f initi , ∀i ∈ {1...N},
PU (u), ∀u ∈ U

output: f∗i (si, ui), ∀i ∈ {1...N}

Initialization: f0i = f initi , iter = 0, itermax = 100

while ∃i : ‖f iter−1i − f iteri ‖2 ≥ ε AND iter ≤ itermax
OR iter = 0 do

iter = iter+1;

foreach i ∈ {1, . . . , N} do
foreach si ∈ Si do

foreach u ∈ U do
foreach xi ∈ Xi do

Find the maximum coefficient
θai,bi,u using (8);

Update the function
f iteri (si, u) ∈ arg max

ai
θai,bi,u;

end
end

end
end

end

An important point to note is that the transmitters can
run this algorithm offline as all they need to know are the
channel statistics ρ. This helps in using the power control
functions for the entire timeslot during which the channel
statistics remain constant. Thus we exploit the channels from
the very start of a timeslot as opposed to taking some time
initially to find the optimal functions online. The latter case



is considered in some decentralized solutions such as the
algorithms based on water-filling techniques proposed in [5],
[6].

IV. APPLICATION TO POWER CONTROL IN
INTERFERENCE CHANNELS

In the previous sections, we developed the theoretical
framework, giving intuition as to what the defined quantities
might represent in diverse optimization problems of wireless
communications. In this section, we concentrate on the
problem of power control in interference channels [14] and
provide numerical analysis of some special cases for the
above problem.

A. System Model

Consider N single-antenna Transmitter-Receiver pairs
Transmitteri, Receiveri, i ∈ N = {1, 2..., N} with a single
band interference channel with the channel gains being gij ,
i, j ∈ {1, 2..., N} and gij ∈ G. G is considered to be
a discrete set and represents the alphabet of the possible
channel gains. A well accepted model of statistics for the
channel gains gij = |hij |2 is Rayleigh fading. In this model,
due to central limit theorem, the real and the imaginary
components of hij follow a normal distribution, and thus
the channel gain gij follows exponential distribution (|hij |
follows a Rayleigh distribution). We also assume that all
channel gain distributions are independent of each other
and that their realizations are i.i.d. The transmitters transmit
at discrete power levels Pi ∈ Pi quantized uniformly (in
dB) between [0, Pmax]. The utility for the pair Transmitteri,
Receiveri depends on its signal to interference plus noise
ratio (SINR) γi(P , g). Here P is the vector with each
component Pi being the power emitted by the ith transmitter.
g is the vector containing all the channel gain coefficients gij .
More precisely,

γi(P , g) =
Pigii

σ2 +
∑
j 6=i

Pjgji
(9)

where σ2 is the noise variance. Without loss of generality,
we will consider σ2 = 1, and change Pmax to regulate the
signal to noise ratio (SNR). SNR is defined to be the ratio
Pmax/σ

2.
We shall consider only local CSIT, i.e. the direct channel

gain gii available at each transmitter i, based on which they
have to choose the power level to emit at. For evaluation of
the solutions found using our method, we shall consider three
different payoff functions. These payoff functions have vastly
different proposed solutions in the literature. Our method
helps find the state-of-the-art solutions for all the different
payoffs by simply using a different payoff function for the
Algo. 1. The following common payoffs are considered:

• Sum-rate: wR(P , g) =
∑
i∈N

log(1 + γi) ;

• Sum-goodput: wG(P , g) =
∑
i∈N

Ω(γi) ;

• Sum-energy: wE(P , g) =
∑
i∈N

Ω(γi)

Pi
.

Typical functions for Ω are Ω(γ) = e−
c
γ [16], where c > 0

or Ω(γ) = (1 − e−γ)M where M ≥ 1 is the packet length
[12]. In simulations, we chose the former function and further
supposed c = 1 as it only changes the optimal solutions by
a multiplicative constant. Note that Proposition 1 holds for
the above payoffs as we are considering sums of individual
payoffs which trivially satisfy the required condition for
convergence.

The following table explicits the relation between the input
variables for Algo. 1 and the corresponding quantities for the
application to power control defined above. In Theorem 1,

General model Power Control Application
Nature State - X0 Channel state - (g11, ..., gNN )
Decision of Transmitter i - Xi Power emitted Pi ∈ Pi

w(x0, x1...xN ) wR(P , g), wG(P , g), wE(P , g)

ρ(x0)
∏N

i=1

∏N
j=1 e

−gij , gij = E(gij)
k(si|x0) si = gii or si = ĝii
f init
i fi(s) = Pmax, ∀s ∈ S

TABLE I
CORRESPONDENCE BETWEEN THE GENERAL FRAMEWORK AND ITS

APPLICATION TO POWER CONTROL

we introduced an auxiliary variable U which could help in
achieving better coordination. For better intuition, we show
how a simply constructed external lottery helps transmitters
coordinate in the case of power control.

Consider only N = 2 transmitter-receiver pairs
communicating over a single band interference chan-
nel while maximizing the sum-rate wR(P , g). From
[9], we know that the optimal solution (P ∗1 , P

∗
2 ) ∈

{(Pmax, 0), (0, Pmax), (Pmax, Pmax)}. However, if trans-
mitters try to maximize their individual utility log(1 + γi),
the Nash equilibrium is (Pmax, Pmax) [14].

Now consider the following probability distribution for
a random variable U with the realizations u ∈ U =
{u1, u2, u3}.

PU (u) =

 P(u = u1) = α1 ,
P(u = u2) = α2 ,
P(u = u3) = α3 = 1− (α1 + α2) .

(10)

A large sequence of realizations for U are drawn with the
probability distribution specified in (10) and all transmitters
share this drawn sequence. Now consider a trivial function
common to all transmitters ∆ : U → P which maps every
realization of U , ui to one of three possible optimal power
control vectors {(Pmax, 0), (0, Pmax), (Pmax, Pmax)} which
form the set of possible actions P . Under this setup, one can
do Monte-Carlo simulations for a large number of channel
gain realizations, and find the optimal probabilities (α∗1, α

∗
2)

by doing an exhaustive search. This is done by searching over
a discrete space αi ∈ {0, 0.01, 0.02, ..., 0.99, 1}, i ∈ {1, 2}.
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Fig. 1. The figure shows the performance in terms of sum-rate with: the
proposed coordination mechanism using a public key shared beforehand;
the single-carrier counterpart of the iterative water-filling algorithm. Without
additional signalling, a significant gain is obtained.

In Fig. 1, we plot the average payoff w for the coordi-
nated policy using the pre-drawn lottery U versus the SNR
(which is equal to Pmax due to normalization of channel
noise variance σ2). We compare the average payoffs for the
coordinated policy as well as for Nash equilibrium and see
that at higher SNRs, it is indeed preferable to coordinate
using U . This is not surprising at all, as at higher SNRs,
the interference generated is too high, whereas time-sharing
helps avoid this.

In the following section, we provide the power control
simulation setup and discuss the power control functions
given by our approach. We do not consider the pre-drawn
lottery U in our analysis, although in general, U will only
help improve the coordination performance. This is because
the solution where transmitters ignore the coordination key
is always possible.

B. Numerical Analysis

1) Simulation Setup: We implement Algo. 1 for the case
of power control in a single band interference channel [14].
To this effect, we use the correspondence established in
Sec. IV-A. We consider the case when N = 2. Note that
exponential distributions for channel gain statistics gij are
characterized only by their mean gij . We shall consider the
standard scenario where ∀i ∈ N , gii = 1, ∀i, j ∈ N , i 6=
j, gij) = 0.3.

As mentioned before, the noise variance of the channel
has been normalized to one. Thus, the SNR is regulated
via Pmax = 20 dB. The possible power levels emitted by
transmitters (Pi) are 50 uniformly discrete points between
Pi ∈ [−20, 20]dB.

Since the setup considered is symmetric for all Transmitter
-Receiver pairs, we plot the power control functions fi(si),
only for the transmitter i. We suppose that the observation
alphabet Si = Gii. Note that since we do not consider
the auxiliary variable u from here on, the function fi is
represented with only one argument si.
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Fig. 2. The figure represents the power control functions fi provided by
Algo. 1 for the three performance metrics under consideration in this paper.
In particular, it is seen that for maximizing sum-energy, the obtained power
control function exhibits a threshold under which transmission should not
occur for a given transmitter.

2) Results: In Fig. 2, we plot the power control functions
fi obtained using Algo. 1 for the case N = 2 against gii
the direct channel gain between the ith Transmitter-Receiver
pair. We do not consider noise in the channel estimation
for the moment, and thus in this case si = gii. Three
different utilities are considered, sum-rate, sum-energy, and
sum-goodput.

For the case of sum-rate, it is known that binary power
control Pi ∈ {Pmin, Pmax} is optimal for 2 Transmitter-
Receiver pairs [9]. Moreover, as shown in [8], optimal power
control functions with only local CSIT (gii) amounts to
Pi(gii) = Pmin if gii ≤ g∗ and Pi(gii) = Pmax otherwise.
It is reassuring to find that our results verify this. Thus, in
the case of sum-rate with local CSIT, we find exactly the
same results as state-of-the-art.

In the case of sum-energy, we see that all the available
power Pmax is not used. Indeed, even in the case of only one
Transmitter-Receiver pair, the optimal power control function
is c/g11. We see that there is also a threshold value of gii
below which, Pi = Pmin. Above the threshold value, the
function is similar to the optimal solution obtained in the case
of only one Transmitter-Receiver pair. The threshold function
is also seen as solution in the case of sum-packet rate. This is
because the utility function is not monotonous w.r.t. SINR.
To the best of our knowledge, the power control functions
found for sum-energy are new. Solutions in literature do
not propose thresholding of power control functions to help
reduce interference in case of bad direct channel gains.
Admittedly, this requires greater analysis and comparisons
with the state-of-the-art.

To investigate the function for sum-energy further, in 3
we compare the function obtained using our algorithm with
that proposed by [12]. We see that unlike [12], we find a
threshold below which emitting no power is more optimal.
We also see that the presence of noise makes the power
control function more uniform. Our approach is shown to be
much more robust to noise than the one proposed by [12] as
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Fig. 3. Our algorithm reveals the shape of good power control functions
in the presence of interference. In contrast with related works on energy-
efficiency [12], our work shows that thresholding is required to manage
interference efficiently.

function 1/gii is very sensitive to noise at low values of gii.
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Fig. 4. Relative performance gain (wf − wNash/wNash in % ) of our
algorithm when compared to average payoffs obtained by Nash equilibrium
for sum-rate and sum-energy. The curve for sum-energy saturates as at high
SNR, Pmax is not utilized as power emitted is much lower.

In Fig. 4, we compare the performance of the power
control function with that of Nash equilibrium for different
SNRs in the case of sum-energy and sum-rate. Thus, on
the y − axis we see the relative performance gain (wf −
wNash/wNash in % ) of our algorithm when compared to
average payoffs obtained by Nash equilibrium. Current state-
of-the-art proposes solutions which converge to the Nash
equilibrium. Thus, the solutions are generally not optimal
while maximizing common utilities that are sum of the
individual utilities. The evaluations for obtaining average
expected payoffs was done for 106 channel realizations. They
were drawn according to the distribution

∏N
i=1

∏N
j=1 e

−gij .
The channel gain statistics gij were the same as the ones
used for running the algorithm.

We see that for sum-energy, there is no performance gain
at higher SNRs. This is because, as seen from Fig. 2, the
optimal power used is very low for all gii. However, we

see that when compared to Nash equilibrium, we obtain a
significant gain of around 55%. In the case of sum-rate, per-
formance obtained matches with [8] since the power control
functions obtained are identical. Not suprisingly, at higher
SNRs, Algo. 1 does much better than Nash equilibrium,
which is all transmitters transmitting at Pmax generates too
much interference.

One of the advantages of our framework is that it provides
optimal power control functions even for noisy channel
estimates. We illustrate this in Fig. 5 where power control
functions for different levels of noise in channel estimation
are plotted. This noise simulates the error in estimation due
to noise in feedback transmission, or just simply statistical
estimation error. The noise for the simulations is gaussian,
i.e. si = gii+z where Z ∼ N (0, σ2

z), with σz ∈ {0, 1, 3}. As
expected, the power control functions become more uniform
at higher noise levels, as the information received is less
reliable, and thus transmitters emit at a power level which
maximizes the utility for an average case.
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Fig. 5. Influence of channel estimation noise on the power control
functions. We see that as noise increases, the optimal power emitted becomes
more uniform. This is intuitive as higher the noise, higher the uncertainty in
the observation leading to same power emitted for all channel gains observed
in the asymptotic case.

V. CONCLUSIONS

The proposed framework was shown to be relevant in
diverse scenarios of single band interference channel for find-
ing optimal power control functions. Moreover, the power
control functions depend only on local CSIT, thus having the
merit of being implementable in a completely decentralized
manner. Also, the solutions obtained take noise in the estima-
tion of the channel gain into account. All the above features
illustrate the generality of our approach in tackling problems
of power control for maximizing sum-utility functions.

However, the framework can be exploited further for tack-
ling other problems in wireless communications as well. For
example, one could consider the problem of power allocation
in a multi-band interference channel. Also, the auxiliary
variable U was not exploited, which in general will only
make the solution more optimal. One could also consider
different information available at transmitter i: gij , ∀j.
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