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Abstract—One of the goals of this paper is to make a step
further toward knowing how an electrical appliance should
exploit the available information to schedule its power consump-
tion; mainly, this information corresponds here to an imperfect
forecast of the non-controllable (exogenous) load or electricity
price. Reaching this goal led us to three key results which can
used for other settings which involve multiple agents with partial
information: 1. In terms of modeling, we exploit the principal
component analysis to approximate the exogenous load and show
its full relevance; 2. Under some reasonable but improvable
assumptions, this work provides a full characterization of the set
of feasible payoffs which can be reached by a set of appliances
having partial information; 3. A distributed algorithm is provided
to compute good power consumption scheduling functions. These
results are exploited in the numerical analysis, which provides
several new insights into the power consumption scheduling
problem. XXX completer en etant un plus specifique: choix du
cout, un ou deux messages forts issus des simulations.

I. INTRODUCTION

An important problem for modern electrical networks is
to design an electrical vehicle (EV) battery charging device
which is able to exploit the knowledge it has about the non-EV
demand or the electricity price to reach a certain objective. The
objective can be to reduce the impact of charging operations
on the distribution network or to minimize the monetary
charging cost paid by the EV user. The most standard approach
is to design a charging scheme which assumes a perfect
knowledge of the non-EV demand (or price) and evaluate
the performance of the corresponding algorithm by feeding
the latter with a forecast or noisy version of the non-EV
demand. Illustrative and recent examples of this approach are
given e.g., by [?] XXX-shinwari-2012, XXX-gan-2013, [?].
In the quoted references, the energy need of a given user is
computed by assuming perfect knowledge of the electricity
price or the exogenous demand namely, the part of the demand
which is not controlled by the smart consuming devices. The
obtained power scheduling schemes have essentially or exactly
the water-filling structure i.e., that holes in terms of price or
demand are exploited in the first place. One of the drawbacks
of this approach is the potential lack of robustness of the
designed algorithm to imperfect forecast.

Among existing works which take uncertainty into account
in the design of power scheduling scheme we find in particular
[?]. Therein the authors propose a threshold-based scheduling
policy which accounts for past and current prices and the
statistics of future prices; each appliance consumes according
to a rectangular profile and starts consuming when the price

is below a time-varying threshold. In [?] the price values are
assumed independent from the load level in each time slot
while this assumption is relaxed in XXX-samadi-mohsenian-
rad. Additionally, in the latter reference the authors also con-
siders uncertainty in the algorithm design part but uncertainty
concerns load and user energy consumption needs and not
prices as in [?]. Another example of relevant work where
price uncertainty is considered in real-time demand response
model is [?]; therein robust optimization is exploited. In [?],
the problem is addressed by stochastic gradient based on the
statistical knowledge of future prices.

To our knowledge, there is no contribution in the literature
related to the present work which treats the problem of opti-
mality of a power consumption scheduling scheme under given
arbitrary imperfect observation or forecast. In fact, to charac-
terize the performance achievable when exploiting optimally
the available information, we resort to a very recent result in
information theory [?] (Sec. ??). In Sec. ??, we exploit the
corresponding theorem and the model proposed in Sec. ??
to build a convergent algorithm which allows suboptimal but
typically good power consumption scheduling schemes to be
determined numerically. This algorithm is exploited in Sec.
?? to conduct the provided numerical analysis. In Sec. ??,
the main assets of the proposed approach are summarized and
several extensions to address its limitations are provided.

II. PROPOSED SYSTEM MODEL

We consider a set of K ≥ 1 smart electrical appliances.
Each appliance aims at scheduling its power consumption
to maximize a certain payoff function, which is provided
further. To this end, it exploits the available knowledge about
a state which affects its payoff. In this paper, this state is
the exogenous load namely, the part of the load which is not
controlled by the smart consuming devices but the proposed
model and derived results can be directly used for other types
of states such as the electricity price. To define the exogenous
load and other key quantities such as the power consumption
vectors, we need to specify the timing aspect. Time is assumed
to be slotted in stages t ∈ {1, ..., T}. Typically, a stage may
represent a day and T may represent the number of days
over which the payoff is averaged. At the beginning of stage
t, appliance k has to choose a power consumption vector1

1For example, N = 24 if a stage comprises 24 time-slots whose duration
is one hour.



xk = (xk,1, ..., xk,N ) by exploiting perfect observations of
the past exogenous load vectors x0(1), ..., x0(t − 1) and a
signal which is an image or forecast of the system state
and appliances actions at stage t; this signal is denoted by
sk ∈ Sk. For example, such a signal may be a forecast of the
exogenous load or the total load, the total load being equal
to the sum x0(t) +

∑K
k=1 xk(t). For k ∈ {0, 1, ...,K}, the

set in which xk lies is assumed to be discrete and is denoted
by Xk. This choice is not only motivated by the fact that
both power and time can be discrete in real systems such as
electrical vehicle battery charging systems but also to obtain
a solution which is robust against forecasting noise; the latter
issue has been addressed recently in XXX-tsg1-olivier where
rectangular consumption profiles typically perform better than
continuous profiles.

The computational complexity of the algorithm proposed
in Sec. XXX depends on the cardinality of the set X0. In
general, assuming X0 to be discrete amounts to approximating
the exogenous load vectors. To obtain a good approximation,
we propose to apply the principal component analysis (PCA)
XXX-book-mallat on exogenous load vectors. The exogenous
load vector for stage t is approximated as follows:

x̂0(t) = µ̂
L

+

M∑
i=1

ai(t)vi (1)

where µ̂
L

is defined by

µ̂
L

=
1

L

∑
t∈L

x0(t), (2)

the set L represents a set of Lsamples which is available to
estimate µ̂

L
; typically, it may correspond to data measured

during the preceding year. The vectors vi are the eigenvectors
of the following matrix

R̂L =
1

L

∑
t∈L

[
x0(t)− µ̂

L

] [
x0(t)− widehatµ

L

]′
(3)

where the notation (.)′ stands for transpose. One of the advan-
tages of using such a decomposition is that for a given number
of vector basis M , the quality of approximation is maximized;

more specifically, the expected distortion E
∥∥∥X̂0 −X0

∥∥∥2 is
minimized. To minimize the latter quantity we will exploit
the Lloyd-Max algorithm XXX in the numerical analysis; it
will be applied to the vector (a1, ..., aK).

The stage or instantaneous payoff function of appli-
ance k is denoted by uk(x0, x1, ..., xK). In the simulations
we will assume that uk writes as uk(x0, x1, ..., xK) =∑N

n=1 fk,n(x0,n +
∑K

k=1 xk,n). The function fk,n can e.g.,
represent the price charged to the consumer, Joule losses,
battery aging, or distribution transformer aging on time-slot
n. To define the average payoff of appliance k which is the
function to be maximized by appliance k, the key notion of
power consumption scheduling strategies needs to be defined.

A strategy for appliance k is a sequence of mappings which
is defined by:

σk,t : X t−1
0 × Sk → Sk

(x0(1), ..., x0(t− 1), sk(t)) 7→ xk(t)
(4)

The average payoff of appliance k is then defined by

Uk(σ1, ..., σK) = E

[
1

T

T∑
t=1

uk (X0(t), X1(t), ..., XK(t))

]
.

(5)
The expectation operator is used since the load is typically
considered as a random process, which implies that in full
mathematical generality, the appliances decisions have also to
be considered as random processes. The main two technical
problems we address in this paper is the characterization
of achievable average payoffs when T grows large and the
determination of a practical scheme which provides good per-
formance. A key technical point here is that we will assume a
general structure for the knowledge sk. Indeed, we assume that
(s1, ..., sK) are the outputs of a general discrete memoryless
channel (see e.g., XXX-cover-book for more details) whose
conditional probability is Γ(s1, ..., sK |x0).

III. MAIN ANALYTICAL RESULTS

A. Limiting performance characterization

XXX Attention j ai pris un Gamma plus general que celui
de depart, c est mieux, on revendique un nouveau theoreme
du coup, certes seulement un peu nouveau par rapport a ITW.
Dans les simulations faudra preciser quon regarde un Gamma
particulier.

Theorem 1: Assume the random process X0(t) to be i.i.d.
with a probability distribution ρ and the available load forecast
Sk to be the output of a discrete memoryless channel whose
conditional probability is Γ(s1, ..., sK |x0, x1, ..., xK). An ex-
pected payoff vector (U1, ..., UK) is achievable in the limit
T →∞ if and only if it writes as:

Uk =
∑

x0,x1,...xK ,w,s1,...sK

ρ(x0)PW (w)Γ(s1, ...sK |x0)×(∏K
k=1 PXk|Sk,W

(xk|sk, w)
)
uk(x0, x1, ...xK)

(6)
where W is an auxiliary variable which can be optimized.

The proof of this theorem is omitted here. It consists of a
generalization of a result given in XXX-larrousse-ITW-2015.
Therein, the authors characterize implementable distributions
for the case σk,t(Sk), Sk being the output of the simplified
channel k(s1, ..., sK |x0) namely, the output signal only de-
pends on the state.

One of the merits of Theorem 1 is to provide the best
performance achievable in terms of average payoffs when
the appliances have an arbitrary information structure (as
long as it is of the form given by (4)). This requires the
knowledge of the distribution of the exogenous load i.e., ρ
and the condition distribution Γ. However, Theorem 1 does not
provide practical strategies which would allow a given payoff



vector to be reached. Finding ”optimal” scheduling strategies
consists in finding good sequences of functions structured
according to (4)), which is an open and promising direction
to be explored. More pragmatically, we restrict our attention
to finding stationary strategies which are merely scheduling
functions of the form fk : Sk → Xk. This choice is motivated
by practical considerations such as computational complexity
and it also coherent with the current state of the literature.
The water-filling solution is a special instance of this class
of strategies. To find good scheduling functions, the idea we
propose is to exploit the expected payoff given by Theorem
1. This is the purpose of the next section.

B. Procedure for determining power consumption scheduling
functions

The first observation we make is that the best perfor-
mance only depends on the vector of conditional probabilities(
PX1|S1,W

, ..., PXK |SK ,W

)
. Is is therefore relevant to try to

find an optimum vector of lotteries and use it to take decisions.
Since this task is typically computationally demanding, a sub-
optimal approach consists in applying a distributed algorithm
to maximize the average payoff. The procedure we propose
here is to use the sequential best response dynamics (see
e.g., XXX-book-samson). XXX je vous laisse expliquer cette
procedure, on l a deja fait ailleurs avec Olivier. The key
observation we make is then to see that when the lotteries
of the other appliances are fixed, the best lottery for appliance
k boils down to a function of sk and w. The choice of power
scheduling functions we propose precisely corresponds to run-
ning the algorithm provided below several times, convergence
being obtained after a few iterations typically.

A sufficient condition for convergence of the algorithm is
that the stage payoff function writes as uk(x0, x1, ..., xK) =
αku(x0, x1, ..., xK). This special case will be assumed in the
simulations and has been shown to be very relevant in the
smart grid literature. For instance, in XXX-mohsenian-rad u
is a function which represents the total cost associated with
operations such as charging operations and αk = Ck∑K

j=1 Cj
is

a constant which represents the way this cost is shared among
the consumers, Cj being the energy need of user j.

XXX Il faut ecrire l algo tres proprement, eviter de l appeler
BRD.
XXX Je donnerais l algo avec les uk

IV. NUMERICAL ANALYSIS

XXX URGENT : detailler les simulations qu on attend,
setup, ce qu on represente etc.

XXX Penser a definir un profil rectangulaire sous forme de
vecteur et expliquer que l optim revient a choisir un scalaire.

V. CONCLUSION

Numerical results show the full relevance of the proposed
PCA-based model. Remarkably, an accurate approximation
can be obtained by using only a few eigenvectors and applying

the Lloyd-Max algorithm on the weights to be applied to these
eigenvectors. The proposed framework to characterize the
best performance of power consumption scheduling exploits
very recent in information theory and also allows to derive
robust scheduling functions. Simulations show that in the
presence of uncertainty on the exogenous load forecast, the
obtained functions outperform such as iterative water-filling
based schemes.

The proposed framework can be extended. While the dis-
crete alphabet assumption seems a good assumption to obtain
robust scheduling schemes, the i.i.d assumption on the ex-
ogenous load would need to be relaxed e.g., into a milder
assumption such as a Makorvian process, the i.i.d. assumption
being made for the performance characterization theorem.
Another direction to further improve performance is maximize
the expected payoff jointly and not by using a distributed
algorithm. The obtained schemes would still be distributed
decision-wise. As another extension, a stage might be a time-
slot instead of a day. Indeed, with our approach, the scheduling
decision is taken once and for all at the beginning of each stage
while it might be updated during the day.

XXX Finding ”optimal” scheduling strategies consists in
finding good sequences of functions structured according to
(4)), which is an open and promising direction to be explored.

One strong asset of the proposed framework is that it can
be applied to a broad class of forecast model and payoff
functions. discrete
distributed

Strengths: general methodology, new model (PCA), we
stablish a link with info theo, limiting perf are characterized,
complexity is reasonable (XXX-incontrastwith-kim-poor)

Nous on modlise aussi, deuxime contrib. Et on maximiser
sur l’annee. Notre approche et gnrique et en lien avec la
thorie de l info

kim poor: Although using stochastic dynamic programming
can derive the optimal policies, it results in very high compu-
tational complexity and is generally prohibitive to be explicitly
solved.

List of limitations or our approach and extensions. IID
state (ext=Markov state), DMC obs. On ne met pas a jour
au cours de la journee. Optimality (multi-linear program).
Multi-objective and algo convergence.

extension revue: and possibly an image of past consumption
decisions taken by the other appliances.
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