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RIESZ TRANSFORM FOR 1 ≤ p ≤ 2 WITHOUT GAUSSIAN HEAT KERNEL BOUND

LI CHEN, THIERRY COULHON, JOSEPH FENEUIL, AND EMMANUEL RUSS

Abstract. We study the Lp boundedness of Riesz transform as well as the reverse inequality on
Riemannian manifolds and graphs under the volume doubling property and a sub-Gaussian heat
kernel upper bound. We prove that the Riesz transform is then bounded on Lp for 1 < p < 2,
which shows that Gaussian estimates of the heat kernel are not a necessary condition for this. In the
particular case of Vicsek manifolds and graphs, we show that the reverse inequality does not hold for
1 < p < 2. This yields a full picture of the ranges of p ∈ (1,+∞) for which respectively the Riesz
transform is Lp -bounded and the reverse inequality holds on Lp on such manifolds and graphs. This
picture is strikingly different from the Euclidean one.
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1. Introduction

Let M be a complete connected non-compact Riemannian manifold. Let d be the geodesic
distance and µ be the Riemannian measure. Denote by B(x, r) the open ball of center x and of
geodesic radius r. We write V(x, r) for µ(B(x, r)). Let ∇ be the Riemannian gradient and ∆ be the
non-negative Laplace-Beltrami operator on M. Denote by (e−t∆)t>0 the heat semigroup associated
with ∆ and ht(x, y) the associated heat kernel. It is well-known that ht(x, y) is everywhere positive,
symmetric in x, y ∈ M and smooth in t > 0, x, y ∈ M (see for instance [27, Theorem 7.13]). For
f ∈ C∞0 (M), denote by |∇ f | the Riemannian length of ∇ f . From the definition and spectral theory,
it holds that for all f ∈ C∞0 (M),

(1.1) ‖|∇ f |‖22 = (∆ f , f ) =
∥∥∆1/2 f

∥∥2
2.
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In the case where M = Rn endowed with the Euclidean metric, it is well-known that this equality
extends to Lp, 1 < p < +∞, in the form of an equivalence of seminorms

(Ep) ‖|∇ f |‖p '
∥∥∆1/2 f

∥∥
p,

for f ∈ C∞0 (Rn). Here and in the sequel we use the notation u ' v if u . v and v . u, where u . v
means that there exists a constant C (independent of the important parameters) such that u ≤ Cv.

It was asked by Strichartz [37] in 1983 on which non-compact Riemannian manifolds M, and for
which p, 1 < p < +∞, the equivalence of seminorms (Ep) still holds on C∞0 (M). Let us distinguish
between the two inequalities involved in (Ep) and introduce a specific notation.

The first one

(Rp) ‖|∇ f |‖p .
∥∥∆1/2 f

∥∥
p, ∀ f ∈ C∞0 (M),

can be reformulated by saying that the Riesz transform ∇∆−1/2 is Lp bounded on M. We will refer
to the second one

(RRp)
∥∥∆1/2 f

∥∥
p . ‖|∇ f |‖p, ∀ f ∈ C∞0 (M),

as the reverse inequality.
It is well-known (see for example [15, Proposition 2.1]) that by duality (Rp) implies (RRp′),

where p′ is the conjugate exponent of p.

We say that M satisfies the volume doubling property if, for any x ∈ M and r > 0,

(D) V(x, 2r) . V(x, r).

The key result on (Rp) in the case 1 < p < 2 is the following one.

Theorem 1.1. [14, Theorem 1.1] Let M be a complete non-compact Riemannian manifold satisfy-
ing the volume doubling property (D) and the heat kernel upper estimate

(UE) ht(x, y) .
1

V(x,
√

t)
exp

(
−c

d2(x, y)
t

)
, ∀x, y ∈ M, t > 0,

for some c > 0. Then (Rp) holds for 1 < p < 2.

Note that one does not know any complete Riemannian manifold where (Rp) does not hold for
some p ∈ (1, 2). It is therefore very natural to ask whether the above assumptions are necessary or
not. It is clear that (D) is not. For instance, as soon as the manifold has a spectral gap (and satisfies
local volume doubling and small time gaussian estimates), it is easy to see that (Rp) holds (see [14,
Theorem 1.3]); the presence of a spectral gap is clearly incompatible with global volume doubling.
Moreover it is know that (Rp) holds for all p ∈ (1, 2) on some specific Lie groups of exponential
growth (see for instance [33, 34]). Yet, if (D) is assumed, are Gaussian estimates of the heat kernel
necessary for the Riesz transform to be Lp-bounded for 1 < p < 2? As a matter of fact, no examples
were known so far where (Rp) holds for 1 < p < 2 and (D) holds without (UE) holding as well.

The main goal of the present paper is to give a negative answer to the above question. We will
deduce this from a positive result: we will in fact establish that (Rp) also holds for all p ∈ (1, 2) if
we replace (UE) in the assumptions of Theorem 1.1 by a so-called sub-Gaussian heat kernel upper
estimate. The conclusion follows because there exist manifolds that satisfy such sub-Gaussian
upper estimates as well as the matching lower estimates and the latter are clearly incompatible
with (UE) (see the Appendix below for both facts). As a by-product, this provides new classes of
examples where (Rp) does hold for p ∈ (1, 2).

Note that the question remains whether any heat kernel estimate at all is necessary. A bold
conjecture has been made in this direction in [15, Conjecture 1.1].
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Let m > 2. One says that M satisfies the sub-Gaussian heat kernel upper estimate with exponent
m if for any x, y ∈ M,

(UEm) ht(x, y) .


1

V(x,
√

t)
exp

(
−c

d2(x, y)
t

)
, 0 < t < 1,

1
V(x, t1/m)

exp

(
−c
(

dm(x, y)
t

)1/(m−1)
)
, t ≥ 1,

for some c > 0.
We refer to [30, Section 5] for a detailed introduction of a class of non-classical heat kernel

estimates that includes this one.
Fractal manifolds are typical examples that satisfy sub-Gaussian heat kernel estimates; they are

built from graphs with a self-similar structure at infinity by replacing the edges of the graph with
tubes of length 1 and then gluing the tubes together smoothly at the vertices (see [6]). It has
been proved in [3] that for any D,m ∈ R such that D > 1 and 2 < m ≤ D + 1, there exists an
infinite connected locally finite graph with polynomial growth of exponent D satisfying the discrete
analogue of (UEm) (see Section 4 for a precise definition). It follows that for any D,m ∈ R such
that D > 1 and 2 < m ≤ D + 1, there exist complete connected Riemannian manifolds satisfying
V(x, r) ' rD for r ≥ 1 and (UEm) (see the Appendix below).

The article [24] by the third author is the main source of inspiration for the present paper. It
treats the analogous problem in a discrete setting: [24, Corollary 1.30] states that the discrete Riesz
transform is Lp bounded for 1 < p < 2 on graphs satisfying the volume doubling property and a
sub-Gaussian upper estimate for the Markov kernel. The author introduces a Hardy space theory
for functions and 1−forms on graphs and obtains the H1-boundedness of the Riesz transform. Then
its Lp-boundedness for 1 < p < 2 follows by interpolation between H1 and L2. We rely on a
crucial idea from [24], namely a new way to use a well-known and very powerful trick by Stein
([36, Chapter 2, Lemma 2]; for other utilizations of the argument in our subject see [16, Theorem
1.2] and [10, Proposition 1.8]). Instead of introducing H1 spaces as in [24], we follow a more direct
route and prove as in [14] that the Riesz transform is weak (1, 1) by adapting the method to the
sub-Gaussian case as in [9]. This proof also works in the discrete case and gives a simpler proof of
the case 1 < p < 2 in [24, Corollary 1.30].

Our main result is:

Theorem 1.2. Let M be a complete non-compact Riemannian manifold satisfying the doubling
property (D) and the sub-Gaussian heat kernel upper bound (UEm) for some m > 2. Then the Riesz
transform is weak (1, 1) and Lp bounded for 1 < p ≤ 2.

Recall that a (sub)-linear operator defined on L1 is said to be weak (1, 1) if, for all λ > 0,

µ ({x ∈ M; |T f (x)| > λ}) .
1
λ
‖ f ‖1 .

The plan of the paper is as follows. Section 2 is devoted to a crucial integral estimate for the gradient
of the heat kernel. In Section 3, we prove our main result by using the Duong-McIntosh singular
integral method from [21] as in [14]. As a consequence, under the doubling property and the sub-
Gaussian heat kernel estimate, the Riesz transform is weak (1, 1) hence Lp bounded for p ∈ (1, 2)
by interpolation with (1.1). Section 4 is the counterpart of Sections 2 and 3 on graphs. Finally, in
Section 5, we prove that on Vicsek manifolds, for all p ∈ (1, 2), (RRp) does not hold. It follows that
on such manifolds, in the range 1 < p < +∞, (Rp) holds if and only if 1 < p ≤ 2 and (RRp) holds
if and only if 2 ≤ p < +∞.
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2. Integrated estimate for the gradient of the heat kernel

In the Gaussian case, the estimates from this section are due to Grigor’yan in [26]. They go
through a version of Lemma 2.2 for q = 2, which follows easily from the Gaussian estimate of
the heat kernel by integration by parts (see also [14, Lemma 2.3] for a simpler version). In the
subgaussian case, the corresponding argument yields a factor t−α with 0 < α < 1/2 in the right
hand side of the crucial estimate (2.10) below, which is not enough to prove the Lp-boundedness of
the Riesz transform, see [9, Lemma 3.2]. To obtain the stronger estimate we need, namely (2.11),
we will choose 1 < q < 2, which will enable us to use a powerful argument by Stein.

Let us first derive some easy consequences of the doubling property and the sub-Gaussian heat
kernel estimate.

A classical consequence of (D) is that there exists ν > 0 such that

(2.1)
V(x, r)
V(x, s)

.
( r

s

)ν
, ∀x ∈ M, r ≥ s > 0.

Fix now once and for all m > 2.

Lemma 2.1. Let M be a complete Riemannian manifold satisfying the volume doubling property
(D) and the sub-Gaussian heat kernel upper bound (UEm). For any q > 1, there holds, for all
y ∈ M,

(2.2)
∫

M
hq

t (x, y)dµ(x) .


1[

V(y,
√

t)
]q−1 , 0 < t < 1,

1[
V(y, t1/m)

]q−1 , t ≥ 1,

and

(2.3)
∫

M
|∆ht(x, y)|qdµ(x) .


1

tq
[
V(y,

√
t)
]q−1 , 0 < t < 1,

1

tq
[
V(y, t1/m)

]q−1 , t ≥ 1.

Proof. It follows from (D) that for any r ≥ 0 and any c > 0 (see for example Step 1 of the proof of
Lemma 3.2 in [9]),

(2.4)
∫

d(x,y)>r
e−c d2(x,y)

t dµ(x) . e−
c
2

r2
t V
(
y, t1/2),

and

(2.5)
∫

d(x,y)>r
e−c

(
dm(x,y)

t

)1/(m−1)

dµ(x) . e−
c
2

(
rm
t

)1/(m−1)

V
(
y, t1/m).

Thus (UEm) yields that for t ≥ 1,∫
M

hq
t (x, y)dµ(x) .

1[
V(y, t1/m)

]q ∫
M

e−cq
(

dm(x,y)
t

)1/(m−1)

dµ(x)

.
1[

V(y, t1/m)
]q−1 ,

with an analogous argument for 0 < t < 1, hence (2.2).
Now, by the analyticity of the heat semigroup on Lq(M, µ) for 1 < q < +∞, for t ≥ 2,∫

M
|∆ht(x, y)|qdµ(x) ≤

∥∥∥∆e−
t
2 ∆
∥∥∥q

q→q

∫
M

∣∣ht/2(x, y)
∣∣qdµ(x)
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.
1

tq
[
V(y, t1/m)

]q−1 .

Similarly for 0 < t < 2, we repeat the proof above and obtain that∫
M
|∆ht(x, y)|qdµ(x) .

1

tq
[
V(y, t1/2)

]q−1 .

Since, for 1 < t < 2, it holds that V(y, t1/2) ' V(y, t1/m), we obtain (2.3). �

Lemma 2.2. Let M be a complete Riemannian manifold satisfying the volume doubling property
(D) and the sub-Gaussian heat kernel upper bound (UEm). For q ∈ (1, 2), there exists c > 0 such
that, for all y ∈ M and all 0 < t < 1, one has∥∥∥∥|∇ht(·, y)| exp

(
c

d2(·, y)
t

)∥∥∥∥
q
.

1
√

t
[
V(y, t1/2)

]1− 1
q
,

and for all y ∈ M and all t ≥ 1, one has∥∥∥∥∥|∇ht(·, y)| exp

(
c
(

dm(·, y)
t

)1/(m−1)
)∥∥∥∥∥

q

.
1

√
t
[
V(y, t1/m)

]1− 1
q
.

Proof. Let q ∈ (1, 2). Fix y ∈ M. Define, for all x ∈ M and all t > 0, u(x, t) := ht(x, y). Since M
is connected, u(x, t) is positive. A straightforward computation (see [36, Lemma 1, page 86], [35,
Lemma 2, page 49] in different settings) shows that(

∂

∂t
+ ∆

)
uq(x, t) = quq−1(x, t)

(
∂

∂t
+ ∆

)
u(x, t) − q(q − 1)uq−2(x, t)|∇xu(x, t)|2.

Since u is a solution to the heat equation,(
∂

∂t
+ ∆

)
uq(x, t) = −q(q − 1)uq−2(x, t)|∇xu(x, t)|2,

hence

(2.6) |∇xu(x, t)|2 =
1

q(q − 1)
u2−q(x, t)J(x, t),

where J(x, t) = −
(
∂
∂t + ∆

)
uq(x, t). Note in particular that J(x, t) ≥ 0 for all x ∈ M and all t > 0.

Since u(., t) ∈ Lq, then uq(., t) ∈ L1 and
∫

M ∆uq(x, t)dµ(x) = 0. Together with Hölder inequality,
we have ∫

M
J(x, t) dµ(x) = −

∫
M

∂

∂t
uq(x, t) dµ(x) ≤

∫
M
|quq−1(x, t)∆u(x, t)| dµ(x)

.

(∫
M

uq(x, t) dµ(x)
) q−1

q
(∫

M
|∆u(x, t)|qdµ(x)

)1/q

.

From now on, let us assume that t ≥ 1. The proof for 0 < t < 1 is similar and we omit it here. It
follows easily from Lemma 2.1 that

(2.7)
∫

M
J(x, t) dµ(x) .

1

t
[
V(y, t1/m)

]q−1 .

According to (2.6), for all x ∈ M and t > 0,

|∇xu(x, t)| exp

(
c
(

dm(x, y)
t

)1/(m−1)
)

= Cq [u(x, t)]1− q
2 J1/2(x, t) exp

(
c
(

dm(·, y)
t

)1/(m−1)
)
,
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so that ∥∥∥∥∥|∇u(·, t)| exp

(
c
(

dm(·, y)
t

)1/(m−1)
)∥∥∥∥∥

q

q

= Cq
q

∫
M

[u(x, t)]q(1− q
2 ) Jq/2(x, t) exp

(
cq
(

dm(x, y)
t

)1/(m−1)
)

dµ(x).

By Hölder, since q < 2, the latter quantity is bounded from above by(∫
M

uq(x, t) exp

(
c

q
1 − q

2

(
dm(x, y)

t

)1/(m−1)
)

dµ(x)

)1− q
2 (∫

M
J(x, t) dµ(x)

) q
2

.

The second factor is bounded from above by (2.7). As for the first one, one uses (UEm), so that if c
is small enough (only depending on q), there exists c′ > 0 such that(∫

M
uq(x, t) exp

(
c

q
1 − q

2

(
dm(x, y)

t

)1/(m−1)
)

dµ(x)

)1− q
2

(2.8)

.
1[

V(y, t1/m)
]q(1− q

2 )

(∫
M

exp

(
−c′
(

dm(x, y)
t

)1/(m−1)
)

dµ(x)

)1− q
2

.
1[

V(y, t1/m)
](q−1)(1− q

2 )
,

where the last line is due to (2.5) with r = 0. It follows that∥∥∥∥∥|∇u(·, t)| exp

(
c
(

dm(·, y)
t

)1/(m−1)
)∥∥∥∥∥

q

q

.
1

tq/2[V(y, t1/m)]q−1 ,

which yields the conclusion. �

Corollary 2.3. Let M be a complete Riemannian manifold satisfying (D) and (UEm). Then there
exists c > 0 such that for all y ∈ M, all 0 < t < 1 and all r > 0,

(2.9)
∫

M\B(y,r)
|∇xht(x, y)| dµ(x) .

1
√

t
exp

(
−c

r2

t

)
,

and for all y ∈ M, all t ≥ 1 and all r > 0,

(2.10)
∫

M\B(y,r)
|∇xht(x, y)| dµ(x) .

1
√

t
exp

(
−c
(

rm

t

)1/(m−1)
)
.

Proof. Fix q ∈ (1, 2) and let c > 0 be given by Lemma 2.2. Then, by Hölder,∫
M\B(y,r)

|∇xht(x, y)| dµ(x) ≤

∥∥∥∥∥|∇ht(·, y)| exp

(
c
(

dm(·, y)
t

)1/(m−1)
)∥∥∥∥∥

q(∫
M\B(y,r)

exp

(
−c′
(

dm(x, y)
t

)1/(m−1)
)

dµ(x)

)1− 1
q

,

and by (2.5) and Lemma 2.2, for t ≥ 1,∫
M\B(y,r)

|∇xht(x, y)| dµ(x) .
1

√
t
[
V(y, t1/m)

]1− 1
q

exp

(
−c′′

(
rm

t

)1/(m−1)
)[

V(y, t1/m)
]1− 1

q .
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which gives (2.10).
For 0 < t < 1, (2.9) is obtained in the same way. �

Corollary 2.4. Let M be a complete Riemannian manifold satisfying (D) and (UEm). Then for all
y ∈ M, all r, t > 0,

(2.11)
∫

M\B(y,r)
|∇xht(x, y)| dµ(x) .

1
√

t
exp

(
−c
( s

t

) 1
m−1
)
,

where s = r2 if r < 1 and s = rm if r ≥ 1.

Proof. Set

I(t, r) :=
√

t
∫

M\B(y,r)
|∇xht(x, y)| dµ(x).

• Let r, t < 1, then (2.9) yields

I(t, s) . e−c r2
t = e−c s

t .

• Let t < 1 ≤ r, then (2.9) yields I(t, s) . e−c r2
t . Yet, since t < r, we have r2

t ≥
( rm

t

)1/(m−1)
.

Therefore
I(t, s) . e−c( s

t )1/(m−1)
.

• Let r < 1 ≤ t, then (2.10) yields I(t, s) . e−c( rm
t )1/(m−1)

. Yet, since r < t, we have( rm

t

)1/(m−1)
≥ r2

t . Therefore
I(t, s) . e−c s

t .

• Let r, t ≥ 1, then (2.10) yields

I(t, s) . e−c( rm
t )1/(m−1)

= e−c( s
t )1/(m−1)

.

The conclusion follows from the fact that, for all x > 0,

e−cxγ . e−cxβ

if 0 < β < γ. �

3. Weak (1,1) boundedness of the Riesz transform

We will prove the weak (1, 1) boundedness of the Riesz transform by adapting the argument of
the second author and Duong ([14]), or rather the part of the argument that is directly inspired from
[21], to the sub-Gaussian case as in [10]. This adaptation is straighforward, which confirms that the
main novelty of the present paper is the use of Stein’s argument in Section 2 to derive (2.11). We
give it however for the sake of completeness.

Remark 3.1. One could also use a theorem on Calderón-Zygmund operators without kernel as
written in [8] and improved in [1, Theorem 1.1]. However, since [1, Theorem 1.1] is not exactly
written in the form we need, we choose to follow the original method of the second author and
Duong.

First recall the Calderón-Zygmund decomposition (see for example [11, Corollaire 2.3]):

Theorem 3.2. Let (M, d, µ) be a metric measured space satisfying (D). Then there exists C > 0
such that for any given function f ∈ L1(M) ∩ L2(M) and λ > 0, there exists a decomposition of f ,
f = g + b = g +

∑
i∈I

bi so that

(1) |g(x)| ≤ Cλ for almost all x ∈ M;
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(2) There exists a sequence of balls Bi = B(xi, ri) so that, for all i ∈ I, bi ∈ L1(M) ∩ L2(M) is
supported in Bi and∫

|bi(x)|dµ(x) ≤ Cλµ(Bi) and
∫

bi(x)dµ(x) = 0;

(3)
∑
i∈I

µ(Bi) ≤
C
λ

∫
| f (x)|dµ(x);

(4) There exists k ∈ N∗ such that each x ∈ M is contained in at most k balls Bi.

Note that it follows from (2) and (3) that ‖b‖1 ≤ C‖ f ‖1 and ‖g‖1 ≤ (1 + C)‖ f ‖1.
Proof of Theorem 1.2:
Denote T = ∇∆−1/2. Since T is always L2 bounded, it is enough to show that T is weak (1, 1). Then,
for 1 < p < 2, the Lp boundedness of T follows from the Marcinkiewicz interpolation theorem.

We aim to show that
µ({x : |T f (x)| > λ}) ≤ Cλ−1‖ f ‖1,

for all λ > 0 and all f ∈ L1(M) ∩ L2(M).
Let λ > 0 and f ∈ L1(M) ∩ L2(M). Consider the Calderón-Zygmund decomposition of f at the

level λ (we shall use the notation of Theorem 3.2 in the sequel of the argument). Then

µ({x : |T f (x)| > λ}) ≤ µ({x : |Tg(x)| > λ/2}) + µ({x : |Tb(x)| > λ/2}).

Since T is L2 bounded and |g(x)| ≤ Cλ, it follows that

µ({x : |Tg(x)| > λ/2}) ≤ Cλ−2‖g‖22 ≤ Cλ−1‖g‖1 ≤ Cλ−1‖ f ‖1.

It remains to prove

(3.1) µ

({
x :

∣∣∣∣∣T
(∑

i∈I

bi

)
(x)

∣∣∣∣∣ > λ/2
})
≤ Cλ−1‖ f ‖1.

Define for convenience

ρ(r) =

{
r2, 0 < r < 1,

rm, r ≥ 1.
(3.2)

For each i ∈ I, write

(3.3) Tbi = Te−ti∆bi + T
(
I − e−ti∆

)
bi,

where ti = ρ(ri).
We have then

µ

({
x :

∣∣∣∣∣T
(∑

i∈I

bi

)
(x)

∣∣∣∣∣ > λ/2
})

≤ µ

({
x :

∣∣∣∣∣T
(∑

i∈I

e−ti∆bi

)
(x)

∣∣∣∣∣ > λ/4
})

+µ

({
x :

∣∣∣∣∣T
(∑

i∈I

(I − e−ti∆)bi

)
(x)

∣∣∣∣∣ > λ/4
})

.

We begin with the estimate of the first term. Since T is L2 bounded, then

µ

({
x :

∣∣∣∣∣T
(∑

i∈I

e−ti∆bi

)
(x)

∣∣∣∣∣ > λ/4
})
≤

C
λ2

∥∥∥∥∥∑
i∈I

e−ti∆bi

∥∥∥∥∥
2

2

.

By a duality argument,∥∥∥∥∥∑
i∈I

e−ti∆bi

∥∥∥∥∥
2

= sup
‖φ‖2=1

∣∣∣∣∣<∑
i∈I

e−ti∆bi, φ >

∣∣∣∣∣
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= sup
‖φ‖2=1

∣∣∣∣∣∑
i∈I

< bi, e−ti∆φ >

∣∣∣∣∣
≤ sup

‖φ‖2=1

∑
i∈I

(
sup
y∈Bi

e−ti∆|φ|(y)
)∫

M
|bi|dµ.

We claim that for all r, t > 0 such that t = ρ(r) and every measurable function ϕ ≥ 0

(3.4) sup
y∈B(x,r)

e−t∆ϕ(y) ≤ C inf
z∈B(x,r)

Mϕ(z),

whereM denotes the uncentered Littlewood-Paley maximal operator:

M f (x) = sup
B3x

1
µ(B)

∫
B
| f (y)|dµ(y).

Estimates of the type (3.4) are classical (see for instance [22, Proposition 2.4]). Let us give a proof
of this particular instance for the sake of completeness. We use the notation C j(B) for 2 j+1B \ 2 jB
when j ≥ 2 and C1(B) = 4B. If B = B(x, r) and t = ρ(r), for any y ∈ B and any z ∈ C j(B), we have
with (UEm)

ht(y, z) .
1

V(y, r)
e−c2 j

.

Therefore

e−t∆ϕ(y) =

∫
M

ht(y, z)ϕ(z)dµ(z) =

∞∑
j=1

∫
C j(B)

ht(y, z)ϕ(z)dµ(z)

.
∞∑
j=1

V(x, 2 j+1r)
V(y, r)

e−c2 j 1
V(x, 2 j+1r)

∫
B(x,2 j+1r)

ϕ(z)dµ(z)

.
∞∑
j=1

V(y, 2 j+2r)
V(y, r)

e−c2 j 1
V(2 j+1B)

∫
2 j+1B

ϕ(z)dµ(z)

. inf
z∈B
Mϕ(z),

which is exactly (3.4).
Then, if ‖φ‖2 = 1,∑

i∈I

(
sup
y∈Bi

e−ti∆|φ|(y)
)∫

M
|bi|dµ .

∑
i∈I

inf
y∈B(x,t1/m)

Mφ(y)
∫

M
|bi|dµ

. λ
∑
i∈I

∫
Bi

Mφ(y)dµ(y)

= λ

∫
M

∑
i∈I

1Bi(y)Mφ(y)dµ(y)

. λ

∫
∪i∈I Bi

Mφ(y)dµ(y)

. λ

[
µ

(⋃
i∈I

Bi

)]1/2

‖Mφ‖2

. λ1/2‖ f ‖1/21 .

The second line follows from property (2) of the Calderón-Zygmund decomposition. The fourth
line is due to the finite overlapping of {Bi}. The last but one is a consequence of Hölder inequal-
ity and the last one is due to the L2-boundedness of the Hardy-Littlewood maximal function and
property (3) of the Calderón-Zygmund decomposition.
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Hence ∥∥∥∥∥∑
i∈I

e−ti∆bi

∥∥∥∥∥
2

. λ1/2‖ f ‖1/21 ,

and

µ

({
x :

∣∣∣∣∣T
(∑

i∈I

e−ti∆bi

)
(x)

∣∣∣∣∣ > λ/4
})
. λ−1‖ f ‖1.

It remains to show that µ
({

x :
∣∣T (∑i∈I(I − e−ti∆)bi

)
(x)
∣∣ > λ/4}) ≤ Cλ−1‖ f ‖1. Write

µ

({
x :

∣∣∣∣∣T
(∑

i∈I

(I − e−ti∆)bi

)
(x)

∣∣∣∣∣ > λ/4
})

≤ µ

({
x ∈
⋃
i∈I

2Bi :

∣∣∣∣∣T
(∑

i∈I

(I − e−ti∆)bi

)
(x)

∣∣∣∣∣ > λ/4
})

+µ

({
x ∈ M \

⋃
i∈I

2Bi :

∣∣∣∣∣T
(∑

i∈I

(I − e−ti∆)bi

)
(x)

∣∣∣∣∣ > λ/4
})

≤
∑
i∈I

µ(2Bi) +
4
λ

∑
i∈I

∫
M\2Bi

|T (I − e−ti∆)bi(x)|dµ(x).

We claim that for every i ∈ I, it holds

(3.5)
∫

M\2Bi

|T (I − e−ti∆)bi(x)|dµ(x) ≤ C‖bi‖1.

Therefore by the doubling property and the Calderón-Zygmund decomposition,

µ

({
x :

∣∣∣∣∣T
(∑

i∈I

(I − e−ti∆)bi

)
(x)

∣∣∣∣∣ > λ/4
})
.
∑
i∈I

µ(Bi) +
1
λ

∑
i∈I

‖bi‖1 . λ
−1‖ f ‖1,

which concludes the proof.
So it remains to prove (3.5). First, the spectral theorem gives us that ∆−1/2 f = c

∫ ∞
0 e−s∆ f ds√

s .

Therefore, if f ∈ L2(M),

∆−1/2(I − e−t∆) f = c
∫ ∞

0
(e−s∆ − e−(s+t)∆) f

ds
√

s

= c
∫ ∞

0

(
1
√

s
−

1{s>t}
√

s − t

)
e−s∆ f ds.

and thus for all x ∈ M

|T (I − e−t∆) f (x)| ≤ C
∫

M
| f (y)|dµ(y)

∫ ∞
0

∣∣∣∣ 1
√

s
−

1{s>t}
√

s − t

∣∣∣∣ |∇xhs(x, y)| ds.

Set

kt(x, y) =

∫ ∞
0

∣∣∣∣ 1
√

s
−

1{s>t}
√

s − t

∣∣∣∣ |∇xhs(x, y)|ds.

Since bi ∈ L2(M), we have∫
M\2Bi

|T (I − e−ti∆)bi(x)|dµ(x) .
∫

M\2Bi

∫
Bi

kti(x, y)|bi(y)|dµ(y)dµ(x)

.

∫
M
|bi(y)|

∫
d(x,y)≥ri

kti(x, y)dµ(x)dµ(y).



RIESZ TRANSFORM FOR 1 ≤ p ≤ 2 WITHOUT GAUSSIAN HEAT KERNEL BOUND 11

The claim (3.5) will be proven if
∫

d(x,y)≥r kt(x, y)dµ(x) is uniformly bounded for t = ρ(r) > 0. By
Corollary 2.4, we have ∫

d(x,y)≥r
kt(x, y)dµ(x)

=

∫
d(x,y)≥r

∫ ∞
0

∣∣∣∣ 1
√

s
−

1{s>t}
√

s − t

∣∣∣∣ |∇xhs(x, y)|ds dµ(x)

=

∫ ∞
0

∣∣∣∣ 1
√

s
−

1{s>t}
√

s − t

∣∣∣∣ · ∫
d(x,y)≥r

|∇xhs(x, y)|dµ(x)ds

.

∫ ∞
0

∣∣∣∣ 1
√

s
−

1{s>t}
√

s − t

∣∣∣∣e−c( t
s )

1
m−1 ds
√

s

=

∫ t

0
e−c( t

s )
1

m−1 ds
s

+

∫ ∞
t

∣∣∣∣ 1
√

s
−

1
√

s − t

∣∣∣∣e−c( t
s )

1
m−1 ds
√

s
:= K1 + K2.

It is easily checked that K1,K2 are bounded uniformly in t > 0. Indeed,

K1 =

∫ 1

0
e−c( 1

u )
1

m−1 du
u
< +∞

and

K2 ≤

∫ ∞
t

∣∣∣∣ 1
√

s
−

1
√

s − t

∣∣∣∣ ds
√

s

=

∫ ∞
0

∣∣∣∣ 1
√

u + 1
−

1
√

u

∣∣∣∣ du
√

u + 1
< +∞.

Note that we get the second line by the change of variable u = s
t − 1.

4. The case of graphs

In this section, we give the counterpart of Theorem 1.2 on graphs. Let us begin with some
definitions.

A (weighted unoriented) graph is defined by a couple (Γ, µ) where Γ is an infinite countable set
(the set of vertices) and µ ≥ 0 is a symmetric weight on Γ × Γ. We define the set of edges as
E = {(x, y) ∈ Γ × Γ, µxy > 0} and we write x ∼ y (we say that x and y are neighbours) whenever
(x, y) ∈ E.
We assume that the graph is connected and locally uniformly finite. A graph is connected if for all
x, y ∈ Γ, there exists a path joining x and y, that is a sequence x = x0, . . . , xn = y such that for all
i ∈ ~1, n�, xi−1 ∼ xi (the length of such a path being n). A graph is locally uniformly finite if there
exists M0 ∈ N such that, for all x ∈ Γ, #{y ∈ Γ, y ∼ x} ≤ M0.
The graph is endowed with its natural metric d, where, for all x, y ∈ Γ, d(x, y) is the length of the
shortest path joining x and y.
We define the weight m(x) of a vertex Γ by m(x) =

∑
y∼x µxy. More generally, the measure of a

subset E ⊂ Γ is defined as m(E) :=
∑

x∈E m(x). For x ∈ Γ and r > 0, we denote by B(x, r) the open
ball of center x and radius r and by V(x, r) the measure (or volume) of B(x, r).

In this situation, we recall the volume doubling property. The graph (Γ, µ) satisfies (DΓ) if, for
any x ∈ Γ and any r > 0,

(DΓ) V(x, 2r) . V(x, r).
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For all x, y ∈ Γ, the reversible Markov kernel p(x, y) is defined as p(x, y) =
µxy

m(x) . The kernel
pk(x, y) is then defined recursively for all k ∈ N by{

p0(x, y) = δ(x, y)
pk+1(x, y) =

∑
z∈Γ p(x, z)pk(z, y).

Note that, for all x ∈ Γ and all k ≥ 0,
∑

y∈Γ pk(x, y) = 1. Moreover, one has p(x, y)m(x) =

p(y, x)m(y) for all x, y ∈ Γ. The operator P has kernel p, meaning that the following formula holds
for all x ∈ Γ: P f (x) =

∑
y∈Γ p(x, y) f (y). For all k ≥ 1, Pk has kernel pk.

A second assumption will be used. We say that Γ satisfies (LB) if there exists ε > 0 such that,
for all x ∈ Γ,

(LB) p(x, x) > ε.

The assumption (LB) implies the L2-analyticity of P, that is ‖(I − P)Pn‖2→2 ≤
C
n , for all n ∈ N∗,

but the converse is false. We refer to [25, Theorem 1.9] for a way to recover (LB) from the L2-
analyticity of P.

We say that (Γ, µ) satisfies the (Markov kernel) estimates (UEm,Γ) with m ≥ 2 if for all x, y ∈ Γ

and k ∈ N∗

(UEm,Γ) pk−1(x, y) .
m(y)

V(y, k1/m)
exp

(
−c
(

dm(x, y)
k

) 1
m−1
)
.

The shift between k and k−1 allows (UEm,Γ) to cover the obvious estimate of p0(x, y). When m = 2,
the above estimates are called Gaussian estimates. When m > 2, they are called sub-Gaussian
estimates.

We use the random walk P to define a positive Laplacian and a length of the gradient by

∆Γ := I − P

and

∇Γg(x) =

1
2

∑
y∈Γ

p(x, y)|g(y) − g(x)|2

1/2

,

say for g ∈ c0(Γ), where c0(Γ) denotes the space of finitely supported functions on Γ. In this context,
the Riesz transform is the sublinear operator ∇Γ∆

−1/2
Γ . As in the case of Riemannian manifolds, we

can study the Lp boundedness of the Riesz transform, that is we can wonder when

(Rp,Γ) ‖∇Γg‖p . ‖∆
1/2
Γ g‖p, ∀ g ∈ c0(Γ).

The counterpart on graphs of Theorem 1.1 is a result of the fourth author:

Theorem 4.1. [32, Theorem 1] Let (Γ, µ) be a weighted graph satisfying (LB), (DΓ) and (UE2,Γ).
Then the Riesz transform ∇Γ∆

−1/2
Γ is weak (1, 1) and Lp bounded for all p ∈ (1, 2].

As in the case of Riemannian manifolds, we can extend the Lp-boundedness of the Riesz trans-
form for 1 < p ≤ 2 when (Γ, µ) satisfies sub-Gaussian estimates.

Theorem 4.2. Let (Γ, µ) be a weighted graph satisfying (LB), (DΓ) and (UEm,Γ) for some m > 2.
Then the Riesz transform ∇Γ∆

−1/2
Γ is weak (1, 1) and Lp bounded for all p ∈ (1, 2].

Recall that the statement on Lp in Theorem 4.2 also follows from [24, Corollary 1.30]. The
proof of Theorem 4.2 is similar to the one of Theorem 1.2 and we will only prove the counterpart of
Lemma 2.2, where the main difficulty lies. Indeed, the “Hardy-Stein” identity (2.6) doesn’t hold on
graphs and a trick of Dungey (in [20]), improved by the third author in [23, Section 4], is needed.
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Lemma 4.3. Let (Γ, µ) be a weighted graph satisfying (LB), (DΓ) and (UEm,Γ) for some m > 2.
Then, for any q ∈ (1, 2), there exists c > 0 such that for all y ∈ Γ and all k ∈ N∗,∥∥∥∥∥∇Γ pk−1(., y) ec

(
dm(.,y)

k

) 1
m−1
∥∥∥∥∥

q

.
m(y)

√
kV(y, k1/m)1− 1

q
.

Proof. Let q ∈ (1, 2) and y ∈ Γ. In the sequel, we write uk(x) for pk−1(x, y). We may and do assume
that k ≥ 2.

Step 1: Estimate of the gradient by a pseudo-gradient.
Let us define the pseudo-gradient

Nquk(x) = −u2−q
k (x)[∂k + ∆Γ]uq

k(x)

where ∂k denotes the discrete time differentiation defined by ∂kuk = uk+1 − uk. We also need the
“averaging” operator

Ag(x) =
∑
z∼x

g(z).

Propositions 4.6 and 4.7 in [23] yield that for all k ∈ N∗ and all x ∈ Γ,

|∇Γuk(x)|2 . A[Nquk](x).

Therefore, ∥∥∥∥∥∇Γuk ec
(

dm(.,y)
k

) 1
m−1
∥∥∥∥∥

q

.

∥∥∥∥∥A[Nquk] e2c
(

dm(.,y)
k

) 1
m−1
∥∥∥∥∥

1/2

q/2

.

∥∥∥∥∥A

[
Nquk e2c

(
[d(.,y)+1]m

k

) 1
m−1
]∥∥∥∥∥

1/2

q/2

.

∥∥∥∥∥Nquk e2c
(

[d(.,y)+1]m
k

) 1
m−1
∥∥∥∥∥

1/2

q/2

,

where the last line holds because of the boundedness of the operator A on Lr for r ∈ (0, 1] (see for
example [20, Proposition 3.1]). Remark now that [d + 1]m/(m−1) ≤ 21/(m−1)[dm/(m−1) + 1]. Thus, if
c′ = 2

m
m−1 c, we have

(4.1)

∥∥∥∥∥∇Γukec
(

dm(.,y)
k

) 1
m−1
∥∥∥∥∥

q

.

∥∥∥∥∥Nqukec′
(

d(.,y)m
k

) 1
m−1
∥∥∥∥∥

1/2

q/2

.

Step 2: A Hardy-Stein type identity.

Let Jk = −[∂k + ∆Γ]uq
k . Proposition 4.7 in [23] yields that Nquk is non-negative, thus so is Jk.

Since uk ∈ Lq(Γ), that is uq
k ∈ L1(Γ), we have

∑
x∈Γ ∆Γuq

k(x)m(x) = 0. Therefore, with Hölder
inequality, ∑

x∈Γ

Jk(x)m(x) = −
∑
x∈Γ

∂k(uq
k)(x)m(x)

≤ −q
∑
x∈Γ

uq−1
k (x)∂kuk(x)m(x)

. ‖uk‖
q−1
q ‖∂kuk‖q = ‖uk‖

q−1
q ‖∆Γuk‖q,
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where the second line is a consequence of Young’s inequality. As a consequence, (4.1) becomes∥∥∥∥∥∇Γukec
(

dm(.,y)
k

) 1
m−1
∥∥∥∥∥

q

q

.

∥∥∥∥∥Nqukec′
(

d(.,y)m
k

) 1
m−1
∥∥∥∥∥

q/2

q/2

=
∑
x∈Γ

uk(x)q(1− q
2 )e

c′q
2

(
d(x,y)m

k

) 1
m−1

Jk(x)q/2m(x)

≤

(∑
x∈Γ

uk(x)qe
c′q
2−q

(
d(x,y)m

k

) 1
m−1

m(x)

)1− q
2
(∑

x∈Γ

Jk(x)m(x)

)q/2

.

(∑
x∈Γ

uk(x)qe
c′q
2−q

(
d(x,y)m

k

) 1
m−1

m(x)

)1− q
2

‖uk‖
q(q−1)/2
q ‖∆Γuk‖

q/2
q .

(4.2)

Step 3: Conclusion.
The use of (UEm,Γ), as well as the discrete version of (2.5), yields, if c (and thus c′) is small enough,

∑
x∈Γ

uk(x)qe
c′q
2−q

(
d(x,y)m

k

) 1
m−1

m(x) .
mq(y)

V(y, k1/m)q

∑
x∈Γ

e−c”
(

d(x,y)m
k

) 1
m−1

m(x)

.
mq(y)

V(y, k1/m)q−1 .

As a consequence,

‖uk‖
q
q .

mq(y)
V(y, k1/m)q−1 .

Finally, let l ' n ' k
2 (recall that k ≥ 2). Since (LB) implies the Lq analyticity of ∆Γ (see [17, p.

426]), one has

‖∆Γuk‖
q
q .

1
lq
‖un‖

q
q .

mq(y)
lqV(y, n1/m)q−1 .

mq(y)
kqV(y, k1/m)q−1 ,

where the last inequality holds thank to the doubling property (DΓ).
Using the last three estimates in (4.2), one has∥∥∥∥∥∇Γukec

(
dm(.,y)

k

) 1
m−1
∥∥∥∥∥

q

q

.
mq(y)

kq/2V(y, k1/m)q−1 ,

which concludes the proof. �

5. The reverse inequality

A consequence of Theorems 1.2 and 4.2 through the duality argument recalled in the introduction
is that (RRp) holds for all p ∈ [2,+∞) under the assumptions of these theorems. In this section,
we exhibit a class of manifolds (respectively of graphs) satisfying the assumptions of Theorem 1.2
(respectively of Theorem 4.2) on which (RRp) is false whenever 1 < p < 2 (therefore, again by
duality, (Rp) is false for 2 < p < +∞).

Our model space will be the infinite Vicsek graph built in RN whose first steps of construction are
shown in Figure 1. A Vicsek graph has polynomial volume growth of exponent D = log3(1 + 2N).

As in [6], we will consider the associated Vicsek manifold built by replacing edges by tubes.
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Ω0

0

Ω1

0

Ω2

Figure 1. The first steps of the Vicsek graph with parameter D = log3 5 built in R2.

Such a manifold M has polynomial volume growth of exponent D and satisfies the following
heat kernel estimate (see [7, Proposition 5.2]):

ht(x, y) .
1

t
D

D+1
exp

(
−c
(

dD+1(x, y)
t

)1/D
)
, t ≥ 1,

in other words, it satisfies (UEm) with m = D + 1.
Also, it satisfies the following non-standard Poincaré inequality

(5.1)
∫

B
| f − fB|

2dµ . rD+1
B

∫
B
|∇ f |2dµ, ∀rB ≥ 1, ∀ f ∈ C∞0 (M),

where fE denotes the average of f on the set E ([18, Section 5], [4, Theorem 1.2]). Note that (5.1)
is weaker than the L2 Poincaré inequality:

(P)
∫

B
| f − fB|

2dµ . r2
B

∫
B
|∇ f |2dµ, ∀ f ∈ C∞0 (M),

but it is optimal on M (see for example [10, Remark 5.2]).
On Vicsek manifolds, Theorem 1.2 tells us that (Rp) holds for 1 < p ≤ 2. The following is a

negative result for p > 2. It comes from [10, Théorème 0.30].

Theorem 5.1. Consider a Vicsek manifold M with the polynomial volume growth V(x, r) ' rD for
r ≥ 1. Let β ∈ ( 1

D+1 ,
D

D+1 ). Then the inequality

(5.2) ‖∆β f ‖p . ‖|∇ f |‖p, ∀ f ∈ C∞0 (M),

is false for 1 < p < D−1
β(D+1)−1 .

In particular, choosing β = 1/2, for all p ∈ (1, 2), (RRp) does not hold. Consequently, the Riesz
transform is not bounded on Lp for any 2 < p < +∞.

A similar statement holds for Vicsek graphs.
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Remark 5.2. (1) The first part of the following proof is taken from [15, Proposition 6.2], where
the authors proved that (RRp) is false for p ∈ (1, 2D

D+1 ). We will rewrite it for the sake of
completeness. Note that the conclusion of [15, Proposition 6.2] is weaker that the one of
Theorem 5.1.

(2) Recall that Auscher and the second author proved in [2] that under (D) and (P) the Riesz
transform is bounded on Lp for 2 < p < 2 + ε, where ε > 0. But of course the Vicsek
manifold does not satisfy (P) (as we already said, the non-standard Poincaré inequality
(5.1) is optimal on M). By contrast, Theorem 5.1 shows that the conjunction of (D) and
(5.1) does not imply the existence of ε > 0 such that (Rp) holds for p ∈ (2, 2 + ε).

Proof. Consider a Vicsek manifold M modelled on a Vicsek graph Γ built in RN with polynomial
volume growth of exponent D. Recall ([6, Section 6]) that M satisfies

ht(x, x) . t−
D

D+1 , t ≥ 1, x ∈ M.

Let D′ = 2D
D+1 . Therefore, we have for p > 1

‖e−t∆‖1→p . t−
D′
2

(
1− 1

p

)
, t ≥ 1.

This implies the following Nash inequality (see [12]): for all β > 0, it holds

‖ f ‖
1+

2βp
(p−1)D′

p . ‖ f ‖
2β p

(p−1)D′

1 ‖∆β f ‖p, ∀ f ∈ C∞0 (M) such that
‖ f ‖p
‖ f ‖1

≤ 1.

Let β ∈ ( 1
D+1 ,

D
D+1 ) and assume that (5.2) holds. It follows

(5.3) ‖ f ‖
1+

2βp
(p−1)D′

p . ‖ f ‖
2βp

(p−1)D′

1 ‖|∇ f |‖p, ∀ f ∈ C∞0 (M) such that
‖ f ‖p
‖ f ‖1

≤ 1.

The Vicsek graph Γ is endowed with the standard weight m (that is, µxy = 1 if x, y are neighbours,
0 otherwise, hence m(x) is nothing but the number of neighbours of x) out of which M is constructed
by replacing the edges with tubes. For any vertex set Ω ⊂ Γ, m(Ω) ' |Ω|, where |Ω| is the cardinality
of Ω. We learn from [19, Section 6] that (5.3) implies the following analogue of (5.3) on Γ:

(5.4) ‖g‖
1+

2βp
(p−1)D′

p . ‖g‖
2βp

(p−1)D′

1 ‖∇Γg‖p, ∀ g ∈ c0(Γ).

We will show that there exists a family of functions that disproves (5.4) hence (5.2).
Indeed, take the same Ωn and gn as in [6, Section 4] (see Figure 2). That is: Ωn = Γ

⋂
[0, 3n]N ,

where 2N + 1 = 3D. Then |Ωn| ' 3Dn. Denote by z0 the center of Ωn and by zi, 1 ≤ i ≤ 2N its
corners. Note that d(z0, zi) = 3n. Define gn as follows: gn(z0) = 1, gn(zi) = 0, 1 ≤ i ≤ 2N , and
extend gn as a harmonic function in the rest of Ωn. More precisely, if z belongs to the diagonal
linking z0 and zi, then gn(z) = 3−nd(zi, z). Otherwise, gn(z) = gn(z′) where z′ is the only vertex
satisfying d(z, z′) = inf{d(z, y), y belongs to a diagonal of Ωn}.

On the one hand, we have ∑
x∈Γ

|gn(x)|m(x) ≤ m(Ωn) ' |Ωn|.

On the other hand, for any x in the n − 1 block with centre z0, we have gn(x) ≥ 2
3 .

Therefore ∑
x∈Γ

|gn(x)|pm(x) ≥ (2/3)pm(Ωn−1) ' 3Dn ' |Ωn|.
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Ω2Ω1

z0

zi
0

1/9

2/91/3

4/95/9

2/37/9

8/91

Figure 2. the function g2 on the diagonal z0zi

Since, whenever x ∼ y, |gn(x) − gn(y)| = 3−n if x, y belong to the same diagonal connecting z0
and zi, and otherwise gn(x) − gn(y) = 0, we obtain

‖∇Γgn‖
p
p '

∑
x∼y

|gn(x) − gn(y)|p =

2N∑
i=1

3−npd(z0, zi) = 2N3−n(p−1) ' |Ωn|
−

p−1
D .

Thus (5.4) yields

|Ωn|
1
p

(
1+

2βp
(p−1)D′

)
. |Ωn|

2βp
(p−1)D′ −

1
p′D .(5.5)

Obviously |Ωn| tends to infinity as n → ∞, hence (5.5) cannot hold if the RHS exponent is
smaller than the LHS one, that is if

2βp
(p − 1)D′

−
1

p′D
−

1
p

(
1 +

2βp
(p − 1)D′

)
=

(
1 −

1
p

)
2βp

(p − 1)D′
−

1
p
−

1
p′D

= β
D + 1

D
−

1
p
−

1
p′D

< 0.

In other words, (5.5) is false for 1 < p < D−1
β(D+1)−1 , where β ∈ ( 1

D+1 ,
D

D+1 ). This contradicts our
assumption (RRp) on Γ and M.

In particular, taking β = 1/2 shows that (5.5) is false for 1 < p < 2. Thus (RRp) is false for
1 < p < 2. This also indicates that the Riesz transform is not bounded on Lp for 2 < p < +∞. As
we already said, the statement on (Rp) follows by duality. �

Combining Theorem 1.2 and Theorem 5.1, we have a full picture for the comparison of ‖|∇ f |‖p
and

∥∥∆1/2 f
∥∥

p on Vicsek manifolds and graphs. That is

Theorem 5.3. For any Vicsek manifold, and p ∈ (1,+∞), (Rp) holds if and only if p ≤ 2 and (RRp)
holds if and only if p ≥ 2.

A similar statement holds for Vicsek graphs.
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Appendix: Estimates for the heat kernel in fractal manifolds

Let (Γ, µ) be a graph as in Section 4. For all A ⊂ Γ, let ∂A denote the exterior boundary of A,
defined as {x ∈ Γ \ A; there exists y ∼ x with y ∈ A}, and let A := A ∪ ∂A.
A function h : A→ R is said to be harmonic in A if and only if, for all x ∈ A, ∆h(x) = 0.
Say that (Γ, µ) satisfies a Harnack elliptic inequality if and only if, for all x ∈ Γ, all R ≥ 1 and all
nonnegative harmonic functions u in B(x, 2R),

(EHI) sup
B(x,R)

u . inf
B(x,R)

u.

Let D > 0. Say that Γ satisfies (VD) if and only if, for all x ∈ Γ and all r > 0,

(VD) V(x, r) ∼ rD.

Denote by (Xn)n≥1 a random walk on Γ, that is a Markov chain with transition probability given by
p. For all A ⊂ Γ, define

TA := min {n ≥ 1; Xn ∈ A}
and, for all x ∈ Γ and all r > 0, let

τx,r := TBc(x,r).

If m > 0, say that Γ satisfies (Em) if and only if, for all x ∈ Γ and all r > 0,

(Em) Exτx,r ∼ rm.

Theorem 2 in [3] claims that, for all m ∈ [2,D + 1], there exists a graph Γ satisfying (VD) (hence
the doubling volume property), (EHI) and (Em). Therefore, Theorem 2.15 in [5] (see also [29,
Theorem 3.1]) implies that Γ satisfies the following parabolic Harnack inequality: for all x0 ∈ Γ,
all R ≥ 1 and all non-negative functions u : ~0, 4N� × B(x0, 2R) solving un+1 − un = ∆un in
~0, 4N − 1� × B(x0, 2R), one has

max
n∈~N,2N−1�, y∈B(x,R)

un(y) . min
n∈~3N,4N−1�, y∈B(x,R)

(un(y) + un+1(y)),

where N is an integer satisfying N ∼ Rm and N ≥ 2R.
Consider now the manifold M built from Γ with a self-similar structure at infinity by replacing
the edges of the graph with tubes of length 1 and then gluing the tubes together smoothly at the
vertices. Since M and Γ are roughly isometric, Theorem 2.21 in [5] yields that M satisfies the
following parabolic Harnack inequality: for all x0 ∈ M and all R > 0, for all non-negative solutions
u of ∂tu = ∆u in (0, 4Rm) × B(x0,R), one has

sup
Q−

u . inf
Q+

u,

where
Q− = (Rm, 2Rm) × B(x0,R)

and
Q+ = (3Rm, 4Rm) × B(x0,R).

In turn the parabolic Harnack inequality implies (UEm) (see [30, Theorem 5.3]). See also [31,
Section 1.2.7].

Finally, let us explain why (UEm) for m > 2 is incompatible with (UE). It is classical (see for
instance [13, Section 3]) that (UEm) together with (D) implies the on-diagonal lower bound

ht(x, x) &
1

V(x, t1/m)
, t ≥ 1,

which is clearly incompatible with

ht(x, x) .
1

V(x, t1/2)
, t ≥ 1
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because of the so-called reverse volume doubling property (see for instance [28, Proposition 5.2]).

References

[1] P. Auscher, On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic oper-
ators on Rn and related estimates, Mem. Amer. Math. Soc., 186 (2007), no. 871. 7

[2] P. Auscher and T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl.
Sci., (5), 4(3) (2005), 531–555. 16

[3] M. Barlow, Which values of the volume growth and escape time exponent are possible for a graph?, Rev. Mat.
Iberoamericana, 20(1) (2004), 1–31. 3, 18

[4] M. Barlow and R. Bass, Stability of parabolic Harnack inequalities, Trans. Amer. Math. Soc., 356(4) (2004), 1501–
1533. 15

[5] M. Barlow, R. Bass, and T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math.
Soc. Japan, 58(2) (2006), 485–519. 18

[6] M. Barlow, T. Coulhon, and A. Grigor’yan, Manifolds and graphs with slow heat kernel decay, Invent. Math., 144
(2001), no. 3, 609–649. 3, 14, 16

[7] M. Barlow, T. Coulhon, and T. Kumagai, Characterization of sub-Gaussian heat kernel estimates on strongly recur-
rent graphs, Comm. Pure App. Math., 58 (2005), no. 12, 1642–1677. 15

[8] S. Blunck and P. C. Kunstmann, Calderón-Zygmund theory for non-integral operators and the H∞ functional cal-
culus, Rev. Mat. Iberoamericana, 19 (2003), no. 3, 919–942. 7

[9] L. Chen, Sub-Gaussian heat kernel estimates and quasi Riesz transforms for 1 ≤ p ≤ 2, Publ. Mat., 59 (2015),
313-338. 3, 4

[10] L. Chen, Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimates, PhD thesis,
Université Paris Sud - Paris XI; Australian national university, 2014. https://tel.archives-ouvertes.fr/tel-01001868.
3, 7, 15

[11] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture notes
in Math., 242, Springer-Verlag, Berlin, 1971. 7

[12] T. Coulhon, Inégalités de Gagliardo-Nirenberg pour les semi-groupes d’opérateurs et applications, Potential Anal.,
1 (1992), no. 4, 343–353. 16

[13] T. Coulhon, Off-diagonal heat kernel lower bounds without Poincaré, J. London Math. Soc., 68 (2003), no. 3,
795–816. 18

[14] T. Coulhon and X. T. Duong, Riesz transforms for 1 ≤ p ≤ 2, Trans. Amer. Math. Soc., 351(3) (1999), 1151–1169.
2, 3, 4, 7

[15] T. Coulhon and X. T. Duong, Riesz transform and related inequalities on noncompact Riemannian manifolds,
Comm. Pure Appl. Math., 56 (2003), no. 12, 1728–1751. 2, 16

[16] T. Coulhon, X. T. Duong, and X.-D. Li, Littlewood-Paley-Stein functions on complete Riemannian manifolds for
1 ≤ p ≤ 2, Studia Math., 154 (1) (2003), 37–57. 3

[17] T. Coulhon and L. Saloff-Coste, Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist., 26
(3) (1990), 419–436. 14

[18] T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, 9(2)
(1993), 293–314. 15

[19] T. Coulhon and L. Saloff-Coste, Variétés riemanniennes isométriques à l’infini, Rev. Mat. Iberoamericana, 11
(1995), no. 3, 687–726. 16

[20] N. Dungey, A Littlewood-Paley-Stein estimate on graphs and groups, Studia Math., 189(2) (2008), 113–129. 12,
13

[21] X. T. Duong and A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat.
Iberoamericana, 15(2) (1999), 233–263. 3, 7

[22] X. T. Duong and D. Robinson, Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct.
Anal., 142 (1996), 89–128. 9

[23] J. Feneuil, Littlewood-Paley functionals on graphs, Math. Nachr., 288(11-12) (2015), 1254–1285. 12, 13
[24] J. Feneuil, Riesz transform on graphs under subgaussian estimates, arXiv:1505.07001. 3, 12
[25] J. Feneuil, On diagonal lower bound of Markov kernel from L2 analyticity, arXiv:1508.02447. 12
[26] A. Grigor’yan, Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal.,

127 (1995), 363–389. 4
[27] A. Grigor’yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics 47, Amer. Math.

Soc., Providence, RI, 2009. 1
[28] A. Grigor’yan and J. Hu, Upper bounds of heat kernels on doubling spaces, Moscow Math. J., 14 (2014), 505–563.

19
[29] A. Grigor’yan, A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann., 324

(2002), 521–556. 18



20 LI CHEN, THIERRY COULHON, JOSEPH FENEUIL, AND EMMANUEL RUSS

[30] W. Hebisch and L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst.
Fourier, 51(5) (2001), 1437–1481. 3, 18

[31] O. Post, Spectral analysis on graph-like spaces, Lecture notes in Math., 2012, Springer-Verlag, Berlin, 2012. 18
[32] E. Russ, Riesz transforms on graphs for 1 ≤ p ≤ 2, Math. Scand., 87(1) (2000), 133–160. 12
[33] P. Sjögren, An estimate for a first-order Riesz operator on the affine group, Trans. Amer. Math. Soc., 351 no. 8

(1999), 3301–3314. 2
[34] P. Sjögren and M. Vallarino, Boundedness from H1 to L1 of Riesz transforms on a Lie group of exponential growth,

Ann. Inst. Fourier, 58 no. 8 (2008), 1117–1151. 2
[35] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30,

Princeton Univ. Press, Princeton, N. J., 1970. 5
[36] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies,

63, Princeton Univ. Press, Princeton, N. J., 1970. 3, 5
[37] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52(1) (1983),

48–79. 2
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