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Abstract—Service robots have become increasingly important
subjects in our lives. However, they are still facing problems like
adaptability to their users. While major work has focused on
intelligent service robots, the proposed approaches were mostly
user independent. Our work is part of the FUI-RoboPopuli
project, which concentrates on endowing entertainment compan-
ion robots with adaptive and social behaviour. In particular, we
are interested in robots that are able to learn and plan so that
they adapt and personalize their behaviour according to their
users. Markov Decision Processes (MDPs) are largely used for
adaptive robots applications. However, one challenging point is
reducing the sample complexity required to learn an MDP model,
including the reward function. In this article, we present our
contribution regarding the representation and the learning of
the reward function through analysing interaction traces (i.e. the
interaction history between the robot and their users, including
users’ feedback). Our approach permits to generalise the learned
rewards so that when new users are introduced, the robot may
quickly adapt using what it learned from previous experiences
with other users. We propose, in this article, two algorithms
to learn the reward function. The first is direct and certain;
the robot applies with a user what it learned during interaction
with same kind of users (i.e. users with similar profiles). The
second algorithm generalises what it learns to be applied to all
kinds of users. Through simulation, we show that the generalised
algorithm converges to an optimal reward function with less than
half the samples needed by the direct algorithm.

Keywords-Adaptive and personalised robots; Learning from
users feedback; Markov Decision Processes MDPs.

I. INTRODUCTION

Service companion robots are becoming more than exper-
imental and increasingly practical inside our houses and as-
sisted living facilities. Studied applications whether in labora-
tories or factories are numerous and various, like entertainment
and educational robots [1], or social and nursing companion
robots to elderly and disabled people [2], [3]. Few of these
applications can afford to be user independent, i.e. the robot
considers all users as similar entities and do not distinguish
each user as an individual person. Therefore, when developing
such robots we cannot deny social implications and users’
expectations, i.e. we must take into account the fact that
the robot’s environment includes several kinds of users with
different age, preferences, needs, etc. and the robot’s behaviour
should take into account these particularities.

Recently, more interest has been oriented towards user
dependent approaches. One approach concentrates on adapting
by analysing the interaction history with each user and adjust-
ing the robot behaviour in consequence by proposing new and
appropriate interactions [4]. Another approach concerns a re-
habilitation robot that learn how to maximise the performance
of users by adapting the personality of the robot according to
the personality of the user [5]. In these approaches, the robot
does not learn the preferences of the user, however, it matches
certain behaviour parameters (speed, voice, song to sing, . . . )
with the user’s personality (extroversion, introversion) or with
the history of interaction (sing a song after being introduced).
However, it is important for personalised service robots that
the robot adapts itself by connecting the most suitable be-
haviour to some user profile particularities which is what we
will use in our approach to generalise the learned behaviour
to other users. In [6], the authors propose a framework where
a user can shape the robot directly with good and bad signals
in order to learn how to adapt to his preferences (as for a
domestic dog). However, the approach is not proposed to learn
personal preferences nor to handle environments including
several users with different preferences.

In this article, we focus on designing an adaptive companion
robot that is able to adapt and personalise its behaviour
according to the situation and its user. We focus in particular
on two questions:

1) How the robot can adapt its behaviour according to the
situation (day time, noise, . . . ) and the user, taking into
account his profile (age, preferences, habits, . . . )? For this
problem, our approach is based on MDP models where
all needed information about the user profile and the
activity are integrated in the MDP state. A correct MDP
reward function generates an adapted and personalised
robot behaviour which leads us to the second question;

2) How the robot can learn and evolve its knowledge about
its users and their preferences? For this problem, our
approach consists in analysing the traces of interaction
between the robot and the users in order to determine
the reward function. The interaction traces include the
robot’s actions, some ambient parameters (i.e. light level,
noise level, etc.) and the users’ feedback. This feedback



is analysed by the robot to learn more about the users’
preferences and update the reward function. Our approach
also generalises the rewards by learning the dependence
between the robot behaviour and certain information
about the user and/or the activity, this helps the robot
to adapt faster with new users.

In the following: we give more details about the context of
our research project in Section II. We then present the state of
the art and the proposed approaches in the related domains,
their limitations and our position regarding these limitations
in Section III. We contribute with our proposition of a general
architecture and knowledge representation for an adaptive and
personalised robot system in Section IV. In Section V we
present the robot planning system based on an MDP model
and in Section VI we contribute with two algorithms to learn
the reward function that will help the robot planner in its adap-
tation process. The first algorithm learns the reward function
in a direct and certain way. Using the first algorithm, the robot
uses what it learned with a user to adapt to same kind of users
(i.e. users with same profile). The second algorithm learns the
connection between the most suitable behaviour and certain
user profile particularities or environmental information. This
connection permits to generalise what the robot learns and
applies it to all kinds of users. In Section VII we present our
experimental method and show the results by comparing the
quality of generated policies during convergence. We show
that the generalised algorithm converges to an optimal reward
function with less than half the samples needed for the direct
algorithm. Finally, we conclude and present our future work.

II. ROBOT PROPOSES ADAPTIVE AND PERSONALISED
INTERACTIONS

Our work is part of a research project called RobotPopuli,
financed by the French ministry of industry. The project
is interested in endowing the platform EMOX (EMOtion
eXchange) of Awabot Corporation1 with adaptive and social
behaviour. The robot shown in Figure 1 is a turtle bot com-
posed of a camera, laser range-finder, pico projector, micro and
speaker. The current working-on version of the robot works
under Linux system and uses ROS as software framework.

Fig. 1: EMOX, the augmented robot (left). EMOX, projecting
a cartoon movie on the wall (right).

The idea behind the RoboPopuli project is to have a domes-
tic entertainment companion robot that proposes activities to
house occupants. The proposed activities and the way of doing
them should respect the user preferences. We concentrate on

1www.awabot.com

activities that concern one user at a time or at most one
principle user. We refer by user, the principle person who is
sharing the activity with the robot and potential users, users
that are not sharing an activity with the robot at the moment
but have-been/might-be in the past/future. Activities can be
launched manually by the user (through tablet or smart-phone
interfaces for example) or by proposition from the robot.

As an illustrative example, let us consider the activity of
projecting a video for a user (Figure 1). There are many details
to take into account for such an activity. For example, what
video to project: a movie, an episode, a comedy or a cartoon?
what level of brightness and volume to set? should the robot
propose to project the video in the living room or in the
bedroom? All these details that we will call parameters of the
activity should be set by an adaptive and personalised robot in
a way that respect the activity and environment situation, the
user preferences, in addition to some general rules (e.g. rules
set by the parents for their children). Users’ preferences can
be general e.g. male adults like to watch sport or personal e.g.
user A wants its waking-up alarm at 7 a.m.

The problem is that users preferences regarding the activity
are not initially known by the robot. We want to propose an
approach to help learning these preferences by analysing users’
profiles and the interaction traces including users’ feedback.
The source of feedback can be different e.g. face expressions,
gestures, vocal expressions, etc. The robot gathers/builds its
knowledge through the interaction traces analysis and uses it
to generate a reward function that will lead through an MDP to
decisions that takes into account the learned users preferences.

III. RELATED WORK

Most approaches for adaptive robots are based on clas-
sic formal models, like Markov models. For example, the
approach proposed for Pearl-Nursebot is based on Partially
Observable Markov Decision Process (POMDP) [7], [3]. A
POMDP is a model to calculate optimal measures of control
in uncertain environments. In order to decrease the complexity
of solving the POMDP, they proposed a hierarchical POMDP
based on partitioning the action space. Pearl shares the daily
lives of elderly people and can help by doing actions of several
categories: communication actions (e.g. recall to take med-
ication or give forecast information), movement actions (e.g.
guide an elderly somewhere), other diverse actions (e.g. charge
battery or wait). The POMDP policy selects the best action
corresponding to the current situation. Another approach based
on POMDPs is proposed for adaptive decision model that
adapts the actions of the robot to correspond to the estimated
need of the human [8], [9]. The robot observes human actions
and calculates a probability of his possible intentions and de-
cides the appropriate interaction type (assistance, cooperation,
collaboration). To overcome the complexity of solving the
POMDP model, they proposed a solution based on dividing
the intention estimation problem which uses a Hidden Markov
Model (HMM) from the decision making which uses an MDP
model. In these approaches, the robot adapts its actions to the



situation and to the inferred need of a user, however, it does
not propose personalised behaviour according to user profile.

Other approaches aim to learn the best actions in order
to maximise certain interaction results using reinforcement
learning methods. A system is proposed for an assistant robot
to help through rehabilitation exercises [5]. The system learns
how to adapt its behaviour and personality through three
principle parameters: distance of interaction, movement speed
and verbal communication (volume and speed of speech).
The authors use a Policy Gradient Reinforcement Learning
(PGRL) algorithm and the principal objective of the adaptive
behaviour is to optimise these three parameters and adapt
them to the personality of the user in order to maximise
his performance (number of exercises in certain period of
time). In such approaches, users feedback (performance) are
used in the process of learning adaptive behaviour. However,
the exact information about the users that are related to the
robot decision (e.g. personality) are specified in advance of
the learning process.

Some approaches are based on rules. In this category, a
system is proposed for “Robovie” that is used at schools to
help as companion to children [4]. The robot can identify the
students and memorise the history of interaction with each
of them. Therefore, it is able to personalise its interactions
with each student and adapt depending on the history of
interactions. The control model executes sequentially some
activities depending on the actual situation. The order of
execution is predefined as rules. The architecture of the robot
permits to memorise all previous interactions with all students
and follow their level of advancement. The proposed model
allows a robot to propose personalised activities. However, it
is based on predefined knowledge about adaptation and does
not learn them by learning the preference of each user.

Several approaches uses a human feedback to learn a certain
behaviour. [6] proposes a framework called Training an Agent
Manually Via Evaluative Reinforcement (TAMER) based on
shaping techniques. Shaping requires that a person observes
the agent’s actions and send a feedback signal as judgement
on the action quality. Using supervised learning techniques to
model a person’s reinforcement function, the learned model is
used to choose actions that should maximise the reinforcement.
This approach can be used to teach how to adapt to user’s
preferences. However, it is not proposed for environments
including several users with different preferences.

For personalised robot behaviour in multi users applications,
it is difficult to have predefined knowledge for all possible
situations and all possible users. We are interested in proposing
a solution that helps the robot to learn users preferences
and adapt to them by analysing, online, their feedback. In
addition, how to learn the relation between these preferences
and particular information in users’ profiles in order to be able
to generalise the adaptation capability to new users with no
history of interaction with the robot.

IV. GENERAL ARCHITECTURE AND KNOWLEDGE
REPRESENTATION

In this section, we detail the general architecture of the
robotic system represented in Figure 2. The system input con-
tains observations concerning users including their Feedback
and the environment including potential users. The system
output is the robot’s actions. The system includes 4 knowledge
bases: Interaction Traces, Activities, Users Profiles and
Learned Rewards (detailed in this section) and two main
processes: Decision Planning and Learning and Knowledge
Extraction (detailed in Section V and VI respectively).
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Fig. 2: General Architecture

We based our model of interaction traces on the model
defined by [11]. Generally speaking, a trace is a set of
temporally situated obsels (OBServed ELementS). Obsels are
generated during interactions between the system (e.g. the
robot) and the environment (including the users). Each obsel
has a type, defined by the trace model, and might be connected
(in relation) with other obsels from the same trace. Formally,
the obsel has a subject (e.g. the user, the robot, etc.), and a set
of attributes/values that characterises the observed event. The
trace model defines the obsel types and the relations between
them in the trace.

We denote input obsels related to the user Ou, the envi-
ronment and other potential users Oe. The robot actions are
integrated in the trace as output obsels Or. We note the set
of obsels: O = Ou ∪ Oe ∪ Or. The basic part of user related
obsels Ou is his feedback which will be analysed to learn
users preferences and how to adapt to them.

Each user is represented by a User Profile P . This profile
contains all information concerning the user that might be
useful in the adaptive decision process. All information are
represented as a set of attributes Bp and their values [12], [13].
Each attribute x and its domain of values Dx are predefined by
an expert according to the application. The attributes’ values
of a user profile can filled by the user himself, a developer
or extracted automatically by analysing the interaction traces
with the user (Section VIII) [14].

Definition 1: Each profile p ∈ P can be represented as a
function that associates each attribute x ∈ Bp to its value:
vp : x→ Dx ∪ null.



A profile can eventually represent the day schedule of the
user. Attributes values can be static (e.g. name) or dynamic
(e.g. day schedules).

Example 1: In addition to the profile id, a profile can
include attributes like age with values like: child, teenage or
adult; and gender with values: female or male.

There are many work in the literature on the representation
of Activities, in particular, in the domain of human activity
recognition. Classical models are mostly used like Hidden
Markov Models (HMMs) [15], Petri networks [16], and Dy-
namic Bayesian Networks (DBNs) [17].

Our robot shares its activity with a user. The set of possible
activities is predefined by AC = {ac1, . . . , aci, . . . , acm}. We
chose to represent the activities with an HMM since that we
use MDP models for the robot action planning during activities
(Section VI).

Definition 2: An activity aci is represented by a tuple:
〈idac, HMMac〉:

• idac : the id of the activity.
• HMMac = 〈Z,Bac,A〉:

– Z = Oac, where z ∈ Oac ⊆ O is an obsel related
to the activity ac concerning the robot, the user and the
environment.

– The set of attributes related to the activity Bac =
{b1, . . . , bi, . . . , bk} : an attribute bi ∈ Bac has a value
vac : b→ Db ∪ null.

– A is the matrix of transitions where aijz = P (bt = j|bt−1 =
i, z) is a probability of transitioning to a new attribute value
knowing the previous attribute value and the obsel z.

The activity progress flow is represented in the transition
function and triggered by the received obsels. If the activity
is achieved in phases, the transition function can represent the
change in attributes values in a way that respects the phase
sequence to achieve the activity.

Example 2: For a robot activity of projecting a video to
the user, only the robot is active to achieve the task. The
task can be achieved in phases. Z will gather all robot’s
actions for all the phases. For example, starting by moving
phase, the robot will move to the right room of the house:
living room, kitchen, master bedroom or children bedroom.
Then, choosing the length of the video phase: film or episode.
Then choosing the type of the video phase: ferry cartoon,
fantastic cartoon, science fiction, drama, sports, show, his-
toric or comedy. Then setting the sound level phase: low,
medium or high. Then setting the brightness level phase:
low, medium or high. And finally, start projecting the video.
The attributes of the activity Bac might include for example
the level of noise in the environment: low, medium or high;
the day time: morning, noon, afternoon, evening or night;
and the brightness in the room: low, medium or high; and
finally the actual phase in the activity: the selection of room,
video length, video type, volume, and brightness. Therefore
Bac = {noise, daytime, brightness, phase}. The matrix of
transitions represents the probability of changing the values of
any attribute knowing that at any time step the robot can do
one action from Z .
In our model, an Interaction Trace includes the sequence of
input/output during one activity between the robot and a user.

Definition 3: A trace T is represented by a tuple :
〈idt, idp, idac, o1, . . . oi, . . . , on〉 where,

• idt, idp, idac: the trace id, the user id and the id of the activity
represented in this trace, respectively.

• o1, . . . oi, . . . , on: the sequence of obsels related to the activity
represented in this trace, where oi: 〈e, j,Bo〉:
– The type of obsel e ∈ O.
– The obsel’s subject depends on the obsel’s origin: the user,

the environment and potential users or the robot.
– The set of obsel related attributes Bo. An attribute y ∈ Bo

has a value vo : y → Dy ∪ null.

Example 3: The sequence of obsels in a trace for projecting
video activity can start as following: robot: move to bedroom,
user: yes, robot: propose film, user:no, robot: propose episode,
user: yes . . . . An example attribute for the obsel “set volume”
is the noise level in the environment.

From each trace, the system can extract several feedback
rewards. The feedback rewards are gathered and processed
later (through learning algorithms) to create the Learned
Rewards that form reward function of the MDP decision
model. Both feedback rewards and learned rewards have the
same representation form.

When processing an activity trace, each time an obsel of
type “Feedback” is encountered a feedback reward is created.
The feedback reward holds in part the complete user profile
and activity, both represented using their attribute values.
However, as a result of learning algorithms, these attributes
values can be generalised or described as constraints (logical
expressions) over their possible values.

Definition 4: A feedback/learned reward is represented by a
tuple: 〈Cp, Cac, idac, oi, oi+1, T R, v〉:

• Cp: the constraints on the user profile attributes Bp.
• Cac: the constraints on the activity attributes Bac.
• idac: the id of the activity.
• oi ∈ Or: the robot action.
• oi+1 ∈ Ou: the user feedback concerning robot action oi.
• T R: a backup of traces ids idt that provoked the creation or a

modification of this learned reward.
• v = V(oi+1) is the feedback value (the received reward). V is

a predefined value function2 that assigns a positive or negative
weight for each feedback V : Ou → [−1, 1].

Example 4: For instance, a new feedback reward
includes information about (1) the user profile
attributes: Cp = (adult,male), (2) the activity
idac = video projection and activity related attributes
Cac = (evening, low brightness, low noise), (3) the
robot’s action oi = propose ferry cartoon, (4) the user
feedback oi+1 = no, (5) the id of the current analysed trace
idt, and (6) the value of the feedback v = −1. In a learned
reward, constraints about user profile and/or activity attributes
are represented like Cp = (adult, ∗) where ∗ represent any
value for the attribute gender (male or female).

V. ROBOT PLANNING

The first question that we focus on for designing an adaptive
companion robot is its ability to adapt and personalise its

2This function follows the assumption that the user’s feedback is re-
ceived directly after the robot action. It is possible to define a function
v = fct(V(o1), . . . ,V(oi+1) using a heuristic (e.g. propagation).



behaviour according to the situation and its user, taking into
account the user’s profile. For this reason we chose to base the
Decision Planning of the robot as a Markov Decision Process
(MDP). An MDP is represented by a tuple 〈S,A, T,R〉 where:
S is a set of states, A is the set of robot’s actions, T is the
transition function where T (s, a, s′) is the probability of transi-
tioning from state s to state s′ after doing action a and R is the
reward function, where r(s, a) is the robot’s immediate reward
for making action a while being in state s. An MDP policy
πMDP is a function π : S → A, which associates an action to
each MDP state. There are several algorithms to solve an MDP,
classically Value Iteration [18] and Policy Iteration [19]. The
complexity of such algorithms is O(|S2||A|). If the agent has
no knowledge about its environment, the transition and reward
functions will be hard to calculate. In this case, the agent
can directly learn its policy using reinforcement learning such
as for Q-learning [20] that does not require prior knowledge
about the transition function. Inverse reinforcement learning
algorithms [21] extracts a reward function from an observed
optimal behaviour (learn by observation). On the other hand
shaping algorithms [6] extracts a reward function from human
feedback on agent’s behaviour.

In our problem, the reward function is not known for the
robot, however, each user provide his feedback that represent
his preferences on how the robot should behave. The algo-
rithms that we propose in the next section create a reward
function that is able to guide the robot through adapted and
personalised behaviour.

VI. LEARNING FROM USER FEEDBACK

In this section, we present two Learning From User
Feedback methods that we experimented through simulation.
The first is a direct and certain algorithm, it can be considered
as the optimal version for extracting a reward function that is
certain at all times. The second generalises the learned rewards
to be applied on unknown profiles and in unknown situations,
this version is risky at its early stages of learning before it
merges to a correct generalisation.

Both algorithms have mainly as entry a feedback reward
fr extracted from an interaction trace and as output the set of
learned rewards LR modified after processing fr. LR is then
added as a part of the MDP reward function. The extraction
of an fr = 〈Cfrp , Cfrac , id

fr
ac , o

fr
i , ofri+1, T R

fr, vfr〉 from a trace
T = 〈idp, idac, o1, . . . oi, . . . , on〉 is done simply by filling the
profile idp and the activity idac attributes values in Cfrp , Cfrac

respectively. ofri is an obsel from T of type Or that precedes
another obsel T of type Ou (user feedback). The latter is set
to be ofri+1. T R holds the id of the trace T and v is the value
of the user feedback v = V(oi+1).

A. The Certain Direct Learning Algorithm

The main idea of algorithm 1 is to add a feedback reward
fr to the existing set of learned rewards lr in a simple and
direct way. Several possibilities might occur that are presented
in the algorithm.

1) If fr holds the same information as one lr ∈ LR (Lines
5:6); meaning that fr and lr have the same activity
id idac and the same robot action oi and that profile
and activity attributes of fr satisfy their corresponding
constraints in lr, then:

a) If both fr and lr have the same feedback value
direction (FD) (i.e. both v values in fr and lr are
positive or negative (Line 7), then lr stays in LR after
modifying the feedback value with fct(vlr, vfr) which
can be a function that returns the average of both values
(Line 8).

b) If fr and lr have different feedback directions (FDs),
then a contradiction is detected (the received feedback
contradicts with the existing learned knowledge) and
both rewards are flagged (added to EC). The EC set
is then sent to be reviewed by an expert in order to
detect the reason of the contradiction (Lines 12:13).
This contradiction might refer to missing attributes in
the problem representation3.

2) If fr holds a situation that is not included in any of the
learned rewards, then fr is added as new learned reward
in LR (Lines 14:15).

In addition to LR, this algorithm has as output the set of
contradicted rewards EC to be reviewed by the expert.

Algorithm 1 The direct learning algorithm
1: INPUT fr = 〈Cfr

p , Cfr
ac , id

fr
ac , o

fr
i

, ofr
i+1

, T Rfr, vfr〉
2: Output LR, EC
3: Added = false, attention = false
4: for all lr ∈ LR do
5: if (idlr

ac = idfr
ac and olri = ofr

i
) then

6: if (Cfr
p , Cfr

ac satisfy Clrp , Clrac respectively) then
7: if (vlr ≥ 0 and vfr ≥ 0) or (vlr < 0 and vfr < 0) then
8: Modify vlr = fct(vlr, vfr).
9: Add the fr trace id to T Rl.

10: Added = true.
11: else
12: Add fr and lr to EC.
13: Attention = true.
14: if (!added and !attention) then
15: Add the reward fr to the set of learned rewards LR.

B. The Generalised with Risk Learning Algorithm

Algorithm 2 has a very different approach than Algorithm 1.
We aim in this algorithm to be able to learn the reward function
faster by minimizing the needed number of experiences. In
addition, we aim to be able to generalise the learned function
to be applied on unknown profiles and in unknown situations.

The main idea is to try to detect, for each possible robot
action, the important set of attributes values (related to profile
or activity) that affect the user feedback value direction (FD)
(i.e. v is positive or negative). Attributes that are not important
are generalised to any value (*) in all LR rewards (Line 17).
This algorithm backs up all feedback rewards, so there is no
loss of information because of the generalisation. The backup
rewards are continuously used in the process of detection of

3A user might change his preference in a rainy day which informs us the
need of adding weather forecast as an attribute.



important attributes. In the following, we describe, with exam-
ples, (a) how the algorithm uses contradictions between fr and
generalised rewards in LR to detect important attributes and
also (b) how it is possible to detect attributes that were falsely
set as important in the first phase. Initially, and after receiving
the first fr, the algorithm generalises all the attributes values
to (*) with a reward value v equal to the value in fr.

Algorithm 2 The Generalised learning algorithm
1: INPUT fr = 〈Cfr

p , Cfr
ac , id

fr
ac , o

fr
i

, ofr
i+1

, vfr〉.
2: Output LR, important attributes for each action.
3: Added = false.
4: for all lr ∈ LR do
5: if (idlr

ac = idfr
ac and olri = ofr

i
) then

6: if (vlr ≥ 0 and vfr ≥ 0) or (vlr < 0 and vfr < 0) then
7: Added = true.
8: else
9: BR = related rewards to lr from backup rewards.

10: for all br ∈ BR do
11: Add br to LR.
12: for all att ∈ BR do
13: if att is an important attribute then
14: Add att as important to action ofri .
15: if (!added) then
16: Add the reward fr to the set of learned rewards LR.
17: Generalise all non important attributes in LR.
18: Check for attributes that were falsely set as important.
19: Add fr to the backup set BR.

a) Treating contradictions to extract important at-
tributes: In Line 8 of Algorithm 2, a contradiction is detected
between the fr feedback value and the lr feedback value. We
will explain here, how the algorithm treats this contradiction
to try to extract important attributes concerning the action oi
(Lines 9:14). First, a not empty set of backup feedback rewards
that are related to lr is set to BR. We mean by related that they
concern the same robot action, they have the same FD and that
the attributes values in br are included in the constraints of lr.
In Figure 3 we show an example of how we use the backup
rewards to detect an important attribute. In the example, we

Fig. 3: Example of detecting an important attribute

notice the contradiction between fr and lr. We notice that
fr respects the constraints in lr, however, they don’t have the
same FD. This contradiction leads to looking for the subset of
backup rewards where each br respects all the constraints of
lr and have the same FD. By comparing fr and br, we can
conclude that, in addition to the “pentagon shape” attribute,

the “star shape” attribute is also an important attribute that
caused an opposite user reaction.

b) Checking for false important attributes: It is possible
that the algorithm marks some attributes as important when
they are actually not. Therefore, we added in Line 18 a
function that checks for falsely detected important attribute.
For example, if we have fr and lr who have the same FD
with only one different attribute value, this attribute is marked
as falsely detected important attributes and is removed from
the list of important attributes for the concerned action if the
following condition is true: there exist in the backup rewards
a list of rewards covering all the combinations of important
attributes with the same FD.

VII. EXPERIMENT RESULTS

A. Experiment Details and Procedure

We experimented our representation and learning algorithms
through simulation. In the simulation we used the activity of
projecting a video to the user. The activity attributes and values
corresponds to the examples presented in Section IV.

The procedure of evaluation is a loop of the following:
(1) Re/Calculate the MDP policy. (2) Generate n traces. (3)
Evaluate robots actions in the n traces. (4) Extract feedback
rewards from traces, then learn and update the MDP reward
function. (5) Repeat from step 1 until convergence.

The MDP represents in its states, the possible users’ profiles
(age and gender) and activity related information (noise, day-
time, brightness and phase). The MDP set of actions represents
all possible robot’s actions (see Example 2). The transition
function changes deterministically the phase value in the state
knowing the robot action. A default reward function is given
to respect the sequence of phases for realising the activity (the
sequence is presented in Example 2). The MDP policy of the
first loop of the evaluation respects only the sequence of phases
without having any knowledge about users’ preferences.

The generation of the traces (i.e. step 2) is made by
simulation using the MDP policy for generating the robot
action and some predefined rules of preferences to generate
users feedback. We had predefined rules for each action of
each phase which is connected to certain attributes of the
activity or the profile (e.x. the room selection for the projecting
example depends on the age of the user and the day time, and
the video type depends on the age and the gender).

We evaluated both algorithms on the same randomly gener-
ated situations (user profile and activity related information).
We followed the procedure described earlier with n = 100
traces. For the traces evaluation (i.e. step 3), after each n
traces we calculated the number of robot’s actions that were
followed with a negative user feedback (negative actions). We
also compared the number of complete positive traces, where
the robot succeeded to achieve a complete activity with the
user without receiving any negative feedback.

B. Results

Results shown in Figure 4 present the convergence of both
learning algorithms to an optimal adaptive and personalised



behaviour with no negative actions. It shows that the second
algorithm with generalisation creates 10% of negative actions
during the first 100 traces and converges to 0% negative
actions after 500 with exception. In the first 100 traces, there
was 66 completely positive experiences resulting from the
algorithm with generalisation. We confirm that this algorithm
was able to learn the dependencies between the profile and ac-
tivity attributes with each robot action. Important attributes that
were predefined for the simulation were completely learned
at the end of the experiment. On the other hand, the direct
algorithm started with 37% of negative actions during the first
100 traces and converged after 1000 traces. The first 100 traces
included 42 positive experiences only.

Fig. 4: Comparison between the direct algorithm and the
algorithm with generalisation: the number of negative actions
and the number of positive experiences (with zero negative
feedback) presented per 100 experience

In the evaluated simulations, the predefined rules of pref-
erence were followed at all times. This means there was
no exceptions in users’ preferences. However, we know that
this is far from true in real applications. For example, most
but definitely not all male adults like to watch sport re-
lated programs. For this reason, we are currently working
on handling exceptions and holding probabilities on rules of
preferences. For personalised services, the robot must link
exception preferences to the exact user.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an adaptive companion robot
decision model that learns users’ preferences using their
feedback. Two algorithms were proposed, the first is simple
and certain while the second generalised knowledge with risk.
The generalised algorithm can learn the dependencies between
each robot action and attributes specifying user profile and/or
activity. It converges to an optimal adaptive and personalised
reward function with less than half experiences needed by
the direct algorithm. These results show that the proposed
architecture and learning algorithms permit the companion
robot to adapt to its users’ preferences and even adapt to first
time users knowing only basic information about their profiles.

We are actually working on evaluating our results with
the EMOX robot. In future work, we would like to work
on a higher level of adaptation, where the robot can adapt
during activity selection. Also, we would like to work on up-
dating/completing users’ profiles by analysing the interaction
traces (e.g. detecting personal preferences like alarm time).
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