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Abstract 
The complexity and the criticality of automotive electronic embedded 

systems are steadily increasing today, and that is particularly the case 

for software development. The new ISO 26262 standard for 

functional safety is one of the answers to these challenges. The 

ISO 26262 defines requirements on the development process in order 

to ensure the safety. Among these requirements, fault injection (FI) is 

introduced as a dedicated technique to assess the effectiveness of 

safety mechanisms and demonstrate the correct implementation of the 

safety requirements. 

Our work aims at developing an approach that will help integrate FI 

in the whole development process in a continuous way, from system 

requirements to the verification and validation phase. This leads us to 

explore the benefits of safety analyses (Failure Mode Effects and 

Criticality Analysis (FMECA), Fault Tree Analysis (FTA), Critical 

Path Analysis (CPA) or Freedom From Interference (FFI) Analysis, 

etc.) for the definition of the test plan, defining efficient FI tests 

cases. 

The paper discusses the objectives and role of FI in the Verification 

and Validation process. It also illustrates how to apply this 

methodology on a platform based on AUTOSAR 4.X that integrates a 

trusted Front-Light Manager Application (Automotive Safety 

Integrity Level - ASIL B) and a non-trusted (Quality Management - 

QM) application. This proposed architecture allows ensuring the 

safety requirements with dedicated safety mechanisms and also FFI 

using both temporal and spatial partitioning. Finally, the results of FI 

test cases obtained on a mock-up running the Front-Light Manager 

Application, developed at Valeo GEEDS are presented. 

 

Introduction 
To deal with the criticality and the increasing complexity of electrical 

and electronic automotive systems, the automotive industry has 

introduced the ISO 26262 standard [1] for functional safety in road 

vehicle. This standard has pushed recommendations towards different 

methods and techniques that should be adopted in a development 

process to assure that “no unreasonable risk is due to hazards caused 

by malfunctioning behavior of electrical and electronic systems”.  

Fault injection (FI) is one of the dedicated techniques to achieve the 

verification of safety requirements. FI is now a method highly 

recommended in the ISO 26262 (10 requirements are about the use of 

FI at different steps of the V-cycle), particularly, in Part 6 on 

software developments. FI allows the verification of the effectiveness 

of safety mechanisms, as these cannot be activated using other test 

methods. 

Section 1 introduces the notions of safety analyses and fault injection. 

Section 2 aims at defining the objectives of fault injection in the 

verification and validation process based on the results of the safety 

analyses. Section 3 describes the software architecture of the case 

study: the Front-Light Manager. Section 4 applies the 

recommendations of the section 2 on the case study. Finally, the last 

section concludes the paper. 

 

1. State of the Art 
 

ISO 26262 Standard for Functional Safety 
 

Safety Development Process 
In a previous work [2], the integration of FI in the early phases of the 

development process of automotive critical systems, in the context of 

the ISO 26262 standard, has been investigated. The synthesis of FI 

Analyses into Failure Mode Effects and Criticality Analysis -- 

FMECA spreadsheets has been demonstrated. The process also helps 

to capture the failure propagation paths between the levels of 

architecture. The interest of these analyses is twofold: i) they identify 

the nature and location of the safety mechanisms that must be 

integrated in the system, ii) they guide FI experiments during post-

implementation phase. 

The critical paths identified in safety analyses improve significantly 

the traceability of safety requirements. 

 

Ensuring Freedom From Interferences (FFI) 
Nowadays, the processing capabilities of the microcontrollers used 

for automotive systems allow designing more complex products. 

Particularly, the software design takes advantage of these resources, 

by proposing to integrate several applications on one microcontroller. 

In parallel, these systems also embed more critical functions. An 

important safety issue appears with the integration of applications 

with different criticality levels, i.e., different Automotive Safety 

Integrity Level (ASIL). According to the ISO 26262, all the modules 

on the microcontroller should be developed according to the highest 

ASIL that apply on the microcontroller because of the strong 

interrelationship between these applications. The main drawback is 

that the application with the lower ASIL is required, according to the 

ISO 26262, to be developed with unnecessary efforts. Indeed, higher 

ASIL modules require applying more techniques and methods. 

However, the ISO 26262 allows integrations of modules with 

different ASILs, but imposes to prove that the Freedom From 

Interferences (FFI) is ensured. FFI is defined as the “absence of 

cascading failures between two or more elements that could lead to 

the violation of a safety requirement”. In a more practical way, the 

integration of a Quality Management (QM) or lower ASIL module is 

allowed if and only if it could be proved that it does not interfere 

directly or indirectly with the behavior of any higher ASIL modules. 

The following interferences have to be considered between the two 

software applications: i) corruption of shared-data, ii) calls of 

Application Programming Interface (API) service, iii) the real-time 

behavior (scheduling, task pre-emption…), iv) shared-memory access 

and v) shared hardware peripherals. 

http://papers.sae.org/2015-01-0272
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Fault Injection in Verification & Validation Activities 
 

Fault Injection Techniques 
Fault injection [3] is a mature technology that has been successfully 

applied using several techniques on different targets [4, 5, 6]. 

Fault injection techniques have been developed for a long time, first, 

as a mean to validate safety mechanisms (error detection and 

recovery). The fault model is an input for the design of fault tolerant 

systems; the development of error detection and recovery 

mechanisms should efficiently perform error processing. The 

efficiency is evaluated using measures like Error Detection 

Coverage (EDC), as a conditional probability. When a fault 

belonging to the fault model is injected, the corresponding error 

detection mechanisms should be activated and trigger recovery 

mechanisms if any. Secondly, fault injection can also be used to 

evaluate the robustness of a component (hardware – HW – or 

software – SW) with respect to some fault assumptions. The idea here 

is often to evaluate the efficiency of built-in error detection 

mechanisms to prevent failure modes violating safety requirements. 

Moreover, the introduction of FI, in the ISO 26262, renewed the 

interest of this topic in the automotive industry [7, 8, 9]. 

 

FI completes other testing techniques by enabling to verify the global 

reaction of an application against systematic or random faults from 

shared components. Moreover, both random (HW aging, single event 

upset) faults and systematic (coding/implementation) faults are 

assessed at system and product levels. At software level, FI is only 

applied to verify systematic faults’ absence in the considered 

application. 

 

FARM 
The main elements that characterize FI are: the set of faults to be 

injected (the Fault model), the system activities under which the 

faults are injected (the Activation), the Readouts of the experiment 

results, and the Measures evaluated, based on the readouts. These 

elements form the basis of the FARM [10] model to perform FI. 

The FARM model characterizes in an effective way the fault 

injection environment, and it is used in this study as a reference in the 

definition of FI experiments.  

It is worth to mention that the measures to be evaluated have to be 

defined first, since they guide the whole FI process. However, their 

values are evaluated in the last step, by processing information 

provided by the readouts. The fault model, the system activation and 

the readouts have to be defined in such a way that they enable 

obtaining the measures in a meaningful and efficient way. 

FARM is essential in the paper, as all the FI experiments have been 

defined following this concept.  

 

2. Fault Injection for the Verification & 

Validation 
The importance of the safety analyses in the identification of the 

critical elements and of the critical propagation paths, have been 

shown. Moreover, several detection and mitigation means are 

identified and must be implemented in order to ensure the safety 

requirements at each level of architecture.  

This section will show how safety analyses help in the definition of 

FI tests. Particularly, by giving dedicated measures on the coverage 

of the safety mechanisms and the correct mitigation of critical paths, 

fault injection enables to verify the implementation of safety 

requirements and of FFI. 

 

Concerning verification and validation activities, fault injection is 

required by the ISO 26262, in parts 4, 5 and 6. This study focuses on 

the requirements of the part 4, i.e., system level, and part 6, i.e., 

software level. 

 

ISO 26262 Requirements on FI 
 

SW Unit Testing & SW Integration Testing 
At these two levels, fault injection shall be applied to demonstrate 

that the software units achieve: 

a) compliance with the software unit design specification; 

b) compliance with the specification of the hardware-software 

interface;  

c) the specified functionality; 

d) confidence in the absence of unintended functionality; 

e) robustness; and 

EXAMPLE: The absence of inaccessible software, the effectiveness of 

error detection and error handling mechanisms. 

f) sufficient resources to support their functionality. 

 

At this level fault injection, i.e. that includes the injection of arbitrary 

faults (by corrupting values of variables, by introducing code 

mutation, or by corrupting values of Central Processing Unit (CPU) 

registers) is at least recommended at all levels and also highly 

recommended for ASIL D and specifically for ASIL C at SW 

Integration testing. 

Moreover, the ISO 26262 requires to perform “Requirements-based 

test”. This implies that the safety mechanisms identified to ensure the 

safety requirements of any ASILs must be tested. The definition of 

these tests leads to use fault injection techniques. Hence, FI 

experiments should be performed for all ASILs. It enables to 

demonstrate confidence in the absence of unintended functionality or 

in the robustness of the target (Software unit or SW architecture). 

 

To conclude at system level, fault injection must be done for all ASIL 

levels in order to verify the propagation of potential causes identified 

in the safety analyses, verify the error detection coverage of the 

implemented safety mechanisms. The injection of arbitrary faults is 

only required for ASIL D, and also ASIL C only for the SW 

integration tests. Only highest levels are required as the test efforts 

increase significantly as fault should be injected intensively in the 

software, with random fault injection.  

 

System Testing 
In part 4 of the ISO 26262, fault injection is required at HW/SW 

integration level and at product and system level (according to the 

chosen naming). 

At these levels, ISO 26262 requires fault injection to:  

 Demonstrate the effectiveness of the safety mechanisms’ 

diagnostic coverage. 

 Demonstrate the correct implementation of the safety 

requirements. 

Similarly to Part 6, fault injection is highly recommended at least 

down to ASIL C, and specifically at ASIL B to demonstrate the 

correct implementation of safety requirements at HW/SW integration 

level. Moreover, Requirements-based tests are also highly 

recommended in order to verify functional and non-functional 

requirements. Fault injection technique must be used in order to 

validate the safety requirements at all ASIL. 

 

Objectives and Definition of Fault Injection Tests 
In this section, the applicability of the FARM method, defined in 

section 1, in the identification of the objectives of the fault injection 

tests and the planning of the tests is discussed.   

 

Definition of the Experimentation Target 
The safety analyses help to identify the most critical elements and the 

most critical propagation paths of the architecture thanks to the 

traceability between levels of the ASIL. These critical elements and 

paths should be particularly verified, in order to prove the causes of 

safety requirement violation have been mitigated. The first 
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experimentation targets are the one with the highest ASIL. The 

targets are, then, chosen following the possible target with decreasing 

criticality. 

Nonetheless, the chosen targets usually impose the implementation 

of, at least, one safety mechanism. Then, it is also required to 

demonstrate efficiency against the considered fault model. 

 
Measures to be Assessed 
Fault injection has the following two main objectives. On the one 

hand, the verification that the safety requirements are not violated. 

The considered fault model from the safety analyses does not 

propagate through critical paths, and violate safety requirements. This 

can be quantified by identifying the failure modes distribution, in 

which the failure modes are associated with safety requirements. The 

failure modes distribution could be represented using “pie chart”, 

“bar graphs” or “histograms”. It is possible to evaluate the rate of 

faults that lead to violate a safety requirement.  

On the other hand, FI addresses the verification of the effectiveness 

of the safety mechanisms. The considered fault model from the 

Safety Analyses is well handled by the safety mechanisms. Here, the 

aim is to assess the Error Detection Coverage and/or the Error 

Recovery Coverage (ERC) of the Safety Mechanism according to the 

fault model identify in the analyses. Generally, these results are 

represented as “pie chart”, in order to illustrate the difference 

between the covered faults and the lack of coverage. 

However, these measures only quantify the effectiveness of the safety 

mechanisms and the fault tolerance of proposed architecture in order 

to prevent the occurrence of Undesired Events. Then, there are also 

some qualitative measures that can be obtained with fault injection. 

 

Hence, it could help to identify a lack of coverage of a safety 

mechanism, particularly to the “Diagnostic Coverage” or “coverage 

factor” that have been claimed and used for quantitative safety 

analyses. The main difference is the considered fault model, because 

it implies to verify the entire fault model that the safety mechanism 

claims to handle. Besides, a lack of coverage could lead to:  

 Re-implement the safety mechanism. 

 Add another mechanism in order to mitigate specific faults 

or modify the design. 

Finally, when assessing the failure distribution, it could reveal failure 

modes that have not been identified during the Pre-implementation 

phase. There are two main reasons. On the one hand, the Safety 

analyses have been badly executed because the fault propagation of 

the fault model is incorrect or the failure modes are non-trivial due to 

the complexity of the design. On the other hand, the specification of 

functional requirements and safety requirements are incorrect. 

Indeed, these faults could lead to unexpected behavior if there is a 

lack of requirements or too many that interfere with each other. 

These qualitative results aim at validating the assumptions and 

choices done in safety analyses. 

 

Faults to be Injected 
 

The fault model can be extracted from the safety analyses of potential 

causes of failures, identified for each critical elements or path. Two 

FI strategies are possible: 

 Verify that an identified failure mode, e.g., in a FMECA 

row, is handled correctly by the implemented safety 

mechanisms. Hence, by injecting representative causes of 

failures leading to the considered failure mode, the 

identified safety requirements will be solicited, and will be 

easily tested. 

Let us consider, there are “n” potential causes that have 

been identified in a safety analysis and enable to activate 

the “n” equivalence classes (EC) of the failure mode (FM) 

of the SW module. Injecting these causes enable to verify 

that the safety mechanism mitigates correctly the failure 

mode of the SW module or find lacks in the coverage. 

 Here, the safety analyses lead to identify a set of potential 
causes. Experiments consist in injecting all possible causes 
to check that propagation paths identified with the safety 
analyses are valid. In the latter case, it must be verified that 
the propagation is well mitigated. 

 

During this activity, the strategy is chosen independently from FI 

capabilities provided by the available FI tool. Here, the goal is only to 

define the set of fault that should be injected in order to obtain the 

desired measures. 

 

Activation Model:  
The Activation model is a set of data patterns that aims at exercising 

the injected fault. For a general purpose, a solution consists of using a 

representative environment of the target. It aims at evaluating the 

behavior of the system in presence of faults during the representative 

uses of the target. They could be chosen according to the frequency, 

the criticality, etc. of the target. 

Nonetheless, the determination of the Activation set could be 

significantly improved using behavioral models of the dynamic of the 

target with its environment. The behavioral models developed during 

the design of the system could be very useful for this purpose. Indeed 

sequence diagrams, timing diagrams or use cases done to describe 

both functional and non-functional behavior, are of prime importance 

in the definition of representative fault injection tests. On this basis, it 

is possible to determine when to trigger the injection i) from the 

states of the target’s components and ii) inputs from the environment. 

 

Readouts: 
The readouts are obtained in order to verify and validate the system 

according to the safety requirements and also to verify the 

effectiveness of the safety mechanisms, i.e., computation of relevant 

measures.  

 

To define these readouts, it is recommended using the safety 

analyses; particularly the following FMECA columns: the failure 

modes, the effects (local effects and effects on higher levels of 

architecture), and the column describing the safety mechanisms.  

These columns describe the various effects of the propagation of the 

faults, and hence should be used to define the variables (physical or 

digital) that have to be observed and acquired on the target. Further 

details about these measurement points (state or events e.g., 

timestamps, log files of variables) should also be registered. This 

couple of variables/states indicates whether i) a safety mechanism has 

been triggered and ii) the error handling is correct.  

 
Table 1. Readouts Analysis 

Case α β γ δ 

Activation of a  

Safety 

Mechanism 

YES YES NO NO 

Safety 

requirement  

violated 

NO YES YES NO 

Comments and 

further analysis 

Expected  

Results 

Coverage 

deficiency 

Default of the 

Activation of the 

Safety 

Mechanism(s) 

No Observation 

(No effect but to 

be analyzed) 

 

Then, from the readouts, a logical expression, or safety property, of 

the target states can be established to detect when a safety 

requirement is violated.  

The analysis of the readouts leads to assess the measures defined at 

the beginning of the process. However, the results could be 

ambiguous and must be analyzed. These experiments have been 

classified into four categories, see Table 1. Here, the experiments 
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have been done on a target implementing at least one safety 

mechanism that prevents the violation of a safety requirement. This 

table ignores faults that have not been activated and that usually fall 

into the “no observation” category.  

 

The expected behavior (Case α) is the activation of safety 

mechanisms in the presence of faults preventing the violation of the 

safety requirement. This behavior should have the highest 

probability. Obviously, in all other cases, safety mechanisms need to 

be deeply analyzed thanks to detailed execution traces of 

experiments. Case β corresponds to a lack of coverage of the 

implemented safety mechanism(s). Case γ and δ often mean a design 

or implementation problem since the safety mechanisms have not 

been activated. Defaults in the fault injection experiments can also be 

a reason for this last case: i) an error remain latent and has not been 

activated by test scenario, ii) the fault has been tolerated by another 

mechanism or by design (re-initialization of a data corrupted by the 

injection before using it). 

 

Nonetheless, in a conventional fault injection campaign, the output is 

often a pie chart composed of the previous Cases. Ideally, 100% of 

errors are detected and recovered; hence the non-infringement of the 

safety requirement is ensured. In reality, some errors are not detected 

by internal error detection mechanisms or not recovered. Upper level 

safety mechanisms should then prevent the violation of safety 

requirement.  

 

To conclude, safety analyses check/recommend safety mechanisms to 

be put in place, and FI tests quantify their efficiency, namely 

detection and recovery coverage. As the safety mechanisms may 

prevent undesired events (UEs) to be reached, this will enable to 

verify the safety requirements or the FFI is ensured. 

When a safety property is violated the conclusion is twofold: i) lack 

of coverage of a safety mechanism. The implementation of the 

mechanism should be analyzed in order to improve the coverage, if 

necessary, and ii) absence of a safety mechanism leading thus to a 

revision of the design. 

 

3. Case Study Description: the Front-Light 

System 
The approach is illustrated in this paper by a Front-Light system. This 

electronic system controls the two headlights of a car.  

Authors are aware this is a very simple system and this system has 

only a moderate safety criticality level: ASIL B. At this level, all the 

requirements on fault injection are not “highly recommended” by the 

ISO 26262 standard. 

 

However, a “proof of concept” of the proposed approach can be 

done. 

In order to contextualize the SW architecture, a first part is dedicated 

to the description of system level and product level. Indeed, the 

objectives of fault injection tests are required based on assumptions 

and analyses done at higher levels of architecture. It enables the 

traceability of the requirements and therefore the identification of 

efficient fault injection tests cases. Then, the considered targets for 

the tests are especially the SW architecture and the Watchdog 

Manager (WdgM). 

This section aims to introduce the section 4 on the verification and 

the validation of this architecture. 

 

 

Description of the System and the Product 

Architectural Level 
The Front-Light system has two system functional requirements: 

 The Front-Light system must light the road on the request 

of the car’s driver 

 The Front-Light system must set the dashboard light 

indicator 

A Preliminary Hazard Analysis (PHA) identifies two UEs (see Table 

2). There are two Safety-related UEs, UE01 and UE02 rated ASIL B. 

 
Table 2. UEs from the PHA and their ASIL Level 

UEs # Description ASIL 

UE01 Loss of the Headlights ASIL B 

UE02 Headlights Blinking ASIL B 

 

Hence, two safety requirements, referred to as Safety Goal (SG), can 

be defined. An ASIL has been allocated to this SG according to a 

Preliminary Hazard Analysis (PHA).  

SG1: The system shall not spuriously cut off both 

Headlights (ASIL B) 

SG2: The system shall prevent the Headlights blinking (ASIL B) 

 

It could be noted that quantitative analyses are considered out of the 

scope of the study. 

 

 
Figure 1. Architecture of the Front-Light System 

 

Description of the System Architecture Level 
The system architecture is defined in the Figure 1. The main product 

is the Front-Light Electronic Control Unit (ECU), which gathers 

information from Ignition Switch ECU and Light Switch ECU in 

order to set the Headlights ON or OFF and to light the Dashboard 

indicator. Then the Front-Light ECU must light the two headlights of 

the car and the Dashboard indicator when both Light Switch status 

and Ignition switch status are ON. 

 

All the product functional requirements are synthesized in Table 3  

 

 

 
Table 3. Description of the Functions of the Front-Light System. Focus on the 

Front-Light-ECU. 

Product 
Product 

Function Id #  
Product Functional Requirements  

Front-

Light 

ECU 

FL-ECU_F01 
Front-Light ECU must send Dashboard State (ON/OFF) 

through CAN Network 

FL-ECU_F02 
Front-Light ECU drives the Headlights state (ON/OFF) 

in less than 600ms 

Light 

Switch 
LS 

The Light Switch provides a ON/OFF signal to the 

Front-Light ECU 

Ignition 

Switch 

ECU 

IS-ECU 

The Ignition Switch ECU must send periodically the 

Ignition Switch Status (ON/OFF) through CAN 

Network to the Front-Light ECU 

CAN 

Network 

CAN-F01 
Transmit Ignition Switch Status from Ignition Switch 

ECU to Front-Light ECU 

CAN-F02 
Transmit Dashboard indicator status from Front-Light 

ECU to Dashboard ECU 

 

 

Ignition Switch ECU

ASIL B

Digital 

Input
Digital output

Digital 

output

CAN Network

QM

Dashboard (ECU) 

QM

Headlight

Left

ASIL B

Headlight

Right

ASIL B

Light Switch

ASIL B

Power Supply 12V

ASIL B

Protected Ignition 

Status ON/OFF
Dashboard  

Request ON/OFF

Front-Light

ECU

ASIL B

Front-Light System
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Then, a FMECA has been performed in order to identify the failure 

modes that may lead to violate the SGs (two failure modes have been 

found for the Front-Light-ECU, see Table 4). The FMECA also 

enables to allocate an ASIL to products and define System Safety 

Mechanisms.  

 
Table 4. Failure Modes of the Front-Light-ECU that Lead to Violate a Safety 

Goal Identified in the FMECA 
Product-UEs # Product Function Id # Failure mode description ASIL 

P-UE01 
FL-ECU_F01 

Loss of Headlights state ASIL B 

P-UE02 Unstable Headlights state ASIL B 

 

Information at the Product Level  
At this, level, only the micro-controller that runs the software 

applications is considered, hence design and the solution chosen for 

the electronic card are not detailed. 

The inputs and outputs links at product level are similar to the ones 

considered at system level. They do not add new pertinent failure 

modes. Particularly, the two P-UEs (see Table 4) defined could be 

considered also as two SW-UEs (SW-UE01 and SW-UE02). 

However, the following failure modes of the micro controller should 

be considered: hardware failures and also the FFI between the 

applications running on the microcontroller. 

 

Hardware Platform 

The microcontroller Leopard SPC56EL70 [11] is based on PowerPC 

architecture and involves two identical processors (e200z4d cores) 

connected to a single, shared main memory. The microcontroller 

could be configured in lockstep or decoupled modes.  

In lockstep mode, the two cores run the same instructions and then 

compare the results. It is required to ensure the safety of critical 

functions (e.g., ASIL C and D) by offering a tolerance on transient 

hardware faults. The decoupled mode enables to execute different 

instructions on each core, and therefore execute several tasks in 

parallel. The resources offer in this mode could be used in order to 

enhance the performance of the application and/or implement safety 

mechanisms. 

This microcontroller is a safety requirements for a Safety Element out 

of Context (SEooC), see ISO 26262 chapter 10 [1], and meets 

ASIL D requirements. 

 

Freedom From Interference (FFI) Analysis 

The FFI may identify several causes of malfunction of the higher 

ASIL application, by analyzing the interference channels. The 

identified causes also require mitigation means – definition of safety 

mechanisms – in order to prevent the violation of a safety goal. 

  

Without going into details, two applications with different criticality 

levels have been allocated on the microcontroller. There are 

respectively an ASIL B application and a QM application, which 

correspond respectively to functions, FL-ECU_F01 and FL-

ECU_F02. 

In a practical way, the QM application must not interfere with the 

ASIL B application following these channels: 

1. Real-time behavior Interferences: e.g., erroneous 

execution of the QM application (excessive execution time, 

erroneous period) 

2. Service Calls Interferences: e.g., wrong input provided by 

the QM application to ASIL B application. 

3. Shared Data Interferences: e.g., corruption by the QM 

application of a critical data of the ASIL B application. 

4. Shared Memory Interferences: e.g., corruption of Critical 

data by the QM application through shared-memory (ROM, 

RAM, stack) 

Each of these interferences can be defined as software UEs and they 

are respectively referenced as: SW-UE03 to SW-UE06. These UEs 

are all rated ASIL B as their occurrences could cause the violation of 

SG1 or SG2. 

 

In order to provide an execution environment that allows the 

execution of software components without unintended interference, 

temporal and spatial partitioning for both computational and 

communication resources is required. 

 

Spatial Partitioning: Spatial partitioning ensures that one software 

component cannot alter the code or private data of another software 

component. Spatial partitioning also prevents a software component 

from interfering with control of external devices (e. g., actuators) of 

other software components. 

Temporal Partitioning: Temporal partitioning ensures that a 

software component cannot affect the ability of other software 

components to access shared resources, such as the common network 

or a shared CPU. This includes the temporal behavior of the services 

provided by resources (latency, jitter, duration of availability during a 

scheduled access). 

 

Description of the SW Architecture 
 

AUTOSAR: AUTomotive Open System Architecture 
AUTOSAR [12] is a standard for automotive E/E software 

architectures developed by major OEMs and suppliers. It is a major 

aspect of the software development in the automotive industry.  

AUTOSAR brings in the realization of an application-specific 

approach for automotive software development as opposed to an 

ECU-specific one. Hence, it provides a means for developing 

applications that are platform independent as long as they abide by a 

specified process and the interfaces provided. The AUTOSAR 

architecture mainly encompasses an application layer (comprising 

Software Components (SWC), a Run-Time Environment (RTE) and 

the Basic Software (BSW).  

 

The BSW is composed of three main layers: Service Layer, ECU 

Abstraction Layer, and Microcontroller Layer.  

These layers are decomposed into five stacks (each stack is cross-

layer): the Service stack, the Memory stack, the Communication 

stack, the Input/Output Hardware Abstraction stack, and the Complex 

Devices Drivers stack. 

 

In order to implement the partitioning requirement on the FFI, the 

following AUTOSAR concept and modules are used. 

 

OS-Application: The AUTOSAR-OS offers the possibility to group 

different OS objects (Tasks, ISRs, Alarms, etc.) into so called OS-

Applications. All objects within one OS-Application share their 

memory protection scheme and the access rights. 

According to AUTOSAR-OS Specifications [13], OS-Applications 

can either be trusted or non-trusted. Trusted OS-Applications are 

allowed to run in CPU Supervisor Mode without restrictions and non-

trusted ones are running in CPU User Mode with limited access to 

OS and HW resources. 

 

MMU/MPU: The basic memory protection requirement that shall be 

fulfilled by the OS is to protect data, code and stack section of OS-

Application. In AUTOSAR OS standard, this protection is activated 

during the execution of the non-trusted OS-Applications in order to 

prevent the corruption of the trusted OS-Application memory 

sections. Moreover, it could be also used to protect private data and 

stack within the same OS-application if necessary. 

The memory protection requires hardware support in the 

microcontroller of a MPU and/or MMU. 

 

AUTOSAR Inter OS-Application Communicator – IOC: The 

communication between two OS-Applications has also to be 

protected. Indeed, OS-Applications intend to create memory 

protection boundaries, therefore dedicated communication 
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mechanisms are needed to cross them. This feature is implemented in 

AUTOSAR-OS and called IOC. It is the dedicated communication 

mean between OS-Applications, whether or not the OS-Applications 

are allocated to the same core (the communication could be between 

two OS-Applications on the same core, or allocated to two different 

cores in multicore architectures). Its main function is to ensure the 

integrity of the transmitted messages via a buffer. These messages 

could be data structure or notifications (activation of a task, callback, 

etc.). 

 

Software Architecture of the Front-Light Manager 
The SW architecture is quite simple. All is controlled by an 

AUTOSAR-OS developed according the highest ASIL on the 

microcontroller, i.e., ASIL B. 

As defined in the FFI Analysis, there are two OS-Applications. The 

trusted one manages the safety critical functionalities (ASIL B). It 

encompasses: four SWC (Switch Event, Light Request, Front-Light 

Manager, and Headlight), a trusted RTE, Systems Services (BSWM, 

WdgM), IO HW Abstraction Stack, IOC, and E2E (to unwrap the 

protection of the switch light Status). This OS application runs the 

critical runnables of the SWCs. They aim at gathering the 

information of the light switch and the ignition switch and to process 

the states of the Dashboard indicator and the Headlights.  

Besides, the non-trusted OS-Application is composed of two SWCs 

(ComStackDemoApp, and another application: SystackDemoApp), a 

Non-trusted RTE, and the communication Stack for CAN 

transmissions and receptions. 

The E2E protection is an important point in the design. The signal 

from the ignition switch is ASIL B, but the signal is process by 

modules of the QM OS-Application. The E2E protection prevents 

from the data corruptions  by the QM application, and ensure the 

requirements of ASIL B, all along the critical path. 

 

A software FMECA has been processed on the architecture described 

in Figure 2, to detail the fault propagation paths on the software 

architecture. An example extracted from the complete spreadsheet is 

given in the Table 5. It could be noted that the complete table is 

composed of 116 lines or Failure modes. The failure modes 

considered are timing errors (e.g., task period too fast or too slow, an 

erroneous scheduling, an execution timeout), data errors (Corrupted 

data: out of range, valid error, or data loss), function call errors 

(function not called, function call with wrong arguments). 

Safety mechanisms have been identified in order to handle the failure 

modes of the software modules. Three aliveness supervisions of the 

WdgM are configured to ensure that the critical SWCs are still 

executed. The aliveness of ComStackDemoApp and the Can stack are 

also monitored to prevent interference on the Ignition Switch status 

provided to the Light Request. Control flow and deadline 

supervisions are implemented to monitor the execution of the ASIL B 

SWCs. 

In this application, valid errors provided by several modules in the 

critical path may not be detected and lead to a safety requirement 

violation. This lack coverage has been neglacted because of its few 

probability of occurrence. It may be handle by the redesigned of the 

safety mechanism. 

  

Focus on one SW Safety Mechanisms: Watchdog Manager  
Among the proposed safety mechanisms, it has been arbitrary 

decided to focus on the Watchdog Manager (WdgM) [14], which is 

the mechanism identified in Table 5.  

The WdgM module is a key SW Module in the AUTOSAR-based 

architecture to ensure the application works safely, detecting 

violation of timing and logical constraints. The WdgM is part of the 

System Services layer and is responsible for error detection, isolation 

and recovery. It provides three supervision mechanisms: aliveness 

supervision, deadline supervision, and control flow supervision; and 

four error reactions: signaling errors to other AUTOSAR modules, 

logging the errors into Diagnostic Event Manager or Development 

Error Tracer modules, partition reset: restarting a specific OS-

application, and micro-controller reset. The WdgM supervises the 

execution of the software by monitoring so called supervised entities 

– SE. These SEs have no fixed relationship with architectural 

building blocks in AUTOSAR, i.e. SWCs, CDDs, RTE, BSW 

modules… 

 
Figure 2. Software Architecture of the Front-Light Manager 

In each SE, several supervision (alive, deadline, control flow) can be 

defined. Each SE is defined with checkpoints and transitions between 

checkpoints. It forms a graph of the SE, where checkpoints 

corresponds to the states of the graph. A graph may have one or more 

initial checkpoints and one or more final checkpoints. The graphs are 

defined statically during the configuration of the WdgM. 

At runtime, the SEs call the WdgM API when they have reached a 

checkpoint. Then, the WdgM verify that the sequence of the received 

checkpoints, starting with any initial checkpoint and finishing with 

any final checkpoint, is correct. 

Specifically, aliveness supervision is monitored by the call of one 

checkpoint by the supervised entity. The WdgM checks periodically 

that the checkpoint has been reached within given limits (not too 

frequent or not too rare). The deadline supervision checks the timing 

transition between two checkpoints of a SE. Finally, the Logical 

supervision monitors that the graph of a SE is executed correctly.  

Table 5. Line Extracted from the Software FMECA Performed on the Software Architecture Described in Figure 2 

item ID 
Function 

Description 

Failure 

Mode 

description 

Local 

Effect 

Product Effect without 

safety mechanism 

Component 

#UE 
ASIL 

Safety 

mechanism 

Product Effect 

with safety 

mechanism 

Component 

#UE 
ASIL 

DemoApp_
REQ_01 

ComStackDemoApp 
must (periodically 

10ms) read Ignition 
Position from COM 
through RTE (Non 

trusted) 

Period too 
slow 

Erroneous 
Ignition 
Position 

used 

Erroneous inputs provide 
to Critical Application 
(Light Request SWC) 

(Service Calls 
Interferences) 

SW-UE04 ASIL B 

WdgM Aliveness 
supervision – 

supervised 
Entity 4 (10ms) 

Reset + Safe 
Mode 

SW-UE09 QM 

 

 

ASIL B

Front-Light OS-Application

QM

DemoApp OS-Application 

OS

Microcontroller 
Drivers

On Board Device 
Abstraction

System Services

I/O Drivers

I/O HW 
Abstraction

Communication 
Drivers

Communication 
HW Abstraction

Communication 
Services

IOC

SysStack

DemoApp

COMStack

DemoApp

Switch

Event

Light

Request

FrontLight

Manager
HeadLight

RTE
RTE

Ignition
Switch ECU

ASIL B
Dashboard
QM

Light Switch
ASIL B

HeadLights
ASIL B

IoHwAbs

Dio
Can

CanTrcv

CanIf

Com
WdgM

E2E

WdgIf

Wdg Driver
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Hence, it implies that every time the SE reports a new checkpoint, the 

WdgM must verify that a transition is configured between the 

previous checkpoint and the reported one. 

 

A first version, implementing the AUTOSAR requirements, has been 

implemented (QM version). Then, safety analyses have been 

performed on this module, considering it as a SEooC.  

The failure modes of this module are twofold: i) False alarm: the 

WdgM unexpectedly triggers a reconfiguration (signaling an error, 

logging an error, resetting the target…), ii) False negative: it is a bad 

coverage in the detection or the management of the error, i.e., the 

WdgM does not detect an erroneous behavior. 

 

The safety analysis has highlighted a gap in the implementation of 

the WdgM as some errors could remain undetected. 

 Deadline Errors: the violation of a deadline may not be 

detected, or could be detected too late. Indeed if the final 

checkpoint is not received then no error is detected. 

 Control Flow Errors: if the application stops sending its 

checkpoints in the middle of the control flow graph, then 

no error will be detected by the WdgM whereas the graph 

is incomplete.  

Moreover, the safety analyses have revealed several potential causes 

of the WdgM failure modes, and safety mechanisms have been 

defined to mitigate them. E.g., a global variable was used to store the 

state of the WdgM, the corruption of this data was critical as it could 

lead to the failure modes. To prevent it, it was decided to triplicate its 

value in the memory, in order to avoid single point error in the design 

of the WdgM. This safety mechanism masks the error in one 

replication using a majority vote. 

In order to handle these cases a second implementation of the WdgM 

has been realized. This “safety version” implements the requirements 

identified by the safety analyses.  

 

4. Proof of Concept on the Case Study 
In this section, fault injection tests’ plan is illustrated and the results 

of these tests are described and analyzed. The tests focus on the SW 

FMECA line described in Table 5. The line enables to define two 

targets for the injection. First, the propagation of the considered 

failure mode may violate the FFI and may also lead to the violation 

of the SG1 or SG2. Secondly, it also identifies the WdgM as a mean 

to mitigate the critical path, and therefore to ensure the FFI and the 

safety requirements. 

 

Even though it is not shown and stated explicitly all over the case 

study, all FI experiments have been defined following the FARM 

model. 

 

Fault Injection Targets of Fault Injection  
 

Verification of the Critical Path 
The target of the experiment is the following item: 

“ComStackDemoApp must periodically (10ms) read the Ignition 

Position from COM module through the Untrusted RTE”. The failure 

mode “Period too slow” may lead to create interferences on the 

ASIL B Light Request SWC by providing an erroneous Ignition 

Position. ComStackDemoApp may interfere with the critical 

application of the Front-Light Manager. At the end, it may violate the 

safety goal SG1 and/or SG2 at system level. 

For the safety requirement verification, the injection of potential 

causes of the failure mode should demonstrate that there is no impact 

on the critical application outputs and that the WdgM detects it and 

handles it correctly. 

 

Then, the Fault model should be defined to mimic the occurrence of 

the failure mode “Period too slow”. The causes of the failure mode 

have to be determined. An easy example is to kill the task responsible 

of the execution the function. 

However, for taking into account more failure mode variants, it has 

been decided to test different values of the period of the function. In 

normal behavior, the period of the runnable is 10ms. The tests have 

been performed with period values from 20ms to 100ms with a step 

of 10ms.  

Looking at the Activation model, it could be easily find that two use 

cases may lead to the violation of a Safety Goal. Indeed, the failure 

mode is critical when the ComStackDemoApp cannot provide the 

new value of the Ignition Switch to the IOC.  

On the one hand, the error must be injected when the headlight are 

already ON. In this case, the headlight may blink or switch OFF. On 

the other hand, it corresponds to a use case where the headlights are 

OFF , the Light Switch already ON, and an Ignition Switch command 

is received threw the CAN. In this case, if the COMStack_DemoApp 

period is too long, the headlight may light with a delay. Figure 3 

illustrates this second use case in the case where the period is 

temporary double. 

 

 
Figure 3. Simplified Sequence Diagram of the Activation of the Headlights. 

  

The following Readouts are needed to analyze the result of the 

experiment. The local effect of Table 5: “Erroneous Ignition Position 

used” should be monitored in the Light Request SWC but also the 

headlight state. Then, the WdgM should also be monitored to verify 

that it detects and handles the error. Finally, if the safety mechanism 

is efficient the headlights will be ON, otherwise they will remain 

OFF. 

 

Safety Mechanisms 
In Section 3, one safety mechanism has been proposed to handle this 

failure mode: using an aliveness supervision of the WdgM in order to 

detect it and then at first reset the application and if the error is not 

corrected put the system in a safe mode where the two headlights are 

always set ON. It has been shown, FI should also be used to assess 

the effectiveness of the WdgM coverage which has the same ASIL 

allocated than the Critical application: ASIL B. 

 

The first Measures expected are the EDC and the ERC of the WdgM. 

The robustness of the WdgM implementation should also be 

assessed. In this case, the behavior of the WdgM, while its memories 

(RAM/ROM/stack) are corrupted, is assessed. This evaluates the 

quality of the code and could highlight several the weaknesses. On 

the WdgM case study, errors leading to false alarms and false 

negatives have both been found. 

Finally, the same approach could be applied on each line of a 

FMECA, or by analyzing the critical paths identified. 
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Figure 4. Overview of the Fault Injection Toolchain 

 

Tests Platform Description 
From a practical point of view, the FI tool developed at VALEO 

GEEDS provides all the functionalities required to implement fault 

injection. This platform uses two FI Techniques: Software-

Implemented Fault Injection (SWIFI) and Nexus-Based Fault 

Injection. SWIFI is based on the modification of source code of the 

application. Nexus-based FI uses the on-chip debug capabilities of 

some micro-controllers in order to access the memories and corrupt 

these data. 

 

Figure 4 shows an overview of the FI tool chain that encompasses: a 

target, a controller, the source code and an Eclipse-based application. 

The target is the Front-Light Manager application (binary files) 

running on the microcontroller SPC56EL70 describes in Section 3. 

 

The Controller is composed of a Lauterbach debugger that is 

connected to the microcontroller throughout a Nexus Probe. The 

debugger enables to access all the memory sections of the 

microcontroller, particularly by monitoring the trace of execution of 

the application. It is also a fault injector, as it allows 

corrupting/modifying memory (this could be done on-the-fly during 

execution of the application). The debugger implements Nexus 

Class 3+ defined by the Nexus 5001 ForumTM. This class of debugger 

enables two important features to perform fault injection without 

influencing the real-time execution of the application: “On-the-fly” 

runtime memory access and on-chip watch points. The watch point 

enables to trigger the fault injection or signal application events 

without stopping the application. The “On-the-fly” memory access 

capability solves the problem of writing or reading the memory 

without adding temporal overhead. 

The Debugger is controlled by script files (PRACTICE Language) 

interpreted by Trace32 software that perform the interface with the 

probe.  

 

The source code is compiled using Wind River to produce an .elf file 

(binary) that is then flashed onto the microcontroller. SWIFI can be 

implemented by modifying a part of the application source code that 

is then compiled and execute on the microcontroller. The Eclipse 

based application enables to automatically generate a report for all 

the tests executed on the platform. The inputs of the application are 

the FI tests cases description and the FI tests logs (readouts). 

 

Tests Set-up 
First, it is considered that the micro-controller and memories, are well 

protected against random faults by error detection and correction 

mechanisms implemented directly in the circuitery of the micro-

controller. 

Then, in order to prevent the other corruption, the first action before 

any fault injection experiment is to flash the application on the target. 

It loads the application and verifies that the loaded application is not 

corrupted.  

Moreover, the fault injection tests cases mainly target global 

variables which are statically defined in the memory. Hence, the 

value of these variables can be efficiently controlled during the 

experiment. 

 

Results Obtained on the Critical Path 
It is assumed that the response time to light the headlights must be 

less than 600ms. The application must reach the intended state 

(headlights ON in the considered use cases) within this timing.   

 

18 tests cases have been performed for the considered critical path: 

9 for each use cases. The results could be categorized in:  

 Tolerated errors: the WdgM does not detect error 

(according to his configuration) and the system works 

even if the period is partially degraded (the output is 

refreshed less than specified). [period = 20ms] 

 Detected and tolerated errors: the WdgM detects the 

error but does not perform any recovery actions. The 

system works in a degraded mode (the output is 

refreshed less than specified). [period = 30ms or 

40ms] 

 Detected and recovered errors: in these cases, the 

WdgM detects the aliveness error, and start a reset of 

the microcontroller. Then, in use case 1, there is a 

blinking where the headlight are OFF during 37ms 

(reset time) and then the system work properly 
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(headlights are ON). In use case 2, the system will not 

switch the system during a maximum of 220ms since 

the error is injected and the Ignition Status command 

received. It corresponds to the time of detection by the 

WdgM and reset of the application. [Periods between 

50 and 100ms]. 

Test results qualification, i.e., the assessment of the readouts of the 

tests, could be challenging, see [15]. The behavior of an application 

may not be evaluated easily due to external environment complexity. 

However in the case of the Front-Light Manager, the complexity is 

low. The result qualification could be done observing identified 

output signals (e.g., headlights state) or selected parameters 

(detection flags) or exceptions. 

All the tests could be put in cases α and δ of the Table 1.There is no 

violation of SG1 or SG2. 

 

To conclude, the implemented application enables to meet the 

requirements and the safety mechanisms handle correctly faulty 

behavior within the response time. Here, a single failure is not 

sufficient to lonely violate a safety goal, in the worst case, the failure 

mode occurs but reset is triggered fast enough to remain unnoticed. 

The implemented safety mechanism is sufficient to handle the 

considered failure mode of Table 5. 

 

Then, the same method should be performed for each failure mode 

identified in the FMECA. 

 

Results Obtained on the Watchdog Manager 
 

Evaluation of the Error Detection Coverage of the Two 

WdgM Implementations 
The WdgM implementations, described in section 3, have been tested 

in order to evaluate their efficiency to detect and recover from 

Aliveness / Deadline / Control Flow errors. In other words, these tests 

aim at verifying WdgM implementations fulfill their functional 

specification when integrated. It also measures the improvements 

between the two versions 

 

Here, the considered fault model is i) wrong checkpoints sent by a 

SWC to the WdgM and ii) checkpoints sent with wrong timing 

behavior. 

To perform the tests, two instances of each supervision have been 

configured: one instance is enabled in the mode used for the tests and 

the second one is disabled in the mode used by the application. This 

enables to verify non-configured checkpoints, configured but not 

activated ones and activated ones. There are 256² possible 

checkpoints: there are 256 supervised with 256 checkpoints each. 

The implemented configuration contains two checkpoints for the 

aliveness supervisions, 2 control flow supervisions with 6 

checkpoints and 6 transitions each, and 2 deadline supervisions with 

2 checkpoints each. 

 
Figure 5. Effectiveness of the two WdgM implementations against the same 

fault model (104 tests cases) 

 

In order to inject the fault, a SWC that mimics all the possible 

behaviors for checkpoints has been designed. Then, the internal 

variables of the WdgM and the resets of the microcontroller have 

been monitored. These variables help to verify if the intended 

supervision error has been detected, and the microcontroller reset 

enables to verify that the error has been recovered. 

 

The results illustrated in Figure 5 have been obtained. 

It can be observed that the QM version detects and recovers 94% of 

the tests cases (case α and β of the Table 1). This domain is 

constituted of two categories: 

 A detected and tolerated error, i.e., the error is detected but 

do not necessitate resetting the microcontroller. It 

corresponds to tests where non-configured checkpoints are 

called. In this case, the WdgM returns that an error occurs, 

but performs no recovery. 

 A detected error that reset the target. In this case the error is 

detected and the WdgM restart the microcontroller.  

The 6% of “No Observation”, i.e., the WdgM does not detect any 

errors and corresponds exactly to the cases identified in the safety 

analysis, (case γ and δ in Table 1). The results show these cases are 

handled by the safety implementation. Fault injection tests, here, 

improve the confidence in the Error Detection Coverage handled by 

the new implementation of the WdgM.  

 

Considering the verification of the critical path of Table 5, these 

results highlight that the two implementations have no difference 

concerning the aliveness supervision. Hence, both could be used for 

to handle this failure mode. 

 

Robustness of the Implementation of the WdgM 
However, it is also important to verify that the implementation of the 

WdgM is robust. Indeed, the robustness of the WdgM against 

interferences from HW faults (bit-flip in the memory/registers) / 

Real-Time faults has to be assessed.  

This assessment is important because the WdgM is a Component Off-

The-Shelf (COTS); a robust implementation is needed in order to 

reuse it. 

It is interesting to note the interferences on the WdgM may not 

directly impact the safety of the System, as its dysfunction are false 

alarms leading to a reset, however, interferences may be safety 

relevant with second order cut sets. In this case, an application error 

could be masked (no detections of deadline/aliveness/control flow 

errors), and a safety goal may be violated. 

 

The fault model used for these tests is the corruption of variables of 

the WdgM. The variables have been identified based on the safety 

analyses performed on the WdgM. The chosen variables may, if they 

are corrupted, lead to a WdgM failure mode.  

Two activation use cases have been identified. Firstly, the injection is 

intended to create a false alarm, therefore the application is in normal 

mode when the fault is injected. The second use case aims at showing 

a WdgM corruption may mask errors. Here, both alive, deadline and 

control flow errors have to be emulated. The activation of the WdgM 

error (variable corruption) is done before the alive/deadline/control 

flow error.  

 

For these tests, the identified critical path and all the requirements 

could be used as oracle for the test cases. Then several variables and 

function calls along the critical path have been monitored using on-

chip watch points of the debugger. Typically, these are the 

flags/variables that store the WdgM’s detection of errors, the calls of 

recovery actions and the occurrences of resets. The objective is to 

verify that the reconfiguration is caused by the WdgM and that the 

right error has been detected. 

 

0
0%

47
45%

57
55%

WdgM Safety version

No observation

Error Detection  and 
Tolerance

Error Detection and 
Reconfiguration

6
6%

47
45%

51
49%

WdgM QM version



Page 10 of 11 

 

Figure 6 shows the pie charts obtained with these tests. The results 

are categorized as follow: 

 “No deviation Observed” corresponds to tests where the 

behavior of the WdgM is identical with or without the injected 

fault. E.g., the corrupted variable is refreshed with the correct 

value. (case α and δ of the Table 1). 

 “Transient Internal Deviation Observed” corresponds to tests 

where the error propagates but is tolerated before reaching a 

failure mode of the WdgM. (case α and δ of the Table 1). 

 “Internal latent error” corresponds to tests where no WdgM 

failure mode is reached, however, the corruption done or the 

propagation of this error remains latent and is not activated by 

the activation of the target. (Cases α and δ of the Table 1). These 

experiments correspond to the corruption of unused variables. In 

this category, the corruption done by fault injection experiments 

in WdgM memory is not activated and still remain at the end of 

the test (timeout expired). The memory remains corrupted but 

could be activated by other activation. 

 “Failure mode reached”. Here, a false alarm or a false negative 

is observed (case β and γ of the Table 1). Particularly, among the 

76 tests that lead to reach a failure mode, alive/deadline/Control 

flow error (False negative) have not been detected in 15 tests. 

 
Figure 6. Robustness of the WdgM implementation (217 tests cases) 

 

Results show that the test cases based on the safety analyses are 

efficient as there are only 35% of “No deviation Observed” tests.  

They also highlight that some efforts should be done on the 

implementation focusing on basic events that lead to failure modes 

(red) and errors that remain latent (orange). For example, it could be 

proposed to triplicate some variables in order to protect it with 

majority vote. However, a tradeoff has to be made between memory 

consumption, performances and safety.  

 

5. Summary/Conclusions 
First, the investigation of the scope of FI has shown ISO 26262 

requirements may impact significantly the development process of 

automotive critical system. Indeed, ISO 26262 requires fault injection 

for all ASIL levels for the verification and validation of failure 

propagation and mitigation by safety mechanisms. 

Then, the objectives of FI have been discussed, and a method based 

on safety analyses has been proposed to define fault injection 

attributes of the FARM model: targets, measure, fault model, 

activation model and readouts. 

The major advantage of this method is to rely on the previous 

activities of the development process. Hence, it helps to enhance the 

reliance on the safety analyses. Moreover, the method enables to keep 

the traceability of the safety requirements. This could be used to 

reduce the number of experiments. 

However a main drawback is that the method required a high level of 

maturity of the safety analyses. Particularly, FMECA should be 

preferred to obtain better results, as FMECA are more complete 

analyses. 

 

A proof of concept of the method has been realized on simple 

automotive application: Front-Light System. The software 

architecture of this case study is based on AUTOSAR 4.X. The 

system has been described at different levels of development together 

with safety analyses, to show the traceability of the requirements and 

their importance in the assessment of FI measures. 

Then FI tests have been planned and performed on a FI test platform.  

A first interesting results obtained with the experiments’ measure is 

the efficiency of the injected faults. Most of the injected faults have 

an impact on the target (they lead to a failure mode or they triggered 

a safety mechanism). 

The obtained measures allow having reasonable proofs to 

demonstrate the effectiveness of the safety mechanisms (the WdgM) 

and the correct implementation of the safety requirements, and of the 

FFI. Our current work aims at obtaining global measures from FI 

experiments and optimizing the whole development process by 

defining an optimal set of experiments.  

 

To conclude, this method offers interesting results for the integration 

of the FI in an automotive development process following the 

requirements of the ISO 26262. However, this may lead to significant 

efforts and timing overhead on a complete architecture. Hence, the FI 

experiments must be carefully selected. 

Then, targeting standards safety mechanisms modules (particularly 

AUTOSAR ones) should be a priority, as they may be reused on 

multiple project. This also enables to define the fault injection tests, 

which should be done to benchmark different implementations of 

these modules. 
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8. Definitions/Abbreviations 
API Application Programming Interface 

ASIL Automotive Safety Integrity Level 

BE Basic Event 

BSW Basic Software 

CAN Controller Area Network 

CPA Critical Path Analysis 

COTS Component Off-The-Shelf 

EC Equivalence Class 

ECU Electronic Control Unit 

EDC Error Detection Coverage 

ERC Error Recovery Coverage 

FFI Freedom From Interferences 

FI Fault Injection 

FM Failure Mode 

FME(C)A Failure Mode Effects (and Criticality) Analysis 

FTA Fault Tree Analysis 

IO input or output 

IOC Inter OS-Application Communicator 

ISO International Standard Organization 

MMU Memory Management Unit 

MPU Memory Protection Unit 

OS operating system 

PHA Preliminary Hazard Analysis 

QM Quality Management 

RTE Run-Time Environment 

SE supervised entity 

SEooC Safety Element out of Context 

SG safety goal 

SWC Software Component 

SWIFI Software Implemented Fault Injection 

UE undesired event 

WdgM Watchdog Manager 
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