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Abstract— One of the goals of this paper is to make a
step further towards knowing how an electrical appliance
should exploit the available information to schedule its power
consumption; mainly, this information corresponds here to an
imperfect forecast of the non-controllable (exogenous) load or
electricity price. Reaching this goal led us to three key results
which can be used for other settings which involve multiple
agents with partial information: 1. In terms of modeling, we
exploit the principal component analysis to approximate the
exogenous load and show its full relevance; 2. Under some
reasonable but improvable assumptions, this work provides a
full characterization of the set of feasible payoffs which can
be reached by a set of appliances having partial information;
3. A distributed algorithm is provided to compute good power
consumption scheduling functions. These results are exploited
in the numerical analysis, which provides several new insights
into the power consumption scheduling problem. We provide
first results for the standard cost functions, transformer aging in
particular, where we compare our method with iterative water
filling algorithm (IWFA). We test our proposed algorithm on
real data and show that it is more robust with respect to noise in
the signals received. We also observe that our proposed method
becomes even more relevant when the proportion of appliances
with smart counters increase.

I. INTRODUCTION

An important problem for modern electrical networks is to
design intelligent strategies for use of electrical appliances
(Electric Vehicles (EV) being an example) which are able
to exploit the knowledge they have about the non local
demand or the electricity price to reach a certain objective.
The objective can be to reduce the impact of electricity
consumption on the distribution network or to minimize the
monetary charging cost paid by the consumer. The most stan-
dard approach is to design a charging scheme which assumes
a perfect knowledge of the non local demand (or price) and
evaluate the performance of the corresponding algorithm by
feeding the latter with a forecast or noisy version of the
non local demand. Illustrative and recent examples of this
approach are given e.g., by [1] [2], [3], [4]. In the quoted
references, the energy need of a given user is computed by
assuming perfect knowledge of the electricity price or the
exogenous demand namely, the part of the demand which is
not controlled by the smart consuming devices. The obtained
power scheduling schemes have essentially or exactly the
water-filling structure i.e., that holes in terms of price or
demand are exploited in the first place. One of the drawbacks
of this approach is the potential lack of robustness of the
designed algorithm to imperfect forecast.

Among existing works which take uncertainty into account
in the design of power scheduling scheme we find in par-
ticular [5]. Therein the authors propose a threshold-based
scheduling policy which accounts for past and current prices
and the statistics of future prices; each appliance consumes
according to a rectangular profile and starts consuming
when the price is below a time-varying threshold ("threshold
policy"). In [5] the price values are assumed independent
from the load level in each time slot while this assumption is
relaxed in [6]. Additionally, in the latter reference the authors
also consider uncertainty in the algorithm design part but
the uncertainty concerns load and user energy consumption
needs, and not prices as in [5]. Another example of relevant
work where price uncertainty is considered in real-time
demand response model is [7]; therein robust optimization
is exploited. In [8], the problem is addressed by stochastic
gradient based on the statistical knowledge of future prices.

To our knowledge, there is no contribution in the literature
related to the present work which treats the problem of
optimality of a power consumption scheduling scheme under
given arbitrary imperfect observation or forecast. In fact,
to characterize the performance achievable when exploiting
optimally the available information, we resort to a very recent
result in information theory [9] (Sec. III). In Sec. IV, we
exploit the corresponding theorem and the model proposed
in Sec. II to build a convergent algorithm which allows
suboptimal but typically good power consumption scheduling
schemes to be determined numerically. This algorithm is ex-
ploited in Sec. V to conduct the provided numerical analysis.
In Sec. VI, the main assets of the proposed approach are
summarized and several extensions to address its limitations
are provided.

II. PROPOSED SYSTEM MODEL

We consider a set of K ≥ 1 smart electrical appliances.
Each appliance aims at scheduling its power consumption
to maximize a certain payoff function, which is provided
further. To this end, it exploits the available knowledge about
a state which affects its payoff. In this paper, this state
is the exogenous load namely, the part of the load which
is not controlled by the smart consuming devices but the
proposed model and derived results can be directly used
for other types of states such as the electricity price. To
define the exogenous load and other key quantities such
as the power consumption vectors, we need to specify the



timing aspect. Time is assumed to be slotted in stages
t ∈ {1, ..., T}. Typically, a stage may represent a day and
T may represent the number of days over which the payoff
is averaged. At the beginning of stage t, appliance k has to
choose a power consumption vector1 xk = (xk,1, ..., xk,N )
by exploiting perfect observations of the past exogenous load
vectors x0(1), ..., x0(t−1) (note that x0(t) is a vector of size
N ) and a signal which is an image or forecast of the system
state and appliances actions at stage t; this signal is denoted
by sk ∈ Sk. For example, such a signal may be a forecast
of the exogenous load or the total load, the total load being
equal to the sum x0(t) +

∑K
k=1 xk(t). For k ∈ {0, 1, ...,K},

the set in which xk lies is assumed to be discrete and is
denoted by Xk. This choice is not only motivated by the
fact that both power and time can be discrete in real systems
such as electric vehicle battery charging systems but also to
obtain a solution which is robust against forecasting noise;
the latter issue has been addressed recently in [10] where
rectangular consumption profiles typically perform better
than continuous profiles.

The computational complexity of the algorithm proposed
in Sec. IV depends on the cardinality of the set X0 (the
set in which the exogenous load lies). In general, assuming
X0 to be discrete amounts to approximating the exogenous
load vectors. To obtain a good approximation, we propose
to apply the principal component analysis (PCA) [11] on
exogenous load vectors. The exogenous load vector for stage
t is approximated as follows:

x̂0(t) = µ̂
L

+

M∑
i=1

ai(t)vi (1)

where µ̂
L

is defined by

µ̂
L

=
1

L

∑
t∈L

x0(t) , (2)

L being a set of L samples which is available to estimate

µ̂
L

; typically, it may correspond to data measured during
the preceding year. The vectors vi are the eigenvectors of
the following matrix

R̂L =
1

L

∑
t∈L

[
x0(t)− µ̂

L

] [
x0(t)− µ̂

L

]′
(3)

where the notation [ . ]′ stands for transpose. One of the

advantages of using such a decomposition is that for a given
number of basis vectors M (the basis is then (v1, · · · , vM )),
the quality of approximation is maximized; more specifically,

the expected distortion E
∥∥∥X̂0 −X0

∥∥∥2 is minimized. To
minimize the latter quantity we will exploit the Lloyd-Max
algorithm [12] in the numerical analysis; it will be applied
to the vector a = (a1, ..., aM ).

To find a ’good’ value for M , the average normalised
distortion 1

L

∑
t∈L ‖x0(t)− x̂0(t)‖2/‖x0(t)‖2 against the

1For example, N = 24 if a stage is a day and comprises 24 time-slots
whose duration is one hour.
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Fig. 1. Average normalised distortion against number of basis vectors
chosen. We see that 4 vectors are enough to approximate X0 for an error
tolerance level of 5%

number of basis vectors M that we use in our model-
ing of X0 is traced. x̂0(t) = µ̂

L
+
∑M
i=1 aivi where a is

arg mina ‖x0(t)− µ̂
L
−
∑M
i=1 aivi‖2 using convex optimisa-

tion algorithms. As we see from Fig 1, the average distortion
is more sensible to a few basis vectors vi. Thus, by accepting
a distortion of 5%, we can reduce the basis space from 15
to 4 which enables us to model X0 with fewer coefficients
a and reasonable accuracy.

The stage or instantaneous payoff function of appliance k
is denoted by uk(x0, x1, ..., xK). In the simulations we will
assume that uk can be written as

uk(x0, x1, ..., xK) =
∑N
n=1 uk,n

(
x0,1 +

∑K
k=1 xk,1,

· · · , x0,n +
∑K
k=1 xk,n

)
(4)

where n is the index for the hours of the day and uk,n is the
consumption . Note that the cost function is not instantaneous
inside a stage, but for a given day as seen from the equation
4. The function uk,n can e.g., represent the price charged
to the consumer, Joule losses, battery aging, or distribution
transformer aging at time-slot n. To define the average payoff
of appliance k which is the function to be maximized by
appliance k, the key notion of power consumption scheduling
strategies needs to be defined. A strategy for appliance k is
a sequence of mappings which is defined by:

σk,t : X t−10 × Sk → Xk
(x0(1), ..., x0(t− 1), sk(t)) 7→ xk(t)

(5)

The average payoff of appliance k is then defined by

Uk(σ1, ..., σK) = E

[
1

T

T∑
t=1

uk (X0(t), X1(t), ..., XK(t))

]
.

(6)
The expectation operator is used since the load is typically
considered as a random process, which implies that in full



mathematical generality, the appliances decisions have also
to be considered as random processes. The two main techni-
cal problems we address in this paper are the characterization
of achievable average payoffs when T grows large and the
determination of a practical scheme which provides good
performance. A key technical point here is that we will
assume a general structure for the knowledge sk. Indeed, we
assume that (s1, ..., sK) are the outputs of a general discrete
memoryless channel (see e.g., [13] for more details) whose
conditional probability is Γ(s1, ..., sK |x0, x1, ..., xK).

III. LIMITING PERFORMANCE CHARACTERIZATION

Theorem 1. Assume the random process X0(t) to be i.i.d.
with a probability distribution ρ and the available load
forecast Sk to be the output of a discrete memoryless channel
whose conditional probability is Γ(s1, ..., sK |x0, x1, ..., xK).
An expected payoff vector (U1, ..., UK) is achievable in the
limit T →∞ if and only if it can be written as:

Uk =
∑

x0,x1,...xK ,w,s1,...sK

ρ(x0)PW (w)×

Γ(s1, ...sK |x0, x1, ..., xK)×(∏K
k=1 PXk|Sk,W

(xk|sk, w)
)
uk(x0, x1, ...xK)

(7)

where W is an auxiliary variable which can be optimized.

The proof of this theorem is omitted here. It consists
of a generalization of a result given in [14]. Therein, the
authors characterize implementable distributions for the case
σk,t(Sk), Sk being the output of the simplified channel
k(s1, ..., sK |x0) namely, the output signal only depends on
the state, whereas here it could also depend on the decisions
chosen by others. The auxiliary variable W is an external
lottery known to players, which in general can help the
appliances coordinate better.

One of the merits of Theorem 1 is to provide the best
performance achievable in terms of average payoffs when the
appliances have an arbitrary information structure (as long as
it is of the form given by (5)). This requires the knowledge
of the distribution of the exogenous load i.e., ρ and the
conditional distribution Γ. However, Theorem 1 does not
provide practical strategies which would allow a given payoff
vector to be reached. Finding "optimal" scheduling strategies
consists of finding good sequences of functions structured
according to (5), which is an open and promising direction
to be explored. More pragmatically, we restrict our attention
to finding stationary strategies which are merely scheduling
functions of the form fk : Sk → Xk. This choice is motivated
by practical considerations such as computational complexity
and it is also coherent with the current state of the literature.
The water-filling solution is a special instance of this class
of strategies. To find good scheduling functions, the idea we
propose is to exploit the expected payoff given by Theorem
1. This is the purpose of the next section.

IV. PROCEDURE FOR DETERMINING POWER
CONSUMPTION SCHEDULING FUNCTIONS

The first observation we make is that the best performance
only depends on the vector of conditional probabilities

(PX1|S1,W
, ..., PXK |SK ,W

) . It is therefore relevant to try
to find an optimum vector of lotteries for every action
possible and use it to take decisions. Since this task is
typically computationally demanding, a suboptimal approach
consists in applying a distributed algorithm to maximize the
average payoff. The procedure we propose here is to use
the sequential best response dynamics (see e.g., [15]). This
consists of each player choosing his best action while the
others’ strategies remain the same and all the players update
their strategies sequentially. The key observation we make is
then to see that when the lotteries of the other appliances
are fixed, the best lottery for appliance k boils down to
a function of sk and w. The choice of power scheduling
functions we propose precisely corresponds to running the
algorithm provided below several times, convergence being
obtained after a few iterations typically, with the iterations
being linearly proportional to the number of players.

A sufficient condition for convergence of the algorithm is
that the stage payoff function writes as uk(x0, x1, ..., xK) =
αku(x0, x1, ..., xK). This has been shown to be very relevant
in the smart grid literature. For instance, in [1] u is a function
which represents the total cost associated with operations
such as charging operations and αk = Ck∑K

j=1 Cj
is a constant

which represents the way this cost is shared among the
consumers, Cj being the energy need of user j. However,
for our algorithm, we minimise u, the total cost. Clearly
minimising the total cost also minimises the individual costs
as they are shared.

From Theorem 1, we can rewrite the expected payoff in
the following manner (steps have been omitted for space
constraints):

Uk =
∑

x0,x1,...xK ,w,s1,...sK

ρ(x0)PW (w)× (8)

Γ(s1, ..., sK |x0, x1, ..., xK)× (9)(
K∏
k=1

PXk|Sk,W
(xk|sk, w)

)
uk(x0, x1, ...xK)

=
∑

ik,jk,w

δik,jk,wPXk|Sk,W
(xk|sk, w) (10)

where ik, jk, w are the respective indices of xk, sk, w and

δik,jk,w ,

∑
i0

ρ(xi0)Γk(sk|xi0)
∑
i−k

uk(xi0 , xi1 , ...xiK )×

∑
j−k

∏
k′ 6=k

Γk′(sjk′ |x0)
∏
k′ 6=k

PXk|Sk,W
(xk|sk, w)

PW (w)

(11)

where i−k, j−k are the indices which represent ik, jk
being constant, while all the other indices are summed
over. We have also assumed the independence of the
observation channels as well as indpendence of the
signal with the strategies chosen by the appliances, i.e.



Γ(s1, ..., sK |x0, x1, ..., xK) = Γ1(s1|x0)× . . .× ΓK(sK |x0).
Note that we do this to correspond to our system model,
but one can solve the general problem too.

Written in this form, for every player, optimising the
cost in a distributed manner implies giving a probability
1 for the optimal coefficient δik,jk,w, and every player
does that turn by turn. This is another way of seeing
why PXk|Sk,W

(xk|sk, w) becomes just a function for the
distributed optimisation algorithm. fk : Sk ×W → Xk.
Algorithm 1: Proposed decentralized Algorithm for find-
ing an optimal point

inputs : Xk ∀k ∈ {0, ...,K}, w(x0, x1, ...xK) ∀x,
ρ(x0),ΓS|X0

(s|x0) ∀x0, f initk ∀k ∈
{1...K}, ε

output: f∗k (sk) ∀k ∈ {1...K}

Initialization - f0k = f initk , iter = 0

while ∀k ‖f (iter−1)k − f iterk ‖2 ≤ ε OR iter=0 do
iter = iter+1;

forall the k ∈ {1, . . . ,K} do
forall the sk ∈ Sk do

forall the w ∈ W do
forall the xk ∈ Xk do

Find the optimal coefficient δik,jk,w;

Update the function
f iterk (sk) ∈ arg min

ik
δik,jk,w;

end
end

end
end

end
Create X0 - For good modeling of the given data to create

accurate X̂0, we do PCA analysis of R̂L as explained in
section II. We thus obtain M ’significant’ vectors. We then
find the continuous vectors aC(t) which lies in the set RM
and minimises the distortion ‖X̂0(t)−X0(t)‖2, for every day
t. We discretize the continuous alphabet using vectorial lloyd
max algorithm, with the aC(1), ..., aC(t) and specifying the
number of points for quantization. The representatives thus
generated is our alphabet X0.

Create noise model - Since we evaluate the average pay-
offs for white Gaussian noise x̂0 +z, where Z ∼ N (0, σ2I),
whereas our algorithm uses a DMC channel Γ, the proba-
bility of error due to the noise should be taken into account
in the algorithm. To reduce the complexity, it is assumed as
a first approximation that only the closest neighbour of X̂0

in terms of the Euclidean norm ‖.‖2 can be gotten by error
as the approximation of exogenous profiles which should
have been approximated by X̂0. To estimate the probability
of error, 100 draws of a white gaussian noise are added to
the realizations of a training set of the exogenous load over
{1, · · · , T} and the number of times when a realization leads

to the closest neighbour instead of the right approximation
are counted. Then, the probability of error is estimated as
the ratio of this number of errors over the number of times
when a given element of X0 should have been chosen.

V. NUMERICAL ANALYSIS

A. Simulation setup

The simulation setup assumed here by default corresponds
to a Texan district in 2013 in which the smart electrical
appliances are electric vehicles. A stage is a period from 8
am a given day to 8 am the day after: there are N = 24 time-
slots of 1 hour each. The power consumption of the smart
electrical devices will be scheduled only during the "night-
time" corresponding here to the period 5 pm - 8 am the next
day, i.e. n ∈ {10, · · · , 24}. The whole time period is then
{1, · · · , T = 365}. Data corresponding to the exogenous
profiles (x0(1), · · · , x0(365)) are obtained from the Pecan
Street database [16]. To get a realistic profile at the scale
of a district, we sum the hourly consumption data available
for Texan households and normalize the aggregated profile
as explained a little further. We verified using clustering
algorithms of Matlab (function kmeans) that on an average
over 3 years, the real consumption of the aggregated profile
in summer and winter were considerably different. Winter
corresponds to 1, 120]∪ [301, 365] and summer to [121, 300]
Thus we chose to only run the simulations for summer, with
some tests for winter to see if the results of summer conform
with those of winter.

In the case of EV charging, the strategy sets Xk are
constrained by the mobility parameters and the charging
need. Based on a recent French2 survey [17], the arrival
µak, departure time µdk and number of time-slots needed to
charge Ck are taken to be the closest integers of realizations
of Gaussian random variables µ̃ak ∼ N (2, 0.75), µ̃dk ∼
N (14.5, 0.375) and C̃k ∼ N (2.99, 0.57). Motivated by
battery aging consideration [18], it is furthermore assumed
that charging profiles are rectangular: charging is done at
a constant rate, here 3kW, and cannot be stopped. Note
also that profiles without interruption are even required in
some important scenarios encountered with home energy
management [19][20]. A strategy is then define only by the
time to start charging and the strategy set is reduced to
Xk = {µak, · · · , µdk − Ck + 1}, the potential time to start
charging.

One important assumption in our analysis is the memory-
lessness of the payoff function. Regarding the instantaneous
payoff function, two cases will be distinguished. The first
considers a "memoryless" payoff with uk(x0, x1, ..., xK) =
−
∑N
n=1(x0,n +

∑K
k=1 xk,n)2. This is convenient to express

Joule losses or a price charged to the consumer depending
on the total load at the scale of the district as in [1].
The second corresponds to payoffs "with memory", which
means that uk,n depends on the whole past of the total

2A more accurate study with mobility data from Texas could constitute
an interesting extension of this work but as a first step, we assumed that
the French ones could be applied also in the context described here.



load(x0,1+
∑K
k=1 xk,1, · · · , x0,n +

∑K
k=1 xk,n) and not only

on the current load x0,n +
∑K
k=1 xk,n. In the context of

a distribution network, such a cost can be transformer
aging. To be very brief, the most influential parameter for
the transformer aging is known to be the hot-spot (HS)
temperature [21]. Indeed, the transformer isolation damage is
directly related to the HS temperature: aging is exponentially
accelerated (decelerated) when the HS temperature is above
(resp. below) its nominal value [21]. This is mathematically
translated as

uk,n(x0,1 +

K∑
k=1

xk,1, · · · , x0,n +

K∑
k=1

xk,n)

= e0.12×F
HS
t (x0,1+

∑K
k=1 xk,1,··· ,x0,n+

∑K
k=1 xk,n))−11 , (12)

which provides the instantaneous aging relatively to the
nominal case. The transformer HS temperature evolution
law FHS

t , which has a memory, is assumed to follow the
ANSI/IEEE linearized Clause 7 top-oil-rise model, which
is described in [22]. To make the simulations reproducible
we provide the values of the different parameters of FHS

t :
∆t = 0.5 h; T 0 = 2.5h (thermal inertia) for all simulations
concerning the transformer, γ = 0.83; R = 5.5; ∆θOFL = 55
˚C; ∆θHS

FL = 23 ˚C. The initial parameters for this dynamics
with memory are assumed to be the same from one stage to
an other3 in a given season. These are set to θHS0 = 37 ˚C and
x0,9 = 30W (resp. θHS0 = 75 ˚C and x0,9 = 87W) in winter
(resp. summer). Defining a larger number of periods than the
two (winter and summer) seasons with initial parameters for
each period could improve the accuracy of the estimation
of the transformer lifetime but would need more data to
approximate the exogenous load. With these parameters, the
exogenous load is normalized such that without EV the
transformer lifetime (inversely proportional to the average
aging) is 40 years (standard value for nominal conditions).

The functions found using our algorithm and iterative
Water Filling algorithm are applied to a noisy version of
data for exogenous load (Summer 2013) and real costs
are calculated assuming that the vehicles use the decision
functions given by the respective algorithms. Note however,
that we suppose that the vehicles already know the statistics
for the future. The knowledge of future statistics was also
assumed in [5]. We use some typical values for Forecasting
Signal to Noise Ratio FSNR, namely FSNR = 7dB as used
in [5] to be coherent with the literature. FSNR is defined as

FSNR = 10 log10

(
1

σ2
day

1
NT

T∑
t=1

N∑
n=1

X0,n(t)2

)
B. Simulation Results

In our results, we distinguish 2 kinds of vehicles, informed
vehicles and uninformed vehicles. By informed vehicles, we
mean vehicles who receive a signal corresponding to the
exogenous demand X0(t) and take their decisions accord-
ingly, whereas the uninformed vehicles recieve no signal, and

3Given that the transformer temperature has enough time to converge
to the same value at 5 pm for different values of this temperature at the
beginning of the day at 8 am.

thus follow a ’plug and charge’ policy, since they have no
information. The total number of vehicles for the simulations
were kept constant at 10.
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Fig. 2. Price of Decentralization (utotal/unoEV )− 1 in percent) against
penetration percentage. For more discussion on the choice of this metric
refer to [10]. This figure illustrates the robustesse of our approach as well
as increased importance at higher penetration rates.

In Fig. 2, there are 2 key messages: 1) Algo 1 is much
more robust to noise, infact in Fig. 2, the curves for 2
different noise level merge. IWFA however is sensible to
noise, which is not surprising. Since we impose rectangular
charging profiles on the vehicles, they will not react to noise
since it mmight just be a transient optimal period to charge.
2)We see that as the number of informed players increase the
difference between our algorithm and iterative Water filling
algorithm (IWFA) increases.
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In Fig 3 we see that the general trend discussed for 2 is
true irrespective of the year. Moreover all the 3 years show
similar patterns, thus showing that the good performance at
higher penetration is not by chance. We could not test for
more years as that information is not available ina similar
format.



Number of Vehicles 1 2 3 4 5 6 7 8
Transformer Aging 0.99 0.98 0.96 0.96 0.94 0.93 0.91 0.89
Joules Loss 0.99 0.98 0.96 0.96 0.94 0.94 0.92

TABLE I
RATIO OF uAlgo1/uIWFA FOR DIFFERENT NUMBER OF VEHICLES,

SUPPOSING THAT ALL THE VEHICLES ARE INFORMED (IN POSESSION OF

A SIGNAL)

We see in Table I that the ratio between the average
costs of Algo 1 and IWFA decreases as number of vehicles
increases. This implies that as number of vehicles increase,
Algo 1 does increasingly better than IWFA. Moreover, the
same pattern is observed for the cost function taken to
be Joules losses. This vindicates our claim that the Algo
proposed by us is generic and could be applied to any cost
function to provide ’good’ strategies.

Since the cost also depends on the need d which represents
the needs of the electric vehicles, we generated d using the
general statistics for demand observed. We generated 3 d
vectors independently with the same distribution, and found
that all the results discussed above hold. Same is true for
the winter periods as defined in the simulation setup. All the
following tests of robustness show the general nature of our
approach.

VI. CONCLUSION

Numerical results show the full relevance of the proposed
PCA-based model. Remarkably, an accurate approximation
can be obtained by using only a few eigenvectors and
applying the Lloyd-Max algorithm on the weights to be
applied to these eigenvectors. The proposed framework to
characterize the best performance of power consumption
scheduling exploits a very recent result in information the-
ory and also allows to derive robust scheduling functions.
Simulations show that in the presence of uncertainty on the
exogenous load forecast, the obtained functions outperform
iterative Water-Filling based schemes. Most importantly, we
provide a general framework which can be applied to various
scenarios, and guarantees electric vehicle using functions
achieving good performance for every scenario, thanks to
the general information theoretical result derived.

The proposed framework can be extended. While the
discrete alphabet assumption seems like a good assumption
to obtain robust scheduling schemes, the i.i.d assumption on
the exogenous load would need to be relaxed e.g., into a
milder assumption such as a Markovian process, the i.i.d.
assumption being made for the performance characterization
theorem. Another direction to further improve performance
is maximize the expected payoff jointly and not by using a
distributed algorithm. The obtained schemes would still be
distributed decision-wise.
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