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Abstract. An infinite permutation can be defined as a linear ordering of
the set of natural numbers. Similarly to infinite words, a complexity p(n) of
an infinite permutation is defined as a function counting the number of its
factors of length n. For infinite words, a classical result of Morse and Hedlind,
1940, states that if the complexity of an infinite word satisfies p(n) ≤ n for
some n, then the word is ultimately periodic. Hence minimal complexity
of aperiodic words is equal to n + 1, and words with such complexity are
called Sturmian. For infinite permutations this does not hold: There exist
aperiodic permutations with complexity functions of arbitrarily slow growth,
and hence there are no permutations of minimal complexity.
In the paper we introduce a new notion of ergodic permutation, i.e., a permu-
tation which can be defined by a sequence of numbers from [0, 1], such that
the frequency of its elements in any interval is equal to the length of that
interval. We show that the minimal complexity of an ergodic permutation is
p(n) = n, and that the class of ergodic permutations of minimal complexity
coincides with the class of so-called Sturmian permutations, directly related
to Sturmian words.

1 Introduction

In this paper, we continue the study of combinatorial properties of infinite per-
mutations analogous to those of words. In this approach, infinite permutations are
interpreted as equivalence classes of real sequences with distinct elements, such that
only the order of elements is taken into account. In other words, an infinite permu-
tation is a linear order in N. We consider it as an object close to an infinite word,
but instead of symbols, we have transitive relations < or > between each pair of
elements.

Infinite permutations in the considered sense were introduced in [10]; see also a
very similar approach coming from dynamics [6] and summarised in [3]. Since then,
they were studied in two main directions: first, permutations directly constructed
with the use of words are studied to reveal new properties of words used for their
construction [8, 16–18, 20–22]. In the other approach, properties of infinite permu-
tations are compared with those of infinite words, showing some resemblance and
some difference.

In particular, both for words and permutations, the (factor) complexity is bounded
if and only if the word or the permutation is ultimately periodic [10, 19]. However,
the minimal complexity of an aperiodic word is n+1, and the words of this complex-
ity are well-studied Sturmian words; as for the permutations, there is no “minimal”
complexity function for the aperiodic case. By contrary, if we modify the definition
to consider the maximal pattern complexity [13, 14], the result for permutations is
? Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon,
within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
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more classifying than that for words: in both cases, there is a minimal complexity
for aperiodic objects, but for permutations, unlike for words, the cases of minimal
complexity are characterised [4]. All the permutations of lowest maximal pattern
complexity are closely related to Sturmian words, whereas words may have lowest
maximal pattern complexity even if they have another structure [14].

Other results on the comparison of words and permutations include an attempt
to define automatic permutations [12] analogously to automatic words [1], a dis-
cussion [11] of the Fine and Wilf theorem and a study of square-free permutations
[5].

In this paper, we return to the initial definition of factor complexity and prove
a result on permutations of minimal complexity analogous to that for words. To
do it, we restrict ourselves to ergodic permutations. This new notion means that
a permutation can be defined by a sequence of numbers from [0, 1] such that the
frequency of its elements in any interval is equal to the length of than interval. We
show that this class of permutations is natural and wide, and the ergodic permu-
tations of minimal complexity are exactly Sturmian permutations in the sense of
Makarov [18].

The paper is organized as follows. After general basic definitions and a necessary
section on the properties of Sturmian words (and permutations), we introduce er-
godic permutations and study their basic properties. The main result of the paper,
Theorem 5.2, is proved in Section 5.

2 Basic definitions

In what concerns words, in this paper we mostly follow the terminology and notation
from [15]. We consider finite and infinite words over a finite alphabet Σ; here we
consider Σ = {0, 1}. A factor of an infinite word is any sequence of its consecutive
letters. The factor u[i] · · ·u[j] of an infinite word u = u[0]u[1] · · ·u[n] · · · , with uk ∈
Σ, is denoted by u[i..j]; prefixes of a finite or an infinite word are as usual defined
as starting factors. A factor s of a right infinite word u is called right (resp., left)
special if sa, sb (resp., as, bs) are both factors of u for distinct letters a, b ∈ Σ. A
word which is both left and right special is called bispecial.

The length of a finite word s is denoted by |s|. An infinite word u = vwwww · · · =
vwω for some non-empty word w is called ultimately (|w|-)periodic; otherwise it is
called aperiodic.

The complexity pu(n) of an infinite word u is a function counting the number
of its factors of length n; see [7] for a survey. Due to a classical result of Morse
and Hedlund [19], if the complexity pu(n) of an infinite word u satisfies pu(n) ≤ n
for some n, then u is ultimately periodic. Therefore, the minimal complexity of
aperiodic words is n + 1; such words are called Sturmian and are discussed in the
next section.

When considering words on the binary alphabet {0, 1}, we refer to the order
on finite and infinite words meaning lexicographic (partial) order: 0 < 1, u < v if
u[0..i] = v[0..i] and u[i+ 1] < v[i+ 1] for some i. For words such that one of them
is the prefix of the other the order is not defined.

A conjugate of a finite word w is any word of the form vu, where w = uv.
Clearly, conjugacy is an equivalence, and in particular, all the words from the same
conjugate class have the same number of occurrences of each symbol.

Analogously to a factor of a word, for a sequence (a[n])∞n=0 of real numbers, we
denote by a[i..j] and call a factor of (a[n]) the finite sequence of numbers a[i], a[i+
1], . . . , a[j]. We need sequences of numbers to correctly define an infinite permutation
α as an equivalence class of real infinite sequences with pairwise distinct elements
under the following equivalence ∼: we have (a[n])∞n=0 ∼ (b[n])∞n=0 if and only if for
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all i, j the conditions a[i] < a[j] and b[i] < b[j] are equivalent. Since we consider
only sequences of pairwise distinct real numbers, the same condition can be defined
by substituting (<) by (>): a[i] > a[j] if and only if b[i] > b[j]. So, an infinite
permutation is a linear ordering of the set N0 = {0, . . . , n, . . .}. We denote it by α =
(α[n])∞n=0, where α[i] are abstract elements equipped by an order: α[i] < α[j] if and
only if a[i] < a[j] or, which is the same, b[i] < b[j] of every representative sequence
(a[n]) or (b[n]) of α. So, one of the simplest ways to define an infinite permutation
is by a representative, which can be any sequence of distinct real numbers.

Example 2.1. Both sequences (a[n]) = (1,−1/2, 1/4, . . .) with a[n] = (−1/2)n and
(b[n]) with b[n] = 1000 + (−1/3)n are representatives of the same permutation
α = α[0], α[1], . . . defined by

α[2n] > α[2n+ 2] > α[2k + 3] > α[2k + 1]

for all n, k ≥ 0.

A factor α[i..j] of an infinite permutation α is a finite sequence (α[i], α[i +
1], . . . , α[j]) of abstract elements equipped by the same order than in α. Note that a
factor of an infinite permutation can be naturally interpreted as a finite permutation:
for example, if in a representative (a[n]) we have a factor (2.5, 2, 7, 1.6), that is,
the 4th element is the smallest, followed by the 2nd, 1st and 3rd, then in the

permutation, it will correspond to a factor
(
1 2 3 4
3 2 4 1

)
, which we will denote simply

as (3241). Note that in general, we number elements of infinite objects (words,
sequences or permutations) starting with 0 and elements of finite objects starting
with 1.

A factor of a sequence (permutation) should not be confused with its subsequence
a[n0], a[n1], . . . (subpermutation α[n0], α[n1], . . .) which is defined as indexed with
a growing subsequence (ni) of indices.

Note, however, that in general, an infinite permutation cannot be defined as
a permutation of N0. For instance, the permutation from Example 2.1 has all its
elements between the first two ones.

Analogously to words, the complexity pα(n) of an infinite permutation α is the
number of its distinct factors of length n. As for words, this is a non-decreasing
function, but it was proved in [10] that contrary to words, we cannot distinguish
permutations of “minimal” complexity: for each unbounded non-decreasing function
f(n), we can find a permutation α on N0 such that ultimately, pα(n) < f(n). The
needed permutation can be defined by the inequalities α[2n − 1] < α[2n + 1] and
α[2n] < α[2n+ 2] for all n ≥ 1, and α[2nk − 2] < α[2k− 1] < α[2nk] for a sequence
{nk}∞k=1 which grows sufficiently fast (see [10] for a picture and a discussion).

In this paper, we prove that by contrary, as soon as we restrict ourselves to
ergodic permutations defined below, the minimal complexity of an ergodic per-
mutation is n. The ergodic permutations of complexity n are directly related to
Sturmian words which we discuss in the next section.

3 Sturmian words and Sturmian permutations

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor com-
plexity satisfies pu(n) = n+ 1 for all n ∈ N.

Sturmian words are by definition binary and they have the lowest possible factor
complexity among aperiodic infinite words. This extremely popular class of words
admits various types of characterizations of geometric and combinatorial nature
(see, e. g., Chapter 2 of [15]). In this paper, we need their characterization via
irrational rotations on the unit circle found already in the seminal paper [19].
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Definition 3.2. The rotation by slope σ is the mapping Rσ from [0, 1) (identified
with the unit circle) to itself defined by Rσ(x) = {x + σ}, where {x} = x − bxc is
the fractional part of x.

Considering a partition of [0, 1) into I0 = [0, 1 − σ), I1 = [1 − σ, 1), define an
infinite word sσ,ρ by

sσ,ρ[n] =

{
0 if Rnσ(ρ) = {ρ+ nσ} ∈ I0,
1 if Rnσ(ρ) = {ρ+ nσ} ∈ I1.

We can also define I ′0 = (0, 1 − σ], I ′1 = (1 − σ, 1] and denote the corresponding
word by s′σ,ρ. As if was proved by Morse and Hedlund, Sturmian words on {0, 1}
are exactly words sσ,ρ or s′σ,ρ.

The same irrational rotation Rσ can be used to define Sturmian permutations:

Definition 3.3. A Sturmian permutation β = β(σ, ρ) is defined by its representa-
tive (b[n]), where b[n] = Rnσ(ρ) = {ρ+ nσ}.

These permutations are obviously related to Sturmian words: indeed, β[i+1] > β[i]
if and only if s[i] = 0, where s = sσ,ρ. Strictly speaking, the case of s′ corresponds
to a permutation β′ defined with the upper fractional part.

Sturmian permutations have been studied in [18]; in particular, it is known that
their complexity is pβ(n) ≡ n.

To continue, we now need a series of properties of a Sturmian word s = s(σ, ρ).
They are either trivial or classical, and the latter can be found, in particular, in
[15].

1. The frequency of ones in s is equal to the slope σ.
2. In any factor of s of length n, the number of ones is either bnσc, or dnσe. In

the first case, we say that the factor is light, in the second case, it is heavy.
3. The factors of s from the same conjugate class are all light or all heavy.
4. Let the continued fraction expansion of σ be σ = [0, 1 + d1, d2, . . .]. Consider

the sequence of standard finite words sn defined by

s−1 = 1, s0 = 0, sn = sdnn−1sn−2 for n > 0.

Then
– The set of bispecial factors of s coincides with the set of words obtained by

erasing the last two symbols from the words sknsn−1, where 0 < k ≤ dn+1.
– For each n, we can decompose s as a concatenation

s = p

∞∏
i=1

skin sn−1, (1)

where ki = dn+1 or ki = dn+1 + 1 for all i, and p is a suffix of sdn+1+1
n sn−1.

– For all n ≥ 0, if sn is light, then all the words sknsn−1 for 0 < k ≤ dn+1

(including sn+1) are heavy, and vice versa.
5. A Christoffel word can be defined as a word of the form 0b1 or 1b0, where b is a

bispecial factor of a Sturmian word s. For a given b, both Christoffel words are
also factors of s and are conjugate of each other. Moreover, they are conjugates
of all but one factors of s of that length.

6. The lengths of Christoffel words in s are exactly the lengths of words sknsn−1,
where 0 < k ≤ dn+1. Such a word is also conjugate of both Christoffel words of
the respective length obtained from one of them by sending the first symbol to
the end of the word.
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The following statement will be needed for our result.

Proposition 3.4. Let n be such that {nα} < {iα} for all 0 < i < n. Then the
word sα,0[0..n− 1] is a Christoffel word. The same assertion holds if {nα} > {iα}
for all 0 < i < n.

Proof. We will prove the statement for the inequality {nα} < {iα}; the other
case is symmetric. First notice that there are no elements {iα} in the interval
[1 − α, 1 − α + {nα}) for 0 ≤ i < n. Indeed, assuming that for some i we have
1−α ≤ {iα} < 1−α+{nα}, we get that 0 ≤ {(i+1)α} < {nα}, which contradicts
the conditions of the claim.

Next, consider a word sα,1−ε[0..n− 1] for 0 < ε < {nα}, i.e., the word obtained
from the previous one by rotating by ε clockwise. Clearly, all the elements except for
s[0] stay in the same interval, so the only element which changes is s[0]: sα,0[0] = 0,
sα,1−ε[0] = 1, sα,0[1..n−1] = sα,1−ε[1..n−1]. This means that the factor sα,0[1..n−1]
is left special.

Now consider a word sα,1−ε′ [0..n − 1] for {nα} < ε′ < mini∈{0<i<n}{iα}, i.e.,
the word obtained from sα,0[0..n− 1] by rotating by ε′ (i.e., we rotate a bit more).
Clearly, all the elements except for s[0] and s[n − 1] stay in the same interval, so
the only elements which change are s[0] and s[n − 1]: sα,0[0] = 0, sα,1−ε′ [0] = 1,
sα,0[n− 1] = 1, sα,1−ε′ [n− 1] = 0, sα,0[1..n− 2] = sα,1−ε′ [1..n− 2]. This means that
the factor sα,0[1..n− 2] is right special.

So, the factor sα,0[1..n− 2] is both left and right special and hence bispecial. By
the construction, sα,0[0..n− 1] is a Christoffel word.

The proof is illustrated by Fig. 1, where all the numbers on the circle are denoted
modulo 1. ut

0

1−

0

1− α

0

1− αα

α
α α−ε −εn n

n −ε

−ε

’

’

Fig. 1. Intervals for a bispecial word

Note also that in the Sturmian permutation β = β(σ, ρ), we have β[i] < β[j] for
i < j if and only if the respective factor s[i..j − 1] of s is light (and, symmetrically,
β[i] > β[j] if and only if the factor s[i..j − 1] is heavy).

4 Ergodic permutations

In this section, we define a new notion of an ergodic permutation.
Let (a[i])∞i=1 be a sequence of real numbers from the interval [0, 1], representing

an infinite permutation, a and p also be real numbers from [0, 1]. We say that the
probability for any element a[j] to be less than a exists and is equal to p if

∀ε > 0 ∃N ∈ N ∀n > N ∀j ∈ N
∣∣∣∣#{a[j + k]|0 ≤ k < n, a[j + k] < a}

n
− p
∣∣∣∣ < ε.

In other words, if we substitute all the elements from (a[i]) which are smaller
than a by 1, and those which are bigger by 0, the above condition means that
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the uniform frequency of the letter 1 exists and equals p. So, the probability to be
smaller than a is the uniform frequency of the elements which are less than a. For
more on uniform frequencies of letters in words we refer to [9].

We note that this is not exactly probability on the classical sense, since we do not
have a random sequence. But we are interested in permutations where this “prob-
ability” behaves in certain sense like probability of a random sequence uniformly
distributed on [0, 1]:

Definition 4.1. A sequence (a[i])∞i=1 of real numbers is canonical if and only if

– all the numbers are pairwise distinct;
– for all i we have 0 ≤ a[i] ≤ 1;
– and for all a, the probability for any element a[i] to be less than a is well-defined

and equal to a.

More formally, the last condition should be rephrased as

∀a ∈ [0, 1], ε > 0 ∃N ∈ N ∀n > N, j ∈ N
∣∣∣∣#{a[j + k]|0 ≤ k < n, a[j + k] < a}

n
− a

∣∣∣∣ < ε.

Remark 4.2. The set {a[i]|i ∈ N} for a canonical sequence (a[i]) is dense on [0, 1].

Remark 4.3. In a canonical sequence, the frequency of elements which fall into any
interval (t1, t2) ⊆ [0, 1] exists and is equal to t2 − t1.

Remark 4.4. Symmetrically to the condition “the probability to be less than a is
a” we can consider the equivalent condition “the probability to be greater than a is
1− a”.

Definition 4.5. An infinite permutation α = (αi)
∞
i=1 is called ergodic if it has a

canonical representative.

Example 4.6. Since for any irrational σ and for any ρ the sequence of fractional
parts {ρ + nσ} is uniformly distributed in [0, 1), a Sturmian permutation βσ,ρ is
ergodic.

Example 4.7. Consider the sequence

1

2
, 1,

3

4
,
1

4
,
5

8
,
1

8
,
3

8
,
7

8
, · · ·

defined as the fixed point of the morphism

ϕtm : [0, 1] 7→ [0, 1]2, ϕtm(x) =

{
x
2 + 1

4 ,
x
2 + 3

4 , if 0 ≤ x ≤
1
2 ,

x
2 + 1

4 ,
x
2 −

1
4 , if

1
2 < x ≤ 1.

If can be proved that this sequence is canonical and thus the respective permutation
is ergodic. In fact, this permutation, as well as its construction [17], are closely
related to the famous Thue-Morse word [2], and thus it is reasonable to call it the
Thue-Morse permutation.

Proposition 4.8. The canonical representative (a[n]) of an ergodic permutation α
is unique.
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Proof. Given α, for each i we define

a[i] = lim
n→∞

#{α[k]|0 ≤ k < n, α[k] < α[i]}
n

and see that, first, this limit must exist since α is ergodic, and second, a[i] is the
only possible value of an element of a canonical representative of α. �

Note, however, that even if all the limits exist, it does not imply the existence of
the canonical representative. Indeed, there is another condition to fulfill: for different
i the limits must be different.

Consider a growing sequence (ni)
∞
i=1, ni ∈ N, ni+1 > ni. The respective sub-

permutation (α[ni]) will be called N -growing (N -decreasing) if ni+1 − ni ≤ N and
α[ni+1] > α[ni] (α[ni+1] < α[ni]) for all i. A subpermutation which is N -growing
or N -decreasing is called N -monotone.

Proposition 4.9. If a permutation has a N -monotone subpermutation for some
N , then it is not ergodic.

Proof. Suppose the opposite and consider a subsequence (a[ni]) of the canonical
representative a corresponding to the N -monotone (say, N -growing) subpermuta-
tion (α[ni]). Consider b = limi→∞ a[ni] (which exists) and an ε < 1/N . Let M
be the number such that a[nm] > b − ε for m ≥ M . Then the probability for an
element a[i] to be in the interval [a[nM ], b] must be equal to b − a[nM ] < ε due to
Remark 4.3. On the other hand, since all a[nm] for m > M are in this interval, and
ni+1 − ni ≤ N , this probability is at least 1/N > ε. A contradiction. �

An element α[i], i > N , of a permutation α is called N -maximal (resp., N -
minimal) if α[i] is greater (resp., less) than all the elements at the distance at most
N from it: α[i] > α[j] (resp., α[i] < α[j]) for all j = i−N, i−N + 1, . . . , i− 1, i+
1, . . . , i+N .

Proposition 4.10. In an ergodic permutation α, for each N there exists an N -
maximal and an N -minimal element.

Proof. Consider a permutation α without N -maximal elements and prove that it is
not ergodic. Suppose first that there exists an element α[n1], n1 > N , in α which is
greater than any of itsN left neighbours: α[n1] > α[n1−i] for all i from 1 toN . Since
α[n1] is not N -maximal, there exist some i ∈ {1, . . . , N} such that α[n1+i] > α[n1].
If such i are several, we take the maximal α[n1 + i] and denote n2 = n1 + i. By
the construction, α[n2] is also greater than any of its N left neighbours, and we
can continue the sequence of elements α[n1] < α[n2] < · · · < α[nk] < · · · . Since for
all k we have nk+1 − nk ≤ N , it is an N -growing subpermutation, and due to the
previous proposition, α is not ergodic.

Now suppose that there are no elements in α which are greater than all their N
left neighbours:

For all n > N, there exists some i ∈ {1, . . . , N} such that α[n− i] > α[n]. (2)

We take α[n1] to be the greatest of the first N elements of α and α[n2] to be the
greatest among the elements α[n1+1], . . . , α[n1+N ]. Then due to (2) applied to n2,
α[n1] > α[n2]. Moreover, n2−n1 ≤ N and for all n1 < k < n2 we have α[k] < α[n2].

Now we take n3 such that α[n3] is the maximal element among α[n2+1], . . . , α[n2+
N ], and so on. Suppose that we have chosen n1, . . . , ni such that α[n1] > α[n2] >
· · · > α[ni], and

For all j ≤ i and for all k such that nj−1 < k < nj , we have α[k] < α[nj ]. (3)
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For each new α[ni+1] chosen as the maximal element among α[ni+1], . . . , α[ni+N ],
we have ni+1−ni ≤ N . Due to (2) applied to ni+1 and by the construction, α[ni+1] <
α[l] for some l from ni+1 − N to ni. Because of (3), without loss of generality we
can take l = nj for some j ≤ i. Moreover, we cannot have α[ni] < α[ni+1] and thus
j < i: otherwise ni+1 would have been chosen as nj+1 since it fits the condition of
maximality better.

So, we see that α[ni] > α[ni+1], (3) holds for i+ 1 as well as for i, and thus by
induction the subpermutation α[n1] > · · · > α[ni] > · · · is N -decreasing. Again,
due to the previous proposition, α is not ergodic. �

5 Minimal complexity of ergodic permutations

Proposition 5.1. For any ergodic permutation α, we have pα(n) ≥ n.

Proof. Due to Proposition 4.10, there exists an n-maximal element αi, i > n.
All the n factors of α of length n containing it are different: in each of them, the
maximal element is at a different position. �

The complexity of Sturmian permutations considered in Section 3 is known to be
pα(n) = n [18]. In what follows, we are going to prove that these are the only ergodic
examples of this minimal complexity, and thus the Sturmian construction remains
a natural “simplest” example if we restrict ourselves to ergodic permutations. So,
the rest of the section is devoted to the proof of

Theorem 5.2. The minimal complexity of an ergodic permutation α is pα(n) ≡ n.
The set of ergodic permutations of minimal complexity coincides with the set of
Sturmian permutations.

Since the complexity of ergodic permutations satisfies pα(n) ≥ n due to Proposition
5.1; and the complexity of Sturmian permutations is pα(n) ≡ n, it remains to prove
just that if pα(n) ≡ n for an ergodic permutation α, then α is Sturmian.

Definition 5.3. Given an infinite permutation α = α[1] · · ·α[n] · · · , consider its
underlying infinite word s = s[1] · · · s[n] · · · over the alphabet {0, 1} defined by

s[i] =

{
0, if α[i] < α[i+ 1],

1, otherwise.

Note that in some papers the word s was denoted by γ and considered directly
as a word over the alphabet {<,>}.

It is not difficult to see that a factor s[i+ 1..i+ n− 1] of s contains only a part
of information on the factor α[i + 1..i + n] of α, i.e., does not define it uniquely.
Different factors of length n − 1 of s correspond to different factors of length n of
α. So,

pα(n) ≥ ps(n− 1).

Together with the above mentioned result of Morse and Hedlund [19], it gives the
following

Proposition 5.4. If pα(n) = n, then the underlying sequence s of α is either ulti-
mately periodic or Sturmian.

Now we consider different cases separately.

Proposition 5.5. If pα(n) ≡ n for an ergodic permutation α, then its underlying
sequence s is aperiodic.
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Proof. Suppose the converse and let p be the minimal period of s. If p = 1, then
the permutation α is monotone, increasing or decreasing, so that its complexity is
always 1, a contradiction. So, p ≥ 2. There are exactly p factors of s of length p−1:
each residue modulo p corresponds to such a factor and thus to a factor of α of
length p. The factor α[kp+ i..(k+1)p+ i−1], where i ∈ {1, . . . , p}, does not depend
on k, but for all the p values of i, these factors are different.

Now let us fix i from 1 to p and consider the subpermutation α[i], α[p+i], . . . , α[kp+
i], . . .. It cannot be monotone due to Proposition 4.9, so, there exist k1 and k2
such that α[k1p + i] < α[(k1 + 1)p + i] and α[k2p + i] > α[(k2 + 1)p + i]. So,
α[k1p+ i..(k1 + 1)p+ i] 6= α[k2p+ i..(k2 + 1)p+ i]. We see that each of p factors of
α of length p, uniquely defined by the residue i, can be extended to the right to a
factor of length p + 1 in two different ways, and thus pα(p + 1) ≥ 2p. Since p > 1
and thus 2p > p+ 1, it is a contradiction. �

So, Propositions 5.4 and 5.5 imply that the underlying word s of an ergodic
permutation α of complexity n is Sturmian. Let s = s(σ, ρ), that is,

sn = bσ(n+ 1) + ρc − bσn+ ρc.

In the proofs we will only consider s(σ, ρ), since for s′(σ, ρ) the proofs are symmetric.
It follows directly from the definitions that the Sturmian permutation β =

β(σ, ρ) defined by its canonical representative b with b[n] = {σn + ρ} has s as
the underlying word.

Suppose that α is a permutation whose underlying word is s and whose complex-
ity is n. We shall prove the following statement concluding the proof of Theorem
5.2:

Lemma 5.6. Let α be a permutation of complexity pα(n) ≡ n whose underlying
word is s(σ, ρ). If α is ergodic, then α = β(σ, ρ).

Proof. Assume the converse, i.e., that α is not equal to β. We will prove that hence
α is not ergodic, which is a contradiction.

Recall that in general, pα(n) ≥ ps(n − 1), but here we have the equality since
pα(n) ≡ n and ps(n) ≡ n+1. It means that a factor u of s of length n− 1 uniquely
defines a factor of α of length n which we denote by αu. Similarly, there is a unique
factor βu of β.

Clearly, if u is of length 1, we have αu = βu: if u = 0, then α0 = β0 = (12), and
if u = 1, then α1 = β1 = (21). Suppose now that αu = βu for all u of length up to
n− 1, but there exists a word v of length n such that αv 6= βv.

Since for any factor v′ 6= v of v we have αv
′
= βv

′
, the only difference between

αv and βv is the relation between the first and last element: αv[1] < αv[n+ 1] and
βv[1] > βv[n+ 1], or vice versa. (Note that we number elements of infinite objects
starting with 0 and elements of finite objects starting with 1.)

Consider the factor bv of the canonical representative b of β corresponding to
an occurrence of βv. We have bv = ({τ}, {τ + σ}, . . . , {τ + nσ}) for some τ .

Proposition 5.7. All the numbers {τ + iσ} for 0 < i < n are situated outside of
the interval whose ends are {τ} and {τ + nσ}.

Proof. Consider the case of βv[1] < βv[n + 1] (meaning {τ} < {τ + nσ}) and
αv[1] > αv[n + 1]; the other case is symmetric. Suppose by contrary that there is
an element {τ + iσ} such that {τ} < {τ + iσ} < {τ +nσ} for some i. It means that
βv[1] < βv[i] < βv[n + 1]. But the relations between the 1st and the ith elements,
as well as between the ith and (n + 1)st elements, are equal in αv and in βv, so,
αv[1] < αv[i] and αv[i] < αv[n+ 1]. Thus, αv[1] < αv[n+ 1], a contradiction. �



10 Sergey V. Avgustinovich1, Anna E. Frid2, Svetlana Puzynina1,3

Proposition 5.8. The word v belongs to the conjugate class of a Christoffel factor
of s, or, which is the same, of a factor of the form sknsn−1 for 0 < k ≤ dn+1.

Proof. The condition “For all 0 < i < n, the number {τ + iσ} is not situated
between {τ} and {τ + nσ}” is equivalent to the condition “{nα} < {iα} for all
0 < i < n” considered in Proposition 3.4 and corresponding to a Christoffel word of
the same length. The set of factors of s of length n is exactly the set {sα,τ [0..n−1]|τ ∈
[0, 1]}. These words are n conjugates of the Christoffel word plus one singular factor
corresponding to {τ} and {τ+nσ} situated in the opposite ends of the interval [0, 1]
(“close” to 0 and “close” to 1), so that all the other points {τ + iσ} are between
them.

Example 5.9. Consider a Sturmian word s of the slope σ ∈ (1/3, 2/5). Then the
factors of s of length 5 are 01001, 10010, 00101, 01010, 10100, 00100. Fig. 2 depicts
permutations of length 6 with their underlying words. In the picture the elements of
the permutations are denoted by points; the order between two elements is defined
by which element is “higher” on the picture. We see that in the first five cases, the
relation between the first and the last elements can be changed, and in the last case,
it cannot since there are other elements between them. Indeed, the first five words
are exactly the conjugates of the Christoffel word 1 010 0, where the word 010 is
bispecial.

0 0 01 1 00 1 000 0 1 0 01 00 1 01 00 1 1 0 01 1 0

Fig. 2. Five candidates for v and a non-candidate word

Note also that due to Proposition 5.8, the shortest word v such that αv 6= βv is
a conjugate of some sknsn−1 for 0 < k ≤ dn+1.

In what follows without loss of generality we suppose that the word sn is heavy
and thus sn−1 and sknsn−1 for all 0 < k ≤ dn+1 are light.

Consider first the easiest case: v = s
dn+1
n sn−1 = sn+1. This word is light, so,

βsn+1 [1] < βsn+1 [|sn+1|+ 1]. Since the first and the last elements of αsn+1 must be
in the other relation, we have αsn+1 [1] > αsn+1 [|sn+1|+ 1]. At the same time, since
sn is shorter than sn+1, we have αsn = βsn and in particular, since sn is heavy,
αsn [1] > αsn [|sn|+ 1].

Due to (1), the word s after a finite prefix can be represented as an infinite
concatenation of occurrences of sn+1 and sn: s = p

∏∞
i=1 s

ti
n sn+1, where ti = ki −

dn+1 = 0 or 1. But both αsn and αsn+1 are permutations with the last elements less
than the first ones. Moreover, if we have a concatenation uw of factors u and w of s,
we see that the first symbol of αw is the last symbol of αu: αu[|u|+ 1] = αw[1]. So,
an infinite sequence of factors sn and sn+1 of s gives us a chain of the first elements
of respective factors of the permutation α, and each next elements is less than the
previous one. This chain is a |sn+1|-monotone subpermutation, and thus α is not
ergodic.

Now let us consider the general case: v is from the conjugate class of stnsn−1,
where 0 < t ≤ dn+1. We consider two cases: the word stnsn−1 can be cut either in
one of the occurrences of sn, or in the suffix occurrence of sn−1.

In the first case, v = r1s
l
nsn−1s

t−l−1
n r2, where sn = r2r1 and 0 ≤ l < t. Then

s = p

∞∏
i=1

skin sn−1 = pr2(r1r2)
k1−l−1

∞∏
i=2

v(r1r2)
ki−t. (4)
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We see that after a finite prefix, the word s is an infinite catenation of words v and
r1r2. The word r1r2 is shorter than v and heavy since it is a conjugate of sn. So,
αr1r2 = βr1r2 and in particular, αr1r2 [1] > αr1r2 [|r1r2| + 1]. The word v is light
since it is a conjugate of stnsn−1, but the relation between the first and the last
elements of αv is different than between those in βv, that is, αv[1] > αv[|v| + 1].
But as above, in a concatenation uw, we have αu[|u| + 1] = αw[1], so, we see a
|v|-decreasing subpermutation in α. So, α is not ergodic.

Analogous arguments work in the second case, when stnsn−1 is cut somewhere
in the suffix occurrence of sn−1: v = r1s

t
nr2, where sn−1 = r2r1. Note that sn−1 is

a prefix of sn, and thus sn = r2r3 for some r3. In this case,

s = p

∞∏
i=1

skin sn−1 = pr2(r3r2)
k1

∞∏
i=2

v(r3r2)
ki−t. (5)

As above, we see that after a finite prefix, s is an infinite catenation of the heavy
word r3r2, a conjugate of sn, and the word v. For both words, the respective factors
of α have the last element less than the first one, which gives a |v|-decreasing
subpermutation. So, α is not ergodic.

The case when sn is not heavy but light is considered symmetrically and gives
rise to |v|-increasing subpermutations. This concludes the proof of Theorem 5.2.
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