
HAL Id: hal-01221422
https://hal.science/hal-01221422v1

Submitted on 28 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Fault Injection to Verify an AUTOSAR
Application According to the ISO 26262

Ludovic Pintard, Michel Leeman, Abdelillah Ymlahi-Ouazzani, Jean-Charles
Fabre, Karama Kanoun, Matthieu Roy

To cite this version:
Ludovic Pintard, Michel Leeman, Abdelillah Ymlahi-Ouazzani, Jean-Charles Fabre, Karama Kanoun,
et al.. Using Fault Injection to Verify an AUTOSAR Application According to the ISO 26262. SAE
2015 World Congress & Exhibition, Apr 2015, Detroit, United States. �10.4271/2015-01-0272�. �hal-
01221422�

https://hal.science/hal-01221422v1
https://hal.archives-ouvertes.fr

Page 1 of 11

2015-01-0272

Using Fault Injection to Verify an AUTOSAR Application According to the
ISO 26262

Ludovic Pintard, Michel Leeman, and Abdelillah Ymlahi-Ouazzani
VALEO
Jean-Charles Fabre, Karama Kanoun, and Matthieu Roy
LAAS-CNRS

CITATION: Pintard, L., Leeman, M., Ymlahi-Ouazzani, A., Fabre, J. et al., "Using Fault Injection to Verify an AUTOSAR Application According
to the ISO 26262," SAE Technical Paper 2015-01-0272, 2015, doi:10.4271/2015-01-0272.
http://papers.sae.org/2015-01-0272

Abstract
The complexity and the criticality of automotive electronic embedded

systems are steadily increasing today, and that is particularly the case

for software development. The new ISO 26262 standard for

functional safety is one of the answers to these challenges. The

ISO 26262 defines requirements on the development process in order

to ensure the safety. Among these requirements, fault injection (FI) is

introduced as a dedicated technique to assess the effectiveness of

safety mechanisms and demonstrate the correct implementation of the

safety requirements.

Our work aims at developing an approach that will help integrate FI

in the whole development process in a continuous way, from system

requirements to the verification and validation phase. This leads us to

explore the benefits of safety analyses (Failure Mode Effects and

Criticality Analysis (FMECA), Fault Tree Analysis (FTA), Critical

Path Analysis (CPA) or Freedom From Interference (FFI) Analysis,

etc.) for the definition of the test plan, defining efficient FI tests

cases.

The paper discusses the objectives and role of FI in the Verification

and Validation process. It also illustrates how to apply this

methodology on a platform based on AUTOSAR 4.X that integrates a

trusted Front-Light Manager Application (Automotive Safety

Integrity Level - ASIL B) and a non-trusted (Quality Management -

QM) application. This proposed architecture allows ensuring the

safety requirements with dedicated safety mechanisms and also FFI

using both temporal and spatial partitioning. Finally, the results of FI

test cases obtained on a mock-up running the Front-Light Manager

Application, developed at Valeo GEEDS are presented.

Introduction
To deal with the criticality and the increasing complexity of electrical

and electronic automotive systems, the automotive industry has

introduced the ISO 26262 standard [1] for functional safety in road

vehicle. This standard has pushed recommendations towards different

methods and techniques that should be adopted in a development

process to assure that “no unreasonable risk is due to hazards caused

by malfunctioning behavior of electrical and electronic systems”.

Fault injection (FI) is one of the dedicated techniques to achieve the

verification of safety requirements. FI is now a method highly

recommended in the ISO 26262 (10 requirements are about the use of

FI at different steps of the V-cycle), particularly, in Part 6 on

software developments. FI allows the verification of the effectiveness

of safety mechanisms, as these cannot be activated using other test

methods.

Section 1 introduces the notions of safety analyses and fault injection.

Section 2 aims at defining the objectives of fault injection in the

verification and validation process based on the results of the safety

analyses. Section 3 describes the software architecture of the case

study: the Front-Light Manager. Section 4 applies the

recommendations of the section 2 on the case study. Finally, the last

section concludes the paper.

1. State of the Art

ISO 26262 Standard for Functional Safety

Safety Development Process
In a previous work [2], the integration of FI in the early phases of the

development process of automotive critical systems, in the context of

the ISO 26262 standard, has been investigated. The synthesis of FI

Analyses into Failure Mode Effects and Criticality Analysis --

FMECA spreadsheets has been demonstrated. The process also helps

to capture the failure propagation paths between the levels of

architecture. The interest of these analyses is twofold: i) they identify

the nature and location of the safety mechanisms that must be

integrated in the system, ii) they guide FI experiments during post-

implementation phase.

The critical paths identified in safety analyses improve significantly

the traceability of safety requirements.

Ensuring Freedom From Interferences (FFI)
Nowadays, the processing capabilities of the microcontrollers used

for automotive systems allow designing more complex products.

Particularly, the software design takes advantage of these resources,

by proposing to integrate several applications on one microcontroller.

In parallel, these systems also embed more critical functions. An

important safety issue appears with the integration of applications

with different criticality levels, i.e., different Automotive Safety

Integrity Level (ASIL). According to the ISO 26262, all the modules

on the microcontroller should be developed according to the highest

ASIL that apply on the microcontroller because of the strong

interrelationship between these applications. The main drawback is

that the application with the lower ASIL is required, according to the

ISO 26262, to be developed with unnecessary efforts. Indeed, higher

ASIL modules require applying more techniques and methods.

However, the ISO 26262 allows integrations of modules with

different ASILs, but imposes to prove that the Freedom From

Interferences (FFI) is ensured. FFI is defined as the “absence of

cascading failures between two or more elements that could lead to

the violation of a safety requirement”. In a more practical way, the

integration of a Quality Management (QM) or lower ASIL module is

allowed if and only if it could be proved that it does not interfere

directly or indirectly with the behavior of any higher ASIL modules.

The following interferences have to be considered between the two

software applications: i) corruption of shared-data, ii) calls of

Application Programming Interface (API) service, iii) the real-time

behavior (scheduling, task pre-emption…), iv) shared-memory access

and v) shared hardware peripherals.

http://papers.sae.org/2015-01-0272

Page 2 of 11

Fault Injection in Verification & Validation Activities

Fault Injection Techniques
Fault injection [3] is a mature technology that has been successfully

applied using several techniques on different targets [4, 5, 6].

Fault injection techniques have been developed for a long time, first,

as a mean to validate safety mechanisms (error detection and

recovery). The fault model is an input for the design of fault tolerant

systems; the development of error detection and recovery

mechanisms should efficiently perform error processing. The

efficiency is evaluated using measures like Error Detection

Coverage (EDC), as a conditional probability. When a fault

belonging to the fault model is injected, the corresponding error

detection mechanisms should be activated and trigger recovery

mechanisms if any. Secondly, fault injection can also be used to

evaluate the robustness of a component (hardware – HW – or

software – SW) with respect to some fault assumptions. The idea here

is often to evaluate the efficiency of built-in error detection

mechanisms to prevent failure modes violating safety requirements.

Moreover, the introduction of FI, in the ISO 26262, renewed the

interest of this topic in the automotive industry [7, 8, 9].

FI completes other testing techniques by enabling to verify the global

reaction of an application against systematic or random faults from

shared components. Moreover, both random (HW aging, single event

upset) faults and systematic (coding/implementation) faults are

assessed at system and product levels. At software level, FI is only

applied to verify systematic faults’ absence in the considered

application.

FARM
The main elements that characterize FI are: the set of faults to be

injected (the Fault model), the system activities under which the

faults are injected (the Activation), the Readouts of the experiment

results, and the Measures evaluated, based on the readouts. These

elements form the basis of the FARM [10] model to perform FI.

The FARM model characterizes in an effective way the fault

injection environment, and it is used in this study as a reference in the

definition of FI experiments.

It is worth to mention that the measures to be evaluated have to be

defined first, since they guide the whole FI process. However, their

values are evaluated in the last step, by processing information

provided by the readouts. The fault model, the system activation and

the readouts have to be defined in such a way that they enable

obtaining the measures in a meaningful and efficient way.

FARM is essential in the paper, as all the FI experiments have been

defined following this concept.

2. Fault Injection for the Verification &

Validation
The importance of the safety analyses in the identification of the

critical elements and of the critical propagation paths, have been

shown. Moreover, several detection and mitigation means are

identified and must be implemented in order to ensure the safety

requirements at each level of architecture.

This section will show how safety analyses help in the definition of

FI tests. Particularly, by giving dedicated measures on the coverage

of the safety mechanisms and the correct mitigation of critical paths,

fault injection enables to verify the implementation of safety

requirements and of FFI.

Concerning verification and validation activities, fault injection is

required by the ISO 26262, in parts 4, 5 and 6. This study focuses on

the requirements of the part 4, i.e., system level, and part 6, i.e.,

software level.

ISO 26262 Requirements on FI

SW Unit Testing & SW Integration Testing
At these two levels, fault injection shall be applied to demonstrate

that the software units achieve:

a) compliance with the software unit design specification;

b) compliance with the specification of the hardware-software

interface;

c) the specified functionality;

d) confidence in the absence of unintended functionality;

e) robustness; and

EXAMPLE: The absence of inaccessible software, the effectiveness of

error detection and error handling mechanisms.

f) sufficient resources to support their functionality.

At this level fault injection, i.e. that includes the injection of arbitrary

faults (by corrupting values of variables, by introducing code

mutation, or by corrupting values of Central Processing Unit (CPU)

registers) is at least recommended at all levels and also highly

recommended for ASIL D and specifically for ASIL C at SW

Integration testing.

Moreover, the ISO 26262 requires to perform “Requirements-based

test”. This implies that the safety mechanisms identified to ensure the

safety requirements of any ASILs must be tested. The definition of

these tests leads to use fault injection techniques. Hence, FI

experiments should be performed for all ASILs. It enables to

demonstrate confidence in the absence of unintended functionality or

in the robustness of the target (Software unit or SW architecture).

To conclude at system level, fault injection must be done for all ASIL

levels in order to verify the propagation of potential causes identified

in the safety analyses, verify the error detection coverage of the

implemented safety mechanisms. The injection of arbitrary faults is

only required for ASIL D, and also ASIL C only for the SW

integration tests. Only highest levels are required as the test efforts

increase significantly as fault should be injected intensively in the

software, with random fault injection.

System Testing
In part 4 of the ISO 26262, fault injection is required at HW/SW

integration level and at product and system level (according to the

chosen naming).

At these levels, ISO 26262 requires fault injection to:

 Demonstrate the effectiveness of the safety mechanisms’

diagnostic coverage.

 Demonstrate the correct implementation of the safety

requirements.

Similarly to Part 6, fault injection is highly recommended at least

down to ASIL C, and specifically at ASIL B to demonstrate the

correct implementation of safety requirements at HW/SW integration

level. Moreover, Requirements-based tests are also highly

recommended in order to verify functional and non-functional

requirements. Fault injection technique must be used in order to

validate the safety requirements at all ASIL.

Objectives and Definition of Fault Injection Tests
In this section, the applicability of the FARM method, defined in

section 1, in the identification of the objectives of the fault injection

tests and the planning of the tests is discussed.

Definition of the Experimentation Target
The safety analyses help to identify the most critical elements and the

most critical propagation paths of the architecture thanks to the

traceability between levels of the ASIL. These critical elements and

paths should be particularly verified, in order to prove the causes of

safety requirement violation have been mitigated. The first

Page 3 of 11

experimentation targets are the one with the highest ASIL. The

targets are, then, chosen following the possible target with decreasing

criticality.

Nonetheless, the chosen targets usually impose the implementation

of, at least, one safety mechanism. Then, it is also required to

demonstrate efficiency against the considered fault model.

Measures to be Assessed
Fault injection has the following two main objectives. On the one

hand, the verification that the safety requirements are not violated.

The considered fault model from the safety analyses does not

propagate through critical paths, and violate safety requirements. This

can be quantified by identifying the failure modes distribution, in

which the failure modes are associated with safety requirements. The

failure modes distribution could be represented using “pie chart”,

“bar graphs” or “histograms”. It is possible to evaluate the rate of

faults that lead to violate a safety requirement.

On the other hand, FI addresses the verification of the effectiveness

of the safety mechanisms. The considered fault model from the

Safety Analyses is well handled by the safety mechanisms. Here, the

aim is to assess the Error Detection Coverage and/or the Error

Recovery Coverage (ERC) of the Safety Mechanism according to the

fault model identify in the analyses. Generally, these results are

represented as “pie chart”, in order to illustrate the difference

between the covered faults and the lack of coverage.

However, these measures only quantify the effectiveness of the safety

mechanisms and the fault tolerance of proposed architecture in order

to prevent the occurrence of Undesired Events. Then, there are also

some qualitative measures that can be obtained with fault injection.

Hence, it could help to identify a lack of coverage of a safety

mechanism, particularly to the “Diagnostic Coverage” or “coverage

factor” that have been claimed and used for quantitative safety

analyses. The main difference is the considered fault model, because

it implies to verify the entire fault model that the safety mechanism

claims to handle. Besides, a lack of coverage could lead to:

 Re-implement the safety mechanism.

 Add another mechanism in order to mitigate specific faults

or modify the design.

Finally, when assessing the failure distribution, it could reveal failure

modes that have not been identified during the Pre-implementation

phase. There are two main reasons. On the one hand, the Safety

analyses have been badly executed because the fault propagation of

the fault model is incorrect or the failure modes are non-trivial due to

the complexity of the design. On the other hand, the specification of

functional requirements and safety requirements are incorrect.

Indeed, these faults could lead to unexpected behavior if there is a

lack of requirements or too many that interfere with each other.

These qualitative results aim at validating the assumptions and

choices done in safety analyses.

Faults to be Injected

The fault model can be extracted from the safety analyses of potential

causes of failures, identified for each critical elements or path. Two

FI strategies are possible:

 Verify that an identified failure mode, e.g., in a FMECA

row, is handled correctly by the implemented safety

mechanisms. Hence, by injecting representative causes of

failures leading to the considered failure mode, the

identified safety requirements will be solicited, and will be

easily tested.

Let us consider, there are “n” potential causes that have

been identified in a safety analysis and enable to activate

the “n” equivalence classes (EC) of the failure mode (FM)

of the SW module. Injecting these causes enable to verify

that the safety mechanism mitigates correctly the failure

mode of the SW module or find lacks in the coverage.

 Here, the safety analyses lead to identify a set of potential
causes. Experiments consist in injecting all possible causes
to check that propagation paths identified with the safety
analyses are valid. In the latter case, it must be verified that
the propagation is well mitigated.

During this activity, the strategy is chosen independently from FI

capabilities provided by the available FI tool. Here, the goal is only to

define the set of fault that should be injected in order to obtain the

desired measures.

Activation Model:
The Activation model is a set of data patterns that aims at exercising

the injected fault. For a general purpose, a solution consists of using a

representative environment of the target. It aims at evaluating the

behavior of the system in presence of faults during the representative

uses of the target. They could be chosen according to the frequency,

the criticality, etc. of the target.

Nonetheless, the determination of the Activation set could be

significantly improved using behavioral models of the dynamic of the

target with its environment. The behavioral models developed during

the design of the system could be very useful for this purpose. Indeed

sequence diagrams, timing diagrams or use cases done to describe

both functional and non-functional behavior, are of prime importance

in the definition of representative fault injection tests. On this basis, it

is possible to determine when to trigger the injection i) from the

states of the target’s components and ii) inputs from the environment.

Readouts:
The readouts are obtained in order to verify and validate the system

according to the safety requirements and also to verify the

effectiveness of the safety mechanisms, i.e., computation of relevant

measures.

To define these readouts, it is recommended using the safety

analyses; particularly the following FMECA columns: the failure

modes, the effects (local effects and effects on higher levels of

architecture), and the column describing the safety mechanisms.

These columns describe the various effects of the propagation of the

faults, and hence should be used to define the variables (physical or

digital) that have to be observed and acquired on the target. Further

details about these measurement points (state or events e.g.,

timestamps, log files of variables) should also be registered. This

couple of variables/states indicates whether i) a safety mechanism has

been triggered and ii) the error handling is correct.

Table 1. Readouts Analysis

Case α β γ δ

Activation of a

Safety

Mechanism

YES YES NO NO

Safety

requirement

violated

NO YES YES NO

Comments and

further analysis

Expected

Results

Coverage

deficiency

Default of the

Activation of the

Safety

Mechanism(s)

No Observation

(No effect but to

be analyzed)

Then, from the readouts, a logical expression, or safety property, of

the target states can be established to detect when a safety

requirement is violated.

The analysis of the readouts leads to assess the measures defined at

the beginning of the process. However, the results could be

ambiguous and must be analyzed. These experiments have been

classified into four categories, see Table 1. Here, the experiments

Page 4 of 11

have been done on a target implementing at least one safety

mechanism that prevents the violation of a safety requirement. This

table ignores faults that have not been activated and that usually fall

into the “no observation” category.

The expected behavior (Case α) is the activation of safety

mechanisms in the presence of faults preventing the violation of the

safety requirement. This behavior should have the highest

probability. Obviously, in all other cases, safety mechanisms need to

be deeply analyzed thanks to detailed execution traces of

experiments. Case β corresponds to a lack of coverage of the

implemented safety mechanism(s). Case γ and δ often mean a design

or implementation problem since the safety mechanisms have not

been activated. Defaults in the fault injection experiments can also be

a reason for this last case: i) an error remain latent and has not been

activated by test scenario, ii) the fault has been tolerated by another

mechanism or by design (re-initialization of a data corrupted by the

injection before using it).

Nonetheless, in a conventional fault injection campaign, the output is

often a pie chart composed of the previous Cases. Ideally, 100% of

errors are detected and recovered; hence the non-infringement of the

safety requirement is ensured. In reality, some errors are not detected

by internal error detection mechanisms or not recovered. Upper level

safety mechanisms should then prevent the violation of safety

requirement.

To conclude, safety analyses check/recommend safety mechanisms to

be put in place, and FI tests quantify their efficiency, namely

detection and recovery coverage. As the safety mechanisms may

prevent undesired events (UEs) to be reached, this will enable to

verify the safety requirements or the FFI is ensured.

When a safety property is violated the conclusion is twofold: i) lack

of coverage of a safety mechanism. The implementation of the

mechanism should be analyzed in order to improve the coverage, if

necessary, and ii) absence of a safety mechanism leading thus to a

revision of the design.

3. Case Study Description: the Front-Light

System
The approach is illustrated in this paper by a Front-Light system. This

electronic system controls the two headlights of a car.

Authors are aware this is a very simple system and this system has

only a moderate safety criticality level: ASIL B. At this level, all the

requirements on fault injection are not “highly recommended” by the

ISO 26262 standard.

However, a “proof of concept” of the proposed approach can be

done.

In order to contextualize the SW architecture, a first part is dedicated

to the description of system level and product level. Indeed, the

objectives of fault injection tests are required based on assumptions

and analyses done at higher levels of architecture. It enables the

traceability of the requirements and therefore the identification of

efficient fault injection tests cases. Then, the considered targets for

the tests are especially the SW architecture and the Watchdog

Manager (WdgM).

This section aims to introduce the section 4 on the verification and

the validation of this architecture.

Description of the System and the Product

Architectural Level
The Front-Light system has two system functional requirements:

 The Front-Light system must light the road on the request

of the car’s driver

 The Front-Light system must set the dashboard light

indicator

A Preliminary Hazard Analysis (PHA) identifies two UEs (see Table

2). There are two Safety-related UEs, UE01 and UE02 rated ASIL B.

Table 2. UEs from the PHA and their ASIL Level

UEs # Description ASIL

UE01 Loss of the Headlights ASIL B

UE02 Headlights Blinking ASIL B

Hence, two safety requirements, referred to as Safety Goal (SG), can

be defined. An ASIL has been allocated to this SG according to a

Preliminary Hazard Analysis (PHA).

SG1: The system shall not spuriously cut off both

Headlights (ASIL B)

SG2: The system shall prevent the Headlights blinking (ASIL B)

It could be noted that quantitative analyses are considered out of the

scope of the study.

Figure 1. Architecture of the Front-Light System

Description of the System Architecture Level
The system architecture is defined in the Figure 1. The main product

is the Front-Light Electronic Control Unit (ECU), which gathers

information from Ignition Switch ECU and Light Switch ECU in

order to set the Headlights ON or OFF and to light the Dashboard

indicator. Then the Front-Light ECU must light the two headlights of

the car and the Dashboard indicator when both Light Switch status

and Ignition switch status are ON.

All the product functional requirements are synthesized in Table 3

Table 3. Description of the Functions of the Front-Light System. Focus on the

Front-Light-ECU.

Product
Product

Function Id #
Product Functional Requirements

Front-

Light

ECU

FL-ECU_F01
Front-Light ECU must send Dashboard State (ON/OFF)

through CAN Network

FL-ECU_F02
Front-Light ECU drives the Headlights state (ON/OFF)

in less than 600ms

Light

Switch
LS

The Light Switch provides a ON/OFF signal to the

Front-Light ECU

Ignition

Switch

ECU

IS-ECU

The Ignition Switch ECU must send periodically the

Ignition Switch Status (ON/OFF) through CAN

Network to the Front-Light ECU

CAN

Network

CAN-F01
Transmit Ignition Switch Status from Ignition Switch

ECU to Front-Light ECU

CAN-F02
Transmit Dashboard indicator status from Front-Light

ECU to Dashboard ECU

Ignition Switch ECU

ASIL B

Digital

Input
Digital output

Digital

output

CAN Network

QM

Dashboard (ECU)

QM

Headlight

Left

ASIL B

Headlight

Right

ASIL B

Light Switch

ASIL B

Power Supply 12V

ASIL B

Protected Ignition

Status ON/OFF
Dashboard

Request ON/OFF

Front-Light

ECU

ASIL B

Front-Light System

Page 5 of 11

Then, a FMECA has been performed in order to identify the failure

modes that may lead to violate the SGs (two failure modes have been

found for the Front-Light-ECU, see Table 4). The FMECA also

enables to allocate an ASIL to products and define System Safety

Mechanisms.

Table 4. Failure Modes of the Front-Light-ECU that Lead to Violate a Safety

Goal Identified in the FMECA
Product-UEs # Product Function Id # Failure mode description ASIL

P-UE01
FL-ECU_F01

Loss of Headlights state ASIL B

P-UE02 Unstable Headlights state ASIL B

Information at the Product Level
At this, level, only the micro-controller that runs the software

applications is considered, hence design and the solution chosen for

the electronic card are not detailed.

The inputs and outputs links at product level are similar to the ones

considered at system level. They do not add new pertinent failure

modes. Particularly, the two P-UEs (see Table 4) defined could be

considered also as two SW-UEs (SW-UE01 and SW-UE02).

However, the following failure modes of the micro controller should

be considered: hardware failures and also the FFI between the

applications running on the microcontroller.

Hardware Platform

The microcontroller Leopard SPC56EL70 [11] is based on PowerPC

architecture and involves two identical processors (e200z4d cores)

connected to a single, shared main memory. The microcontroller

could be configured in lockstep or decoupled modes.

In lockstep mode, the two cores run the same instructions and then

compare the results. It is required to ensure the safety of critical

functions (e.g., ASIL C and D) by offering a tolerance on transient

hardware faults. The decoupled mode enables to execute different

instructions on each core, and therefore execute several tasks in

parallel. The resources offer in this mode could be used in order to

enhance the performance of the application and/or implement safety

mechanisms.

This microcontroller is a safety requirements for a Safety Element out

of Context (SEooC), see ISO 26262 chapter 10 [1], and meets

ASIL D requirements.

Freedom From Interference (FFI) Analysis

The FFI may identify several causes of malfunction of the higher

ASIL application, by analyzing the interference channels. The

identified causes also require mitigation means – definition of safety

mechanisms – in order to prevent the violation of a safety goal.

Without going into details, two applications with different criticality

levels have been allocated on the microcontroller. There are

respectively an ASIL B application and a QM application, which

correspond respectively to functions, FL-ECU_F01 and FL-

ECU_F02.

In a practical way, the QM application must not interfere with the

ASIL B application following these channels:

1. Real-time behavior Interferences: e.g., erroneous

execution of the QM application (excessive execution time,

erroneous period)

2. Service Calls Interferences: e.g., wrong input provided by

the QM application to ASIL B application.

3. Shared Data Interferences: e.g., corruption by the QM

application of a critical data of the ASIL B application.

4. Shared Memory Interferences: e.g., corruption of Critical

data by the QM application through shared-memory (ROM,

RAM, stack)

Each of these interferences can be defined as software UEs and they

are respectively referenced as: SW-UE03 to SW-UE06. These UEs

are all rated ASIL B as their occurrences could cause the violation of

SG1 or SG2.

In order to provide an execution environment that allows the

execution of software components without unintended interference,

temporal and spatial partitioning for both computational and

communication resources is required.

Spatial Partitioning: Spatial partitioning ensures that one software

component cannot alter the code or private data of another software

component. Spatial partitioning also prevents a software component

from interfering with control of external devices (e. g., actuators) of

other software components.

Temporal Partitioning: Temporal partitioning ensures that a

software component cannot affect the ability of other software

components to access shared resources, such as the common network

or a shared CPU. This includes the temporal behavior of the services

provided by resources (latency, jitter, duration of availability during a

scheduled access).

Description of the SW Architecture

AUTOSAR: AUTomotive Open System Architecture
AUTOSAR [12] is a standard for automotive E/E software

architectures developed by major OEMs and suppliers. It is a major

aspect of the software development in the automotive industry.

AUTOSAR brings in the realization of an application-specific

approach for automotive software development as opposed to an

ECU-specific one. Hence, it provides a means for developing

applications that are platform independent as long as they abide by a

specified process and the interfaces provided. The AUTOSAR

architecture mainly encompasses an application layer (comprising

Software Components (SWC), a Run-Time Environment (RTE) and

the Basic Software (BSW).

The BSW is composed of three main layers: Service Layer, ECU

Abstraction Layer, and Microcontroller Layer.

These layers are decomposed into five stacks (each stack is cross-

layer): the Service stack, the Memory stack, the Communication

stack, the Input/Output Hardware Abstraction stack, and the Complex

Devices Drivers stack.

In order to implement the partitioning requirement on the FFI, the

following AUTOSAR concept and modules are used.

OS-Application: The AUTOSAR-OS offers the possibility to group

different OS objects (Tasks, ISRs, Alarms, etc.) into so called OS-

Applications. All objects within one OS-Application share their

memory protection scheme and the access rights.

According to AUTOSAR-OS Specifications [13], OS-Applications

can either be trusted or non-trusted. Trusted OS-Applications are

allowed to run in CPU Supervisor Mode without restrictions and non-

trusted ones are running in CPU User Mode with limited access to

OS and HW resources.

MMU/MPU: The basic memory protection requirement that shall be

fulfilled by the OS is to protect data, code and stack section of OS-

Application. In AUTOSAR OS standard, this protection is activated

during the execution of the non-trusted OS-Applications in order to

prevent the corruption of the trusted OS-Application memory

sections. Moreover, it could be also used to protect private data and

stack within the same OS-application if necessary.

The memory protection requires hardware support in the

microcontroller of a MPU and/or MMU.

AUTOSAR Inter OS-Application Communicator – IOC: The

communication between two OS-Applications has also to be

protected. Indeed, OS-Applications intend to create memory

protection boundaries, therefore dedicated communication

Page 6 of 11

mechanisms are needed to cross them. This feature is implemented in

AUTOSAR-OS and called IOC. It is the dedicated communication

mean between OS-Applications, whether or not the OS-Applications

are allocated to the same core (the communication could be between

two OS-Applications on the same core, or allocated to two different

cores in multicore architectures). Its main function is to ensure the

integrity of the transmitted messages via a buffer. These messages

could be data structure or notifications (activation of a task, callback,

etc.).

Software Architecture of the Front-Light Manager
The SW architecture is quite simple. All is controlled by an

AUTOSAR-OS developed according the highest ASIL on the

microcontroller, i.e., ASIL B.

As defined in the FFI Analysis, there are two OS-Applications. The

trusted one manages the safety critical functionalities (ASIL B). It

encompasses: four SWC (Switch Event, Light Request, Front-Light

Manager, and Headlight), a trusted RTE, Systems Services (BSWM,

WdgM), IO HW Abstraction Stack, IOC, and E2E (to unwrap the

protection of the switch light Status). This OS application runs the

critical runnables of the SWCs. They aim at gathering the

information of the light switch and the ignition switch and to process

the states of the Dashboard indicator and the Headlights.

Besides, the non-trusted OS-Application is composed of two SWCs

(ComStackDemoApp, and another application: SystackDemoApp), a

Non-trusted RTE, and the communication Stack for CAN

transmissions and receptions.

The E2E protection is an important point in the design. The signal

from the ignition switch is ASIL B, but the signal is process by

modules of the QM OS-Application. The E2E protection prevents

from the data corruptions by the QM application, and ensure the

requirements of ASIL B, all along the critical path.

A software FMECA has been processed on the architecture described

in Figure 2, to detail the fault propagation paths on the software

architecture. An example extracted from the complete spreadsheet is

given in the Table 5. It could be noted that the complete table is

composed of 116 lines or Failure modes. The failure modes

considered are timing errors (e.g., task period too fast or too slow, an

erroneous scheduling, an execution timeout), data errors (Corrupted

data: out of range, valid error, or data loss), function call errors

(function not called, function call with wrong arguments).

Safety mechanisms have been identified in order to handle the failure

modes of the software modules. Three aliveness supervisions of the

WdgM are configured to ensure that the critical SWCs are still

executed. The aliveness of ComStackDemoApp and the Can stack are

also monitored to prevent interference on the Ignition Switch status

provided to the Light Request. Control flow and deadline

supervisions are implemented to monitor the execution of the ASIL B

SWCs.

In this application, valid errors provided by several modules in the

critical path may not be detected and lead to a safety requirement

violation. This lack coverage has been neglacted because of its few

probability of occurrence. It may be handle by the redesigned of the

safety mechanism.

Focus on one SW Safety Mechanisms: Watchdog Manager
Among the proposed safety mechanisms, it has been arbitrary

decided to focus on the Watchdog Manager (WdgM) [14], which is

the mechanism identified in Table 5.

The WdgM module is a key SW Module in the AUTOSAR-based

architecture to ensure the application works safely, detecting

violation of timing and logical constraints. The WdgM is part of the

System Services layer and is responsible for error detection, isolation

and recovery. It provides three supervision mechanisms: aliveness

supervision, deadline supervision, and control flow supervision; and

four error reactions: signaling errors to other AUTOSAR modules,

logging the errors into Diagnostic Event Manager or Development

Error Tracer modules, partition reset: restarting a specific OS-

application, and micro-controller reset. The WdgM supervises the

execution of the software by monitoring so called supervised entities

– SE. These SEs have no fixed relationship with architectural

building blocks in AUTOSAR, i.e. SWCs, CDDs, RTE, BSW

modules…

Figure 2. Software Architecture of the Front-Light Manager

In each SE, several supervision (alive, deadline, control flow) can be

defined. Each SE is defined with checkpoints and transitions between

checkpoints. It forms a graph of the SE, where checkpoints

corresponds to the states of the graph. A graph may have one or more

initial checkpoints and one or more final checkpoints. The graphs are

defined statically during the configuration of the WdgM.

At runtime, the SEs call the WdgM API when they have reached a

checkpoint. Then, the WdgM verify that the sequence of the received

checkpoints, starting with any initial checkpoint and finishing with

any final checkpoint, is correct.

Specifically, aliveness supervision is monitored by the call of one

checkpoint by the supervised entity. The WdgM checks periodically

that the checkpoint has been reached within given limits (not too

frequent or not too rare). The deadline supervision checks the timing

transition between two checkpoints of a SE. Finally, the Logical

supervision monitors that the graph of a SE is executed correctly.

Table 5. Line Extracted from the Software FMECA Performed on the Software Architecture Described in Figure 2

item ID
Function

Description

Failure

Mode

description

Local

Effect

Product Effect without

safety mechanism

Component

#UE
ASIL

Safety

mechanism

Product Effect

with safety

mechanism

Component

#UE
ASIL

DemoApp_
REQ_01

ComStackDemoApp
must (periodically

10ms) read Ignition
Position from COM
through RTE (Non

trusted)

Period too
slow

Erroneous
Ignition
Position

used

Erroneous inputs provide
to Critical Application
(Light Request SWC)

(Service Calls
Interferences)

SW-UE04 ASIL B

WdgM Aliveness
supervision –

supervised
Entity 4 (10ms)

Reset + Safe
Mode

SW-UE09 QM

ASIL B

Front-Light OS-Application

QM

DemoApp OS-Application

OS

Microcontroller
Drivers

On Board Device
Abstraction

System Services

I/O Drivers

I/O HW
Abstraction

Communication
Drivers

Communication
HW Abstraction

Communication
Services

IOC

SysStack

DemoApp

COMStack

DemoApp

Switch

Event

Light

Request

FrontLight

Manager
HeadLight

RTE
RTE

Ignition
Switch ECU

ASIL B
Dashboard
QM

Light Switch
ASIL B

HeadLights
ASIL B

IoHwAbs

Dio
Can

CanTrcv

CanIf

Com
WdgM

E2E

WdgIf

Wdg Driver

Page 7 of 11

Hence, it implies that every time the SE reports a new checkpoint, the

WdgM must verify that a transition is configured between the

previous checkpoint and the reported one.

A first version, implementing the AUTOSAR requirements, has been

implemented (QM version). Then, safety analyses have been

performed on this module, considering it as a SEooC.

The failure modes of this module are twofold: i) False alarm: the

WdgM unexpectedly triggers a reconfiguration (signaling an error,

logging an error, resetting the target…), ii) False negative: it is a bad

coverage in the detection or the management of the error, i.e., the

WdgM does not detect an erroneous behavior.

The safety analysis has highlighted a gap in the implementation of

the WdgM as some errors could remain undetected.

 Deadline Errors: the violation of a deadline may not be

detected, or could be detected too late. Indeed if the final

checkpoint is not received then no error is detected.

 Control Flow Errors: if the application stops sending its

checkpoints in the middle of the control flow graph, then

no error will be detected by the WdgM whereas the graph

is incomplete.

Moreover, the safety analyses have revealed several potential causes

of the WdgM failure modes, and safety mechanisms have been

defined to mitigate them. E.g., a global variable was used to store the

state of the WdgM, the corruption of this data was critical as it could

lead to the failure modes. To prevent it, it was decided to triplicate its

value in the memory, in order to avoid single point error in the design

of the WdgM. This safety mechanism masks the error in one

replication using a majority vote.

In order to handle these cases a second implementation of the WdgM

has been realized. This “safety version” implements the requirements

identified by the safety analyses.

4. Proof of Concept on the Case Study
In this section, fault injection tests’ plan is illustrated and the results

of these tests are described and analyzed. The tests focus on the SW

FMECA line described in Table 5. The line enables to define two

targets for the injection. First, the propagation of the considered

failure mode may violate the FFI and may also lead to the violation

of the SG1 or SG2. Secondly, it also identifies the WdgM as a mean

to mitigate the critical path, and therefore to ensure the FFI and the

safety requirements.

Even though it is not shown and stated explicitly all over the case

study, all FI experiments have been defined following the FARM

model.

Fault Injection Targets of Fault Injection

Verification of the Critical Path
The target of the experiment is the following item:

“ComStackDemoApp must periodically (10ms) read the Ignition

Position from COM module through the Untrusted RTE”. The failure

mode “Period too slow” may lead to create interferences on the

ASIL B Light Request SWC by providing an erroneous Ignition

Position. ComStackDemoApp may interfere with the critical

application of the Front-Light Manager. At the end, it may violate the

safety goal SG1 and/or SG2 at system level.

For the safety requirement verification, the injection of potential

causes of the failure mode should demonstrate that there is no impact

on the critical application outputs and that the WdgM detects it and

handles it correctly.

Then, the Fault model should be defined to mimic the occurrence of

the failure mode “Period too slow”. The causes of the failure mode

have to be determined. An easy example is to kill the task responsible

of the execution the function.

However, for taking into account more failure mode variants, it has

been decided to test different values of the period of the function. In

normal behavior, the period of the runnable is 10ms. The tests have

been performed with period values from 20ms to 100ms with a step

of 10ms.

Looking at the Activation model, it could be easily find that two use

cases may lead to the violation of a Safety Goal. Indeed, the failure

mode is critical when the ComStackDemoApp cannot provide the

new value of the Ignition Switch to the IOC.

On the one hand, the error must be injected when the headlight are

already ON. In this case, the headlight may blink or switch OFF. On

the other hand, it corresponds to a use case where the headlights are

OFF , the Light Switch already ON, and an Ignition Switch command

is received threw the CAN. In this case, if the COMStack_DemoApp

period is too long, the headlight may light with a delay. Figure 3

illustrates this second use case in the case where the period is

temporary double.

Figure 3. Simplified Sequence Diagram of the Activation of the Headlights.

The following Readouts are needed to analyze the result of the

experiment. The local effect of Table 5: “Erroneous Ignition Position

used” should be monitored in the Light Request SWC but also the

headlight state. Then, the WdgM should also be monitored to verify

that it detects and handles the error. Finally, if the safety mechanism

is efficient the headlights will be ON, otherwise they will remain

OFF.

Safety Mechanisms
In Section 3, one safety mechanism has been proposed to handle this

failure mode: using an aliveness supervision of the WdgM in order to

detect it and then at first reset the application and if the error is not

corrected put the system in a safe mode where the two headlights are

always set ON. It has been shown, FI should also be used to assess

the effectiveness of the WdgM coverage which has the same ASIL

allocated than the Critical application: ASIL B.

The first Measures expected are the EDC and the ERC of the WdgM.

The robustness of the WdgM implementation should also be

assessed. In this case, the behavior of the WdgM, while its memories

(RAM/ROM/stack) are corrupted, is assessed. This evaluates the

quality of the code and could highlight several the weaknesses. On

the WdgM case study, errors leading to false alarms and false

negatives have both been found.

Finally, the same approach could be applied on each line of a

FMECA, or by analyzing the critical paths identified.

RTE
Untrusted

ComStack
DemoApp

IOC
Light

Request

Checkpoint
Aliveness 4

CANWdgM HeadLights

Ignition
Switch ON

RTE 15

RTE 12RTE 13

O
F
F

O
N

Set
Headlights
ON

Initial State Light Switch ON and

Ignition Switch OFF

Checkpoint
Aliveness 4

Ignition
Switch ON

RTE 15

Checkpoint
Aliveness 4

Ignition
Switch ON

RTE 15

RTE 12RTE 13

Set
Headlights
ON

Runnable
not called
according
to its
period

Switching
delay

Page 8 of 11

Figure 4. Overview of the Fault Injection Toolchain

Tests Platform Description
From a practical point of view, the FI tool developed at VALEO

GEEDS provides all the functionalities required to implement fault

injection. This platform uses two FI Techniques: Software-

Implemented Fault Injection (SWIFI) and Nexus-Based Fault

Injection. SWIFI is based on the modification of source code of the

application. Nexus-based FI uses the on-chip debug capabilities of

some micro-controllers in order to access the memories and corrupt

these data.

Figure 4 shows an overview of the FI tool chain that encompasses: a

target, a controller, the source code and an Eclipse-based application.

The target is the Front-Light Manager application (binary files)

running on the microcontroller SPC56EL70 describes in Section 3.

The Controller is composed of a Lauterbach debugger that is

connected to the microcontroller throughout a Nexus Probe. The

debugger enables to access all the memory sections of the

microcontroller, particularly by monitoring the trace of execution of

the application. It is also a fault injector, as it allows

corrupting/modifying memory (this could be done on-the-fly during

execution of the application). The debugger implements Nexus

Class 3+ defined by the Nexus 5001 ForumTM. This class of debugger

enables two important features to perform fault injection without

influencing the real-time execution of the application: “On-the-fly”

runtime memory access and on-chip watch points. The watch point

enables to trigger the fault injection or signal application events

without stopping the application. The “On-the-fly” memory access

capability solves the problem of writing or reading the memory

without adding temporal overhead.

The Debugger is controlled by script files (PRACTICE Language)

interpreted by Trace32 software that perform the interface with the

probe.

The source code is compiled using Wind River to produce an .elf file

(binary) that is then flashed onto the microcontroller. SWIFI can be

implemented by modifying a part of the application source code that

is then compiled and execute on the microcontroller. The Eclipse

based application enables to automatically generate a report for all

the tests executed on the platform. The inputs of the application are

the FI tests cases description and the FI tests logs (readouts).

Tests Set-up
First, it is considered that the micro-controller and memories, are well

protected against random faults by error detection and correction

mechanisms implemented directly in the circuitery of the micro-

controller.

Then, in order to prevent the other corruption, the first action before

any fault injection experiment is to flash the application on the target.

It loads the application and verifies that the loaded application is not

corrupted.

Moreover, the fault injection tests cases mainly target global

variables which are statically defined in the memory. Hence, the

value of these variables can be efficiently controlled during the

experiment.

Results Obtained on the Critical Path
It is assumed that the response time to light the headlights must be

less than 600ms. The application must reach the intended state

(headlights ON in the considered use cases) within this timing.

18 tests cases have been performed for the considered critical path:

9 for each use cases. The results could be categorized in:

 Tolerated errors: the WdgM does not detect error

(according to his configuration) and the system works

even if the period is partially degraded (the output is

refreshed less than specified). [period = 20ms]

 Detected and tolerated errors: the WdgM detects the

error but does not perform any recovery actions. The

system works in a degraded mode (the output is

refreshed less than specified). [period = 30ms or

40ms]

 Detected and recovered errors: in these cases, the

WdgM detects the aliveness error, and start a reset of

the microcontroller. Then, in use case 1, there is a

blinking where the headlight are OFF during 37ms

(reset time) and then the system work properly

Page 9 of 11

(headlights are ON). In use case 2, the system will not

switch the system during a maximum of 220ms since

the error is injected and the Ignition Status command

received. It corresponds to the time of detection by the

WdgM and reset of the application. [Periods between

50 and 100ms].

Test results qualification, i.e., the assessment of the readouts of the

tests, could be challenging, see [15]. The behavior of an application

may not be evaluated easily due to external environment complexity.

However in the case of the Front-Light Manager, the complexity is

low. The result qualification could be done observing identified

output signals (e.g., headlights state) or selected parameters

(detection flags) or exceptions.

All the tests could be put in cases α and δ of the Table 1.There is no

violation of SG1 or SG2.

To conclude, the implemented application enables to meet the

requirements and the safety mechanisms handle correctly faulty

behavior within the response time. Here, a single failure is not

sufficient to lonely violate a safety goal, in the worst case, the failure

mode occurs but reset is triggered fast enough to remain unnoticed.

The implemented safety mechanism is sufficient to handle the

considered failure mode of Table 5.

Then, the same method should be performed for each failure mode

identified in the FMECA.

Results Obtained on the Watchdog Manager

Evaluation of the Error Detection Coverage of the Two

WdgM Implementations
The WdgM implementations, described in section 3, have been tested

in order to evaluate their efficiency to detect and recover from

Aliveness / Deadline / Control Flow errors. In other words, these tests

aim at verifying WdgM implementations fulfill their functional

specification when integrated. It also measures the improvements

between the two versions

Here, the considered fault model is i) wrong checkpoints sent by a

SWC to the WdgM and ii) checkpoints sent with wrong timing

behavior.

To perform the tests, two instances of each supervision have been

configured: one instance is enabled in the mode used for the tests and

the second one is disabled in the mode used by the application. This

enables to verify non-configured checkpoints, configured but not

activated ones and activated ones. There are 256² possible

checkpoints: there are 256 supervised with 256 checkpoints each.

The implemented configuration contains two checkpoints for the

aliveness supervisions, 2 control flow supervisions with 6

checkpoints and 6 transitions each, and 2 deadline supervisions with

2 checkpoints each.

Figure 5. Effectiveness of the two WdgM implementations against the same

fault model (104 tests cases)

In order to inject the fault, a SWC that mimics all the possible

behaviors for checkpoints has been designed. Then, the internal

variables of the WdgM and the resets of the microcontroller have

been monitored. These variables help to verify if the intended

supervision error has been detected, and the microcontroller reset

enables to verify that the error has been recovered.

The results illustrated in Figure 5 have been obtained.

It can be observed that the QM version detects and recovers 94% of

the tests cases (case α and β of the Table 1). This domain is

constituted of two categories:

 A detected and tolerated error, i.e., the error is detected but

do not necessitate resetting the microcontroller. It

corresponds to tests where non-configured checkpoints are

called. In this case, the WdgM returns that an error occurs,

but performs no recovery.

 A detected error that reset the target. In this case the error is

detected and the WdgM restart the microcontroller.

The 6% of “No Observation”, i.e., the WdgM does not detect any

errors and corresponds exactly to the cases identified in the safety

analysis, (case γ and δ in Table 1). The results show these cases are

handled by the safety implementation. Fault injection tests, here,

improve the confidence in the Error Detection Coverage handled by

the new implementation of the WdgM.

Considering the verification of the critical path of Table 5, these

results highlight that the two implementations have no difference

concerning the aliveness supervision. Hence, both could be used for

to handle this failure mode.

Robustness of the Implementation of the WdgM
However, it is also important to verify that the implementation of the

WdgM is robust. Indeed, the robustness of the WdgM against

interferences from HW faults (bit-flip in the memory/registers) /

Real-Time faults has to be assessed.

This assessment is important because the WdgM is a Component Off-

The-Shelf (COTS); a robust implementation is needed in order to

reuse it.

It is interesting to note the interferences on the WdgM may not

directly impact the safety of the System, as its dysfunction are false

alarms leading to a reset, however, interferences may be safety

relevant with second order cut sets. In this case, an application error

could be masked (no detections of deadline/aliveness/control flow

errors), and a safety goal may be violated.

The fault model used for these tests is the corruption of variables of

the WdgM. The variables have been identified based on the safety

analyses performed on the WdgM. The chosen variables may, if they

are corrupted, lead to a WdgM failure mode.

Two activation use cases have been identified. Firstly, the injection is

intended to create a false alarm, therefore the application is in normal

mode when the fault is injected. The second use case aims at showing

a WdgM corruption may mask errors. Here, both alive, deadline and

control flow errors have to be emulated. The activation of the WdgM

error (variable corruption) is done before the alive/deadline/control

flow error.

For these tests, the identified critical path and all the requirements

could be used as oracle for the test cases. Then several variables and

function calls along the critical path have been monitored using on-

chip watch points of the debugger. Typically, these are the

flags/variables that store the WdgM’s detection of errors, the calls of

recovery actions and the occurrences of resets. The objective is to

verify that the reconfiguration is caused by the WdgM and that the

right error has been detected.

0
0%

47
45%

57
55%

WdgM Safety version

No observation

Error Detection and
Tolerance

Error Detection and
Reconfiguration

6
6%

47
45%

51
49%

WdgM QM version

Page 10 of 11

Figure 6 shows the pie charts obtained with these tests. The results

are categorized as follow:

 “No deviation Observed” corresponds to tests where the

behavior of the WdgM is identical with or without the injected

fault. E.g., the corrupted variable is refreshed with the correct

value. (case α and δ of the Table 1).

 “Transient Internal Deviation Observed” corresponds to tests

where the error propagates but is tolerated before reaching a

failure mode of the WdgM. (case α and δ of the Table 1).

 “Internal latent error” corresponds to tests where no WdgM

failure mode is reached, however, the corruption done or the

propagation of this error remains latent and is not activated by

the activation of the target. (Cases α and δ of the Table 1). These

experiments correspond to the corruption of unused variables. In

this category, the corruption done by fault injection experiments

in WdgM memory is not activated and still remain at the end of

the test (timeout expired). The memory remains corrupted but

could be activated by other activation.

 “Failure mode reached”. Here, a false alarm or a false negative

is observed (case β and γ of the Table 1). Particularly, among the

76 tests that lead to reach a failure mode, alive/deadline/Control

flow error (False negative) have not been detected in 15 tests.

Figure 6. Robustness of the WdgM implementation (217 tests cases)

Results show that the test cases based on the safety analyses are

efficient as there are only 35% of “No deviation Observed” tests.

They also highlight that some efforts should be done on the

implementation focusing on basic events that lead to failure modes

(red) and errors that remain latent (orange). For example, it could be

proposed to triplicate some variables in order to protect it with

majority vote. However, a tradeoff has to be made between memory

consumption, performances and safety.

5. Summary/Conclusions
First, the investigation of the scope of FI has shown ISO 26262

requirements may impact significantly the development process of

automotive critical system. Indeed, ISO 26262 requires fault injection

for all ASIL levels for the verification and validation of failure

propagation and mitigation by safety mechanisms.

Then, the objectives of FI have been discussed, and a method based

on safety analyses has been proposed to define fault injection

attributes of the FARM model: targets, measure, fault model,

activation model and readouts.

The major advantage of this method is to rely on the previous

activities of the development process. Hence, it helps to enhance the

reliance on the safety analyses. Moreover, the method enables to keep

the traceability of the safety requirements. This could be used to

reduce the number of experiments.

However a main drawback is that the method required a high level of

maturity of the safety analyses. Particularly, FMECA should be

preferred to obtain better results, as FMECA are more complete

analyses.

A proof of concept of the method has been realized on simple

automotive application: Front-Light System. The software

architecture of this case study is based on AUTOSAR 4.X. The

system has been described at different levels of development together

with safety analyses, to show the traceability of the requirements and

their importance in the assessment of FI measures.

Then FI tests have been planned and performed on a FI test platform.

A first interesting results obtained with the experiments’ measure is

the efficiency of the injected faults. Most of the injected faults have

an impact on the target (they lead to a failure mode or they triggered

a safety mechanism).

The obtained measures allow having reasonable proofs to

demonstrate the effectiveness of the safety mechanisms (the WdgM)

and the correct implementation of the safety requirements, and of the

FFI. Our current work aims at obtaining global measures from FI

experiments and optimizing the whole development process by

defining an optimal set of experiments.

To conclude, this method offers interesting results for the integration

of the FI in an automotive development process following the

requirements of the ISO 26262. However, this may lead to significant

efforts and timing overhead on a complete architecture. Hence, the FI

experiments must be carefully selected.

Then, targeting standards safety mechanisms modules (particularly

AUTOSAR ones) should be a priority, as they may be reused on

multiple project. This also enables to define the fault injection tests,

which should be done to benchmark different implementations of

these modules.

6. References

1. ISO 26262 – Road Vehicles – Functional Safety, 10 November,

2011.

http://www.iso.org/iso/home/news index/news archive/news.htm

?refid=Ref1499 [Online; accessed 30-Jul-2014].

2. L. Pintard, J.C. Fabre, M. Leeman, K. Kanoun, M. Roy, "From

Safety Analyses to Experimental Validation of Automotive

Embedded Systems," Dependable Computing (PRDC), 2014

IEEE 20th Pacific Rim International Symposium on , vol., no.,

pp.125,134, 18-21 Nov. 2014 doi: 10.1109/PRDC.2014.23

3. M. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and

tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

4. P. Yuste, D. de Andres, L. Lemus, J. Serrano, and P. Gil, “Inerte:

integrated nexus-based real-time fault injection tool for

embedded systems,” in Dependable Systems and Networks,

2003. Proceedings. 2003 International Conference on, pp. 669–

669, 2003

5. D. Skarin, R. Barbosa, J. Karlsson, “GOOFI-2: A tool for

experimental dependability assessment,” Dependable Systems

and Networks (DSN), 2010 pp. 557–562.

6. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S., 2013. EDFI: A

Dependable Fault Injection Tool for Dependability

Benchmarking Experiments, Dependable Computing (PRDC),

2013 IEEE 19th Pacific Rim Int. Symp. on, pp. 31-40.

7. N. Silva, R. Barbosa, J.C. Cunha, M. Vieira, “A view on the past

and future of fault injection,” Dependable Systems and

Networks (DSN), 2013 43rd Annual IEEE/IFIP International

Conference on , vol., no., pp.1,2, 24-27 June 2013 doi:

10.1109/DSN.2013.6575332

8. F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A

study of the impact of single bit-flip and double bit-flip errors on

program execution,” in Computer Safety, Reliability, and

Security (F. Bitsch, J. Guiochet, and M. Kaaniche, eds.), vol.

8153 of Lecture Notes in Computer Science, pp. 265–276,

Springer Berlin Heidelberg, 2013.

No Deviation
Observed; 77;

35%

Transient
Internal

Deviation
Observed; 17;

8%

Internal
Latent Error;

47; 22%

FM Reached;
76; 35%

http://www.iso.org/iso/home/news index/news archive/news.htm?refid=Ref1499
http://www.iso.org/iso/home/news index/news archive/news.htm?refid=Ref1499

Page 11 of 11

9. Islam, M. M., Karunakaran, N. M., Haraldsson, J., Bernin, F., &

Karlsson, J. (2014, May). Binary-Level Fault Injection for

AUTOSAR Systems (Short Paper). In Dependable Computing

Conference (EDCC), 2014 Tenth European (pp. 138-141).

IEEE.

10. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E.

Martins, and D. Powell, “Fault injection for dependability

validation: A methodology and some applications,” IEEE Trans.

on Software Engineering, vol. 16, no. 2, pp. 166–182, 1990.

11. Datasheet SPC56EL70 32-bit Power Architecture®

microcontroller for automotive SIL3/ASILD chassis and safety

applications, DocID023953 Rev 4, October 2013

12. AUTOSAR Development Cooperation, http://www.autosar.org

[Online; accessed 30-Jul-2014].

13. AUTOSAR Specification of Operating System V5.3.0 R4.1

Rev 3, https://www.autosar.org/fileadmin/files/releases/4-

1/software-architecture/system-

services/standard/AUTOSAR_SWS_OS.pdf [Online; accessed

30-Jul-2014]

14. AUTOSAR Specification of Watchdog Manager V2.2.0 R4.0

Rev 3, https://www.autosar.org/fileadmin/files/releases/4-

1/software-architecture/system-

services/standard/AUTOSAR_SWS_WatchdogManager.pdf

[Online; accessed 30-Jul-2014].

15. D. Trawczynski, J. Sosnowski, P. Gawkowski , Analyzing fault

susceptibility of ABS microcontroller, Computer Safety,

Reliability, and Security, Springer, 2008, 360-372

7. Acknowledgments
The authors thank Youness Kamel for his contribution on the WdgM

experiments, and also SAE reviewers for their insightful comments.

8. Definitions/Abbreviations
API Application Programming Interface

ASIL Automotive Safety Integrity Level

BE Basic Event

BSW Basic Software

CAN Controller Area Network

CPA Critical Path Analysis

COTS Component Off-The-Shelf

EC Equivalence Class

ECU Electronic Control Unit

EDC Error Detection Coverage

ERC Error Recovery Coverage

FFI Freedom From Interferences

FI Fault Injection

FM Failure Mode

FME(C)A Failure Mode Effects (and Criticality) Analysis

FTA Fault Tree Analysis

IO input or output

IOC Inter OS-Application Communicator

ISO International Standard Organization

MMU Memory Management Unit

MPU Memory Protection Unit

OS operating system

PHA Preliminary Hazard Analysis

QM Quality Management

RTE Run-Time Environment

SE supervised entity

SEooC Safety Element out of Context

SG safety goal

SWC Software Component

SWIFI Software Implemented Fault Injection

UE undesired event

WdgM Watchdog Manager

http://www.autosar.org/
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/standard/AUTOSAR_SWS_WatchdogManager.pdf

