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Exact Solutions to a Class of Feedback Systems on SO(n)

This paper explores novel aspects of the attitude tracking problem for a class of almost globally asymptotically stable feedback laws on SO(n). The closedloop systems are solved exactly for the rotation matrices as explicit functions of time, the initial conditions, and the gain parameters of the control laws. The exact solutions provide insight into the transient dynamics of the system and can be used to prove almost global attractiveness of the identity matrix. Applications of these results are found in model predictive control problems where detailed insight into the transient attitude dynamics is utilized to approximately complete a task of secondary importance. Knowledge of the future trajectory of the states can also be used as an alternative to the zero-order hold in systems where the attitude is sampled at discrete time instances.

Introduction

The nonlinear control problem of stabilizing the attitude dynamics of a rigid body has a long history of study and is important in a diverse range of engineering applications related to e.g., quadrotors [START_REF] Lee | Geometric tracking control of a quadrotor UAV on SE(3)[END_REF], inverted pendulums in three-dimensional space [START_REF] Chaturvedi | Asymptotic smooth stabilization of the inverted 3-D pendulum[END_REF], and robotic manipulators [START_REF] Hu | Homography-based visual servo control with imperfect camera calibration[END_REF]. It is interesting from a theoretical point of view due to the nonlinear state equations and the topology of the underlying state space SO [START_REF] Hu | Homography-based visual servo control with imperfect camera calibration[END_REF]. An often cited result states that global asymptotical stability on SO(3) cannot be achieved by means of a continuous, time-invariant feedback [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF]. The literature does however provide results such as almost global asymptotical stability through continuous time-invariant feedback [START_REF] Chaturvedi | Rigid-body attitude control: Using rotation matrices for continuous singularity-free control laws[END_REF][START_REF] Sanyal | Inertia-free spacecraft attitude trajectory tracking with internal-model-based disturbance rejection and almost global stabilization[END_REF], almost semi-global stability [START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF], or global stability by means of a hybrid control approach [START_REF] Mayhew | Quaternion-based hybrid control for robust global attitude tracking[END_REF]. The parameterizations used to represent SO(3) have important implications for the limits of control performance [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF][START_REF] Chaturvedi | Rigid-body attitude control: Using rotation matrices for continuous singularity-free control laws[END_REF][START_REF] Mayhew | On quaternion-based attitude control and the unwinding phenomenon[END_REF]. In particular, the use of local representations yield local results. In most cases, it is preferable to either use global representations such as the unit quaternions or to work with the space of rotation matrices directly [START_REF] Chaturvedi | Rigid-body attitude control: Using rotation matrices for continuous singularity-free control laws[END_REF].

The exact solutions to a closed-loop system give a detailed picture of both its transient and asymptotical behavior and can hence be of use in control applications. The literature on solutions to attitude dynamics can be divided into two categories. Firstly, in a number of works the solutions are obtained during the control design process, e.g., using exact linearization [START_REF] Dwyer | Exact nonlinear control of large angle rotational maneuvers[END_REF] or optimal control design techniques such as the Pontryagin maximum principle [START_REF] Spindler | Optimal control on Lie groups with applications to attitude control[END_REF]. Secondly, there are works whose main focus is solving the equations de ning rigid-body dynamics under a set of speci c assumptions [START_REF] Elipe | Exact solution of a triaxial gyrostat with one rotor[END_REF][START_REF] Ayoubi | Asymptotic theory for thrusting, spinning-up spacecraft maneuvers[END_REF][START_REF] Doroshin | Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostatsatellites[END_REF]. This paper falls into the second category.

There is a considerable literature on the kinematics and dynamics of n-dimensional rigid-bodies. This literature includes works on attitude stabilization [START_REF] Maithripala | Almost-global tracking of simple mechanical systems on a general class of Lie groups[END_REF], attitude synchronization [START_REF] Lageman | Synchronization with partial state feedback on SO(n)[END_REF], distributed averaging [START_REF] Matni | A convex approach to consensus on SO(n)[END_REF], and generalized Newtonian equations of motion [START_REF] Hurtado | Hamel coe cients for the rotational motion of an n-dimensional rigid body[END_REF]. It also includes the authors previous work [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF][START_REF] Markdahl | Analytical solutions to a class of feedback systems on SO(n)[END_REF], which we shall comment on shortly. A key di erence between the study of SO(3) and SO(n) is that parameterizations such as the unit quaternions cannot be used. Another is motivation: work on SO(3) is usually motivated by applications concerning the attitude of rigid bodies. Results regarding SO(n) is not only of theoretical concern however; they also nds applications in the visualization of high-dimensional data [START_REF] Thakur | Framework for visualizing and exploring high-dimensional geometry[END_REF].

The main contribution of this paper is to provide exact solutions to di erential equations representing closed feedback loops on SO(n). Recent work on this problem include [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF][START_REF] Markdahl | Analytical solutions to a class of feedback systems on SO(n)[END_REF][START_REF] Markdahl | Exact solutions to the closed loop kinematics of an almost globally stabilizing feedback law on SO(3)[END_REF]. Other works such as [START_REF] Elipe | Exact solution of a triaxial gyrostat with one rotor[END_REF][START_REF] Ayoubi | Asymptotic theory for thrusting, spinning-up spacecraft maneuvers[END_REF][START_REF] Doroshin | Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostatsatellites[END_REF] are related in spirit but address somewhat di erent problems. The work [START_REF] Markdahl | Exact solutions to the closed loop kinematics of an almost globally stabilizing feedback law on SO(3)[END_REF] considers the solutions to closed-loop kinematics on SO [START_REF] Hu | Homography-based visual servo control with imperfect camera calibration[END_REF]. An application towards model predictive control is proposed but left unexplored. The more general problem of solving two di erential equations on SO(n) is treated in [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF]. An application towards the problem of continuous actuation under discrete-time sensing is considered. The work [START_REF] Markdahl | Analytical solutions to a class of feedback systems on SO(n)[END_REF] generalizes the results of [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF] to a greater class of feedback laws. This paper in turn generalizes [START_REF] Markdahl | Analytical solutions to a class of feedback systems on SO(n)[END_REF] and explores the applications proposed in [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF][START_REF] Markdahl | Exact solutions to the closed loop kinematics of an almost globally stabilizing feedback law on SO(3)[END_REF]. Note that many of the results of this paper easily extend to the case of the special euclidean group, SE(n), and may be combined with position control laws in an inner-outer loop feedback scheme to achieve pose stabilization on SE(n) [START_REF] Roza | Position control for a class of vehicles in SE(3)[END_REF].

Preliminaries

Let A, B ∈ R n×n . The spectrum of A is written σ (A). The transpose and conjugate transpose of A is written A ⊤ and A * respectively. The commutator of A and B is de ned by [A, B] = AB -BA. Their inner product is de ned by A, B = tr(A ⊤ B) and the Frobenius norm by

A F = A, A 1 /2
. The set of nonsingular matrices over a eld F is denoted by GL(n, F ). The unitary group is denoted by

U(n) = {U ∈ GL(n, C) | U -1 = U * }. The orthogonal group is O(n) = {Q ∈ GL(n, R) | Q -1 = Q ⊤ }. The special orthogonal group is denoted by SO(n) = {R ∈ O(n) | det R = 1}.
In this paper we de ne

N = {R ∈ SO(n) | -1 ∈ σ (R)}. It can be shown that {R ∈ SO(n) | R ⊤ = R}/{I} ⊂ N . Equality holds in the cases of n ∈ {2, 3}. The Lie algebra of SO(n) is denoted by so(n) = {S ∈ R n×n | S ⊤ = -S}. In this paper, we use S to denote the matrix Log R ∈ so(n) for R ∈ SO(n)\N .
The group of symmetric matrices is

Sym(n) = {P ∈ R n×n | P ⊤ = P}. The set of positive-semide nite matrices is denoted by P = {P ∈ Sym(n) | σ (P) ⊂ [0, ∞)}. The set of positive-de nite matrices is P ∩ GL(n, R).
The solution to a di erential equation Ẋ = F(t, X) is denoted X(t; t 0 , X 0 ) where t is the time, t 0 is the initial time, and X 0 is the initial condition. If the system is time independent we set t 0 = 0 and omit this dependence.

The principal matrix logarithm is uniquely de ned on the set [START_REF] Higham | Functions of matrices: theory and computation[END_REF]. Since any rotation matrix R is normal, it follows that R = UΛU * and the logarithm of R may be calculated as Log R = U Log(Λ)U * . Moreover, Λ = exp(iΘ) for a diagonal matrix Θ which satis es Θ ii ∈ (-π , π ) for all R ∈ SO(n)\N . Hence Log(Λ) = iΘ and Log R = iUΘU * . The matrix logarithm allows us to calculate the geodesic distance between R 1 , R 2 ∈ SO(n) using the Riemannian metric

{A ∈ GL(n, R) | σ (A) ∩ (-∞, 0] = ∅} [24]. It satis es Im σ (Log A) ⊂ {z ∈ iR | |z| < π }
d R (R 1 , R 2 ) = 1 √ 2 Log(R ⊤ 1 R 2 ) F .
The matrix valued hyperbolic cosine, sine, and tangent of A ∈ R n×n can be dened via the matrix exponential as cosh

(A) = 1 2 [exp(A) + exp(-A)] , sinh(A) = 1 2 [exp (A) -exp(-A)], tanh(A) = sinh(A)cosh -1 (A). The hyperbolic arctangent is de ned by atanh(A) = 1 2 Log(I + A) -1 2 Log(I -A), for arguments A such that [σ (I + A) ∪ σ (I - A)] ∩ (-∞, 0] = ∅.
By the kth root of a normal matrix A = UΛU * we refer to its principal root, the normal matrix

A 1 /k = UΛ 1 /k U * . The principal root satis es R 1 /k = exp( 1 /kS) ∈ SO(n). Moreover, R 1 /k SO(n)\N if R SO(n)\N .

Problem Statement

From a mathematical perspective, it is appealing to strive for generalization. Consider the evolution of a positively oriented n-dimensional orthogonal frame represented by R ∈ SO(n). The dynamics on SO(n) are given by Ṙ = ΩR. This paper concerns the following system.

System 1. Consider the system Ṙ = Ω(R)R, where R ∈ SO(n) and Ω : SO(n) → so(n).

The input is given by Ω, i.e., the system is actuated on a kinematic level.

The kinematic level stabilization problem on SO(n) concerns the design of an Ω that stabilizes the identity matrix. System 1 states that R can be actuated along any direction of so(n), its tangent space at the identity. Note that SO(n) is invariant under the kinematics of System 1, i.e., any solution R (t; R 0 ) for which R 0 ∈ SO(n) remains in SO(n) for all t ∈ [0, ∞). This paper concerns a class of almost globally stabilizing feedback laws Ω that allow System 1 to be solved for R as a function of time, any design parameters, and the initial conditions. It also analyzes the stability of said class of control laws and discusses possible applications of these results.

An equilibrium of System 1 is said to be almost globally asymptotically stable if it is asymptotically stable and the region of attraction is all of SO(n) except for a set of measure zero. A set S ⊂ SO(n) has measure zero if for every chart ϕ : B → R 1 2 n (n-1) in some atlas of SO(n), it holds that ϕ (B ∩ S) has Lebesgue measure zero [START_REF] Lee | Smooth manifolds[END_REF].

Problem 2. For a given almost globally stabilizing feedback law Ω : SO(n) → so(n), solve System 1 for R (t; R 0 ), i.e., for R as function of the time t ∈ [0, ∞) and all initial conditions R 0 ∈ SO(n) belonging to the region of attraction of the identity matrix.

Previous work on global level attitude stabilization apply the stable-unstable manifold theorem [START_REF] Chaturvedi | Rigid-body attitude control: Using rotation matrices for continuous singularity-free control laws[END_REF][START_REF] Sanyal | Inertia-free spacecraft attitude trajectory tracking with internal-model-based disturbance rejection and almost global stabilization[END_REF][START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF] or use Lyapunov function arguments [START_REF] Mayhew | Quaternion-based hybrid control for robust global attitude tracking[END_REF] to establish the region of attraction of the identity matrix. The stable-unstable manifold theorem [START_REF] Sastry | Nonlinear systems: analysis, stability, and control[END_REF] is however ine ective to prove almost global asymptotical stability for systems that are actuated on a kinematic level when the unstable equilibrium manifold corresponds to the uncountable set {R ∈ SO(n

) | R ⊤ = R}\{I} ⊂ N .
This paper presents a novel approach to establishing almost global asymptotical stability by means of exact solutions to the closed-loop system kinematics. It is possible to establish global existence and uniqueness of the solutions, see Lemma 28 in Appendix A. Statements regarding control performance can hence be based on the properties of the exact solutions. This paper uses the solutions to show that the region of attraction of the identity matrix for the closed-loop systems generated by Algorithm 4 and 9 is SO(n)\N . The desired result follows since N is a set of measure zero in SO(n).

Remark 3. The attitude dynamics of a rigid body is often described by a second order system consisting of a kinematic equation, an equivalent of that in System 1, coupled with Euler's equation of motion. In that case, the input signal is a torque vector. Kinematic level control design may however be preferable under certain circumstances, for example when an application programming interface restricts actuation to velocity level control commands or as a prerequisite in applying the backstepping control design technique [START_REF] Krstic | Nonlinear and Adaptive Control Design[END_REF]. Models with kinematic level actuation are also common in certain elds such as visual servo control [START_REF] Chaumette | Visual servo control. Part I: basic approaches[END_REF][START_REF] Chaumette | Visual servo control. Part II: advanced approaches[END_REF]. What is more, there is no compelling reason to impose Newtonian mechanics in the general SO(n) case.

Main Results

This section contains the main results of the paper, the exact solutions to the closed-loop systems resulting from feedback by Algorithm 4 and 9.

Matrix Riccati Di erential Equation.

The following algorithm is well-known in the literature.

Algorithm 4. The input signal Ω : SO(n) → so(n) is given by Ω = PR ⊤ -RP, where P ∈ P is either a rank n -1 or a rank n matrix.

The closed-loop system resulting from plugging Algorithm 4 into System 1 is

Ṙ = P -RPR. (1) 
Theorem 5. The trajectory of the closed-loop system generated by Algorithm 4 is

R (t; R 0 ) =[sinh(Pt ) + cosh(Pt )R 0 ][cosh(Pt ) + sinh(Pt ) R 0 ] -1 ,
where the matrix hyperbolic functions are de ned in terms of the exponential matrix.

Proof. Equation ( 1) is a matrix valued di erential Ricatti equation that can be solved using the adjoint equations technique. Introduce two matrices X, Y ∈ GL(n, R) that satisfy

Ẋ = PY, Ẏ = PX (2) with initial conditions X(0; R 0 ) = R 0 , Y(0; R 0 ) = I. Note that R = XY -1 since R (0; R 0 ) = X(0; R 0 )Y -1 (0; R 0 ) = R 0 and d dt (XY -1 ) = ẊY -1 -XY -1 ẎY -1 = P -RPR = Ṙ.
The system ( 2) is linear and has the transition matrix

exp 0 P P 0 t = cosh(Pt ) sinh(Pt ) sinh(Pt ) cosh(Pt ) .
By reversing the change of variables using the expressions for X(t; R 0 ) and Y(t; R 0 ) we nd R (t; R 0 ). Proposition 6. The identity matrix is an almost globally asymptotically stable equilibrium of System 1 under Algorithm 4. The rate of convergence is locally exponential and the region of attraction is SO(n)\N .

Proof. The proof for the cases of rank P = n and rank P = n -1 are carried out separately.

The proofs rely on the uniqueness property established in Lemma 28 which allows us to draw conclusions regarding control performance based on the exact solutions. Consider the positive-de nite case. The Frobenius norm is submultiplicative whereby

XY -1 -I F = (X -Y)Y -1 F ≤ X -Y F Y -1 F . That lim t →∞ XY -1 -I F = 0 hence follows from lim t →∞ X -Y = lim t →∞ exp(-Pt )(R 0 -I) = 0, lim t →∞ Y -1 = lim t →∞ [I + tanh(Pt )R 0 ] -1 cosh -1 (Pt ) = 0.
The last limit is given by Lemma 30 in Appendix A. It requires the assumption of R 0 N . We have shown that I attracts all system trajectories such that R 0 ∈ SO(n)\N . That N does not belong to the region of attraction of I follows from Lemma 31 in Appendix A.

Use the rst method of Lyapunov to show that I is a locally exponentially stable equilibrium of R. Take Z to be the matrix corresponding to the linearization of R -I around 0. Then Ż = -PZ -ZP, with Z(0

) = Z 0 = R 0 -I. Hence Z(t; Z 0 ) = exp(-Pt )Z 0 exp(-Pt ),
i.e., the linearized system is exponentially stable.

Consider the positive-semide nite case. The eigenvectors v 1 , . . . , v n of P ∈ P form an orthogonal basis of R n by virtue of the spectral theorem. Let 0 be the eigenvalue corresponding to v n . Denote P expressed in the basis {v 1 , . . . , v n } by

Q =         v ⊤ 1 . . . v ⊤ n         P v 1 . . . v n =         v ⊤ 1 Pv 1 . . . v ⊤ 1 Pv n . . . . . . . . . v ⊤ n Pv 1 . . . v ⊤ n Pv n         =            v ⊤ 1 Pv 1 . . . v ⊤ 1 Pv n-1 0 . . . . . . . . . . . . v ⊤ n-1 Pv 1 . . . v ⊤ n-1 Pv n-1 0 0 . . . 0 0            = Q 11 0 0 0 .
Denote R expressed in the basis {v 1 , . . . , v n } by X, and write

X = X 11 x 12 x 21 x 22 .
By calculation, one can show that Ẋ11 = Q 11 -X 11 Q 11 X 11 , whereby Theorem 5 gives

X 11 = [sinh(Q 11 t ) + cosh(Q 11 t )][cosh(Q 11 t ) + sinh(Q 11 t )X 11, 0 ] -1 .
Since rank Q = rank P, we nd that

Q 11 ∈ P (n -1) ∩ GL(n -1, R). What is more, -1 σ (X 11, 0 ) follows from R N by Lemma 35.
The almost global attractivity and stability of I as an equilibrium of X 11 follows by reasoning analogously as done in the case of a positive de nite P. The corresponding properties of x 12 , x 21 , and x 22 follow from the constraints on X ∈ SO(n). This carries over to R. Remark 7. A key step in the above proof makes use of the constraints on X ∈ SO(n) to conclude the attractivity and stability properties of x 12 , x 21 , and x 22 based on those of X 11 . This technique cannot be used if rank P ≤ n -2 since the lower right block matrix would not be uniquely determined due to the number of constraints being insu cient.

Commutative Matrix Multiplication.

The following closed-loop systems are generated by a class of control laws which all share the property that the state and the input signals commute. This class is of interest since it reduces Problem 2 to Problem 8. Instead of solving a system with n 2 variables and 1 2 n(n -1) degrees of freedom on the Lie group SO(n), a system that evolves on the Lie algebra so(n) is solved. The Lie algebra is a linear space where the number of variables equals the number of degrees of freedom. Problem 8. For a given asymptotically stabilizing feedback law Ω : SO(n) → so(n), solve the autonomous system Ṡ = Ω (exp S) for S (t; S 0 ), i.e., for S as function of the time t ∈ [0, ∞), and any initial condition S 0 ∈ so(n). Algorithm 9. Let F : S → so(n), where S ⊆ so(n), be a mapping that satis es [F(S), S] = 0.

(

) 3 
Moreover, suppose that the zero matrix is an asymptotically stable equilibrium of

Ṡ = F (S), (4) 
where (4) has a known, unique, continuously di erentiable solution S(t; S 0 ) for all S 0 ∈ S and all t ∈ (0, ∞), for which {S ∈ so(n) | max λ ∈σ (S ) |λ| < π } is a positively invariant set. The input matrix Ω : exp(S)\N → so(n) is given by Ω (R) = F(Log R), where Log : SO(n)\N → so(n) denotes the principal matrix logarithm.

Remark 10. Since the principal logarithm maps SO(n)\N into {S ∈ so(n) | max λ ∈σ (S ) |λ| < π }, it su ces to con ne the domain of F to this set or some subset thereof.

The resulting closed-loop system is

Ṙ = F(Log R)R. (5) 
Theorem 11. The trajectories of (5) are given by R (t;

R 0 ) = exp[S (t; Log R 0 )]. Proof. Note that R (0; R 0 ) = R 0 . Since [Ω, S] = 0, it follows that [ Ṡ, S] = 0, see Lemma 32 in Appendix A. Hence ΩR = Ṙ = d dt exp(S) = d dt ∞ i =1 1 i! S i = ṠR.
By multiplying the above identity by R -1 from the right, we are left with Ṡ = Ω = F. Also note that R (0; R 0 ) = R 0 . The expression for R (t; R 0 ) is obtained from the exponential mapping.

Proposition 12. Algorithm 9 stabilizes System 1. Let R denote the region of attraction of the zero matrix as an equilibrium of (4) on so(n). The region of attraction of the identity matrix as an equilibrium of System 1 under Algorithm 9 is exp(R)\N .

Proof. The exact solution is unique by Lemma 28. Since 0 is an asymptotically stable equilibrium of (4), we nd that

lim t →∞ S (t; Log R 0 ) = 0, lim t →∞ R (t; R 0 ) = I,
for all R 0 such that Log R 0 ∈ R. The region of attraction on SO(3) contains and hence equals exp(R)\N since Algorithm 9 is restricted to this domain.

The identity matrix being a stable equilibrium of (5), follows from the stability of (4) and the continuity of the exponential mapping. More precisely, we require a pair (δ, ε )

such that d R [I, R (t; R 0 )] ≤ ε for all t ∈ [0, ∞) when d R (I, R 0 ) ≤ δ . Note that d R [I, R (t; R 0 )] = 1 √ 2 Log R (t; R 0 ) F = 1 √ 2 S (t; S 0 ) -0 F .
The stability of 0 as an equilibrium of S implies the existence of a pair

(δ ′ , ε ′ ) such that S (t; S 0 ) -0 F ≤ ε ′ for all t ∈ [0, ∞) when S 0 -0 F ≤ δ ′ . Hence we may take (δ, ε ) = 1 / √ 2(δ ′ , ε ′ ).

Examples

Algorithm 9 cannot be implemented without choosing a speci c function F which satis es the stated requirements. The class of feedback laws satisfying the commutativity relation (3) includes any F : so(n) → so(n) that extends an analytic function f : R → R so that F can be de ned in terms of the Taylor expansion of f [START_REF] Higham | Functions of matrices: theory and computation[END_REF]. Since it can be a nontrivial task to nd such an F that also stabilizes the zero matrix, we provide the following three control laws, Algorithm 13, 15, and 17, which are special cases of Algorithm 9.

5.1 The Matrix Logarithm. An important special case of Algorithm 9 is the geodesic feedback based on the matrix logarithm [START_REF] Bullo | Control on the sphere and reduced attitude stabilization[END_REF].

Algorithm 13. The feedback Ω = -Log R on SO(n) corresponds to the geodesic feedback F (S) = -S on so(n).

The closed-loop system resulting from use of the feedback in Algorithm 13 is

Ṙ = -Log(R)R. ( 6 
)
Proposition 14. The trajectories of (6) are given by R (t; R 0 ) = exp(e -t Log R 0 ).

Proof. Note that [Log R, R] = 0 by Lemma 29 in Appendix A. Moreover, the solution to Ṡ = -S is given by S(t; S 0 ) = e -t S 0 . The eigenvalues of S are decreasing functions of time, whereby any ball containing them is positively invariant. Algorithm 13 is hence a special case of Algorithm 9 wherefore the desired result follows by Theorem 11.

5.2

The Matrix Root. Algorithm 4 with P = I satis es [Ω, Log R] = 0. This also holds when R is replaced by its kth root R 1 /k for k ∈ N.

Algorithm 15. The input matrix for this control law is given by

Ω = k (R -1 /k -R 1 /k ),
where the proportional gain factor k is used to scale the time dependence of R, i.e., F (S) = -2k sinh( 1 k S). The closed-loop system resulting from use of the feedback in Algorithm 15 is

Ṙ = k (R 1-1 /k -R 1+ 1 /k ). (7) 
The scalar gain k ∈ N is introduced so that the limit lim k→∞ Ω = -2 Log R; without it the limit would be zero.

Proposition 16. The trajectories of (7) are given by

R (t; R 0 ) = [tanh(t ) I + R 1 /k 0 ] k [I + tanh(t ) R 1 /k 0 ] -k . Proof. Introduce the variable X = R 1 /k ∈ SO(n). Then Ẋ = 1 k ṘR 1 /k-1 = 1 k k (R 1-1 /k -R 1+ 1 /k )R 1 /k-1 = I -R 2 /k = I -X 2 , (8) 
which also results from setting P = I in Algorithm 4. Reversing the change of variables in the solution for X given by Theorem 5 yields the desired expression.

For F (S) = -2k sinh( 1 k S) to satisfy the assumptions of Algorithm 9 requires the invariance of an open ball of radius π in the space of eigenvalues of S. The spectral theorem applies since skew-symmetric matrices are normal. Factorize S as done with R in the proof of Lemma 32. The eigenvalues are decreasing functions of time. Further details are omitted, as is the corresponding proof with regard to the Cayley transform.

5.3

The Cayley Transform. Another special case of Algorithm 9 is the Cayley transform and the higher order Cayley transforms.

Algorithm 17. The input matrix is given by

Ω = k (I -R 1 /k )(I + R 1 /k ) -1 ,
i.e., the kth order Cayley transform up to a scalar gain factor k ∈ N. The corresponding control law on so(n) is F (S) = -k tanh 1 2k S . The closed-loop system resulting from use of the feedback in Algorithm 17 is

Ṙ = k (I -R 1 /k )(I + R 1 /k ) -1 R. (9) 
The scalar gain k ∈ N is introduced so that the limit lim k→∞ Ω = -1 2 Log R; without it the limit would be the zero matrix.

Proposition 18. The trajectories of (9) are given by

R (t; R 0 ) = exp[2k atanh Y(t, X 0 )],
where

Y(t; X 0 ) = sinh (X 0 ) sinh 2 X 0 + e t I -1 /2
, and X 0 = 1 2k Log R 0 . Proof. That Y (t; X 0 ) and atanh Y(t; X 0 ) are well-de ned follows from Lemma 34 in Appendix A. Change variables from R to X = 1 2k Log R where the scaling is just a matter of notational convenience. Note that Ω = -k tanh X, whereby [X, Ω] = 0 and Ẋ = 1 2k Ω by Lemma 32.

As an intermediate step, consider the evolution of

Y (t; X 0 ) = sinh (X 0 ) sinh 2 X 0 + e t I -1 /2 (10) 
given by

Ẏ(t; X 0 ) = -1 2 sinh(X 0 )(sinh 2 X 0 + e t I) -3 /2 e t = -1 2 Y(t; X 0 )(sinh 2 X 0 + e t I) -1 e t = -1 2 Y (t; X 0 )(sinh 2 X 0 + e t I) -1 (sinh 2 X 0 + e t I -sinh 2 X 0 ) = -1 2 Y (t; X 0 )[I -Y(t; X 0 ) 2 ]. It remains to verify that X(t; X 0 ) = atanh Y(t; X 0 ) solves Ẋ = -1 2 tanh X. Note that X(0; X 0 ) = atanh (tanh X 0 ) = X 0 . What is more Ẋ(t; X 0 ) = [I -Y 2 (t; X 0 )] -1 Ẏ (t; X 0 ) = -1 2 Y(t; X 0 ) = -1 2 tanh X(t; X 0 )
, where the dynamics of Y(t; X 0 ) are used.

Proposition 12 reduces the stability analysis for Algorithm 13, 15, and 17 to proving the global asymptotical stability of the zero matrix on so(n). Further details are omitted for the sake of brevity.

5.4 Discussion. Algorithm 4 and 9 di er in several respects. Algorithm 4 has a constant positive-de nite gain matrix that can be tuned for desired performance. It provides a continuous feedback but has a low input norm for rotations that are far from the identity, the disadvantage of which is slow convergence in the case of large errors [START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF]. Algorithm 13 provides a geodesic control law. The feedback laws of Algorithm 13 and 15 have input norms that are increasing functions of S F . This property is useful in attitude control of satellites that are required to make large angle maneuvers [START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF]. The input norm of Algorithm 17 diverges as the error is maximized. Although such behavior is normally undesired in practice, it does exemplify the width of the class of algorithms that is Algorithm 9. The disadvantage of Algorithm 13, 15, 17 as compared to Algorithm 4 is the discontinuity when R ∈ N . Figure 1 illustrates some of these considerations for R ∈ SO(3). 

Applications

The results of this paper have applications in the eld of visual servo control with regards to model predictive control problems and control of sampled systems.

Model Predictive Control.

The exact solutions can be used to pose a model predictive control problem in terms of the feedback gain parameters of the control law. Algorithm 4 provides a gain matrix, P ∈ P ∩ GL(n, R). The potential bene t of using optimization techniques in lieu with the solutions provided in this paper is hence greater than in [START_REF] Markdahl | Exact solutions to the closed loop kinematics of an almost globally stabilizing feedback law on SO(3)[END_REF] where only two parameters are available for tuning. This problem is of interest in visual servo control for the case of n = 3 and in applications that require the visualization of high-dimensional data for the case of general n [START_REF] Thakur | Framework for visualizing and exploring high-dimensional geometry[END_REF].

Before turning to the model predictive control problem, consider a switched feedback control based on the extension of Algorithm 4 to the case of SO(n), where a time-dependence is introduced by replacing the gain matrix P with a piece-wise constant matrix valued function of time.

Algorithm 19. Consider a feedback

Ω 3 = ΣR ⊤ -RΣ,
where Σ : [0, ∞) → P ∩ GL(n, R) is a matrix valued switching signal. The matrix Σ ∈ P ∩ GL(n, R) is piece-wise constant, right-continuous, has a strictly positive dwell time ∆t, and satis es

Σ εI (11) 
for some constant ε ∈ (0, ∞). The closed-loop system is

Ṙ = Σ -RΣR. (12) 
The next result states the system (12) to be asymptotically stable under all switching signals that respect [START_REF] Spindler | Optimal control on Lie groups with applications to attitude control[END_REF].

Proposition 20. Suppose System 1 with R 0 ∈ SO(n)/N is governed by Algorithm 19. The identity matrix is a uniformly asymptotically stable equilibrium of R. Its region of attraction is SO(n)/N .

Proof. Consider the Lyapunov function

V = tr(I -R) = n -tr R. It satis es V = -tr Ṙ = -tr(Σ -RΣR) = -tr(Σ(I -R 2 )) = -Σ, I -R 2 = -Σ, I -1 2 R 2 + R -2 -1 2 R 2 -R -2 -Σ, I -1 2 R 2 + R -2 = -Σ, -1 2 R -R ⊤ 2 ≤ -ε I, -1 2 R -R ⊤ 2 = ε 2 -R -R ⊤ , R -R ⊤ = -ε 2 R -R ⊤ 2 F , (13) 
where the inequality follows from utilizing that Σ = X + εI for some X 0. Note that V ≤ 0, and V = 0 if and only if R = R ⊤ , i.e., only if R ∈ {I} ∪ N . The set SO(n)\N is invariant under Algorithm 19 by Lemma 36. The last expression in ( 13) is therefore negative-de nite independently of Σ over SO(n)\N , making V a common Lyapunov function for all switching modes. It follows that the identity is uniformly asymptotically stable [START_REF] Liberzon | Switching in systems and control[END_REF]. The invariance also implies that all trajectories starting in SO(n)\N must converge to the identity matrix.

Let the switching times be given by {t i } ∞ i =0 . Since Σ is constant on each interval 12) has a solution on I i given by Theorem 5. Set R (t i ; R 0 ) = lim t ↑t i R (t; R 0 ) at isolated switching times. This yields left continuity. Piece together such solutions for

I i = [t i , t i +1 ), equation (
[0, ∞) = {t i } ∞ i =0 ∪ ∞ i =0 I i
to nd a solution to [START_REF] Elipe | Exact solution of a triaxial gyrostat with one rotor[END_REF]. The function thus obtained is not continuously di erentiable at the switching times but it is a solution in the sense of Carathéodory [START_REF] Filippov | Di erential Equations with Discontinuous Righthand Sides[END_REF].

Problem 21. Let a set of time instances {t i } m i =0 ⊂ [0, ∞), m ∈ N ∪ {∞}, and an initial condition R 0 ∈ SO(n) be given. Suppose System 1 is governed by Algorithm 19. Denote s = tt 0 . Consider the problem of minimizing a continuous function f with respect to the input

Σ = Σ i ∈ P ∩ GL(n, R), t ∈ [t i , t i +1 ), i.e., to solve minimize Σ f (t, R, Σ), subject to R (t; t 0 , R 0 ) = {sinh[Σ i (s -t i )] + cosh[Σ i (s -t i )]R (t i ; t 0 , R 0 )} {cosh[Σ i (s -t i )] + sinh[Σ i (s -t i )]R (t i ; t 0 , R 0 )} -1 , (14) 
Σ = Σ i , εI Σ, (15) 
Σ ρI,

for all t ∈ [t i , t i +1 ) and all i = 0, . . . , m.

The constraint ( 14) is obtained from solving the closed-loop system generated by Algorithm 19. The constraint [START_REF] Maithripala | Almost-global tracking of simple mechanical systems on a general class of Lie groups[END_REF] is imposed in Algorithm 19 to ensure convergence under arbitrary switching. It then follows that lim t →∞ R (t, t 0 ; Σ, R 0 ) = I for any feasible solution {Σ i } m i =0 to the model predictive control problem. This frees the speci cation of f from any concerns regarding the asymptotical stability of the system. The constraint [START_REF] Lageman | Synchronization with partial state feedback on SO(n)[END_REF] con nes Σ to a compact set when m ∈ N, thereby guaranteeing the existence of a solution to the model predictive control problem by virtue of Weierstrass' extreme value theorem. Note that the assumption of m ∈ N poses no restriction in practice but does nullify the attractivity property of Proposition 20.

The model predictive control problem utilizes the transient phase of the system's evolution to carry out a task of secondary importance. The model predictive control problem could also be posed with [START_REF] Doroshin | Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostatsatellites[END_REF] replaced by [START_REF] Elipe | Exact solution of a triaxial gyrostat with one rotor[END_REF]. The bene t gained from Theorem 5 is to eliminate the computational cost of solving [START_REF] Elipe | Exact solution of a triaxial gyrostat with one rotor[END_REF] numerically.

Example 22. Consider the problem of stabilizing the orientation of a camera while at some points in time wishing to see a desired view corresponding to the camera orientation

R d ∈ SO(3). A possible choice of f is f (R, Σ) = min Σ,t d R (R d , R
) for a constant switching matrix Σ ∈ P (3) ∩ GL(3, R), i.e., the choice of Σ is made at time zero.

Note that the problem addressed in Example 22 is not solved by tracking a curve in SO(3) that interpolates the points R 0 , R d , and I. The key idea is to utilize the transient phase of the system for additional bene t. This can also be done for trajectory tracking.

6.2 Sampled Systems. Consider the problem of continuous time actuation subject to sensing that is either piece-wise unavailable in time or discrete time. The relevance of this problem in the context of attitude stabilization may e.g., be motived by cases where the attitude is calculated from images obtained by a camera for which (i ) the reference used to obtain the attitude from the image is temporarily obscured or outside the image, or (ii ) images are shot at a slow frame rate. Problem (i ) arises in the eld of visual servo control. The approach of this paper is well-suited for applications in visual servo control since it adopts the same kinematic system model [START_REF] Chaumette | Visual servo control. Part I: basic approaches[END_REF][START_REF] Chaumette | Visual servo control. Part II: advanced approaches[END_REF]. Problems of type (ii ) are commonly addressed using piece-wise constant input signals [START_REF] Åström | Computer Controlled Systems: Theory and Design[END_REF], i.e., by applying a zero-order hold. This section discusses the zero-order hold approach and an approach based on the ow of ΩR, i.e., the exact solutions to the closed-loop kinematics.

Assume that an output Y = R ∈ SO(n) is available for use in feedback control at times t such that t ∈ I and that it is unavailable when t I , where I ⊂ [0, ∞) is closed and contains 0 (i.e., a sample Y 0 = R 0 is taken at time t 0 = 0). In the case of continuous sensing, suppose that I is such that the corresponding switching sequence has a dwelltime. In the case of discrete time sensing the states are sampled at each time instance of a sequence {t i } m i =0 , m ∈ N ∪ {∞}.

System 23. Consider the system Ṙ = ΩR where R 0 ∈ SO(n) and Ω : SO(n) → so(n) is the input signal. An output given by Y = R is available for use in any feedback loop when t ∈ I .

Problem 24. Design a feedback algorithm for System 23 that stabilizes the identity.

A standard solution to Problem 24 is given by Algorithm 25.

Algorithm 25. The zero-order hold control is a time-varying feedback law given by

U (Y, t ) =      Ω[Y(t )], t ∈ I, Ω[Y(s)], t I,
where Ω is any control law that stabilizes System 1 and s = max I ∩ [0, t].

Proposition 26. Consider System 23 under Algorithm 25 with sample times {t

i } ∞ i =0 and U = -k i Log R for t ∈ [t i , t i +1 ). The identity is attractive if and only if ∞ i =0 1 -k i ∆t i = 0, (17) 
where ∆t i = t i +1t i .

Proof. The resulting closed-loop system is a switched linear system which can be integrated to yield

R (t j+1 ) = exp[-k j ∆t j Log R (t j )]R(t j ) = R 1-k j ∆t j (t j ) = R j i =0 1-k i ∆t i 0 .
Proposition 26 places requirements on {k i } ∞ i =0 and {∆t i } ∞ i =0 . A deadbeat control, i.e., nite time convergence, is obtained if k i ∆t i = 1 for at least one i. In practice however, {∆t i } ∞ i =0 may not be a design parameter. Moreover, there are upper and lower bounds on {k i } ∞ i =0 due to requirements on the minimum and maximum angular speed that arise from time constraints and saturation e ects. For large sample times, there may not be any choice of {k i } ∞ i =0 that both satis es [START_REF] Matni | A convex approach to consensus on SO(n)[END_REF] and accommodates the additional constraints. The results of this paper admits an alternative approach to attitude control of sampled systems. Let Φ(R 0 , t ) denote the ow of ΩR, i.e., Φ(R 0 , t ) = R where R is the solution at time t to Ṙ = ΩR with initial value R 0 ∈ SO(n) and the feedback Ω is given by Algorithm 4, 13, 15, or 17.

Algorithm 27. The ow algorithm is a time-varying feedback law given by

U (Y, t ) =      Ω[Y(t )], t ∈ I, Ω{Φ[Y(s), t]}, t I,
where Ω is a stabilizing feedback law under which the closed-loop system has a known solution and s = max I ∩ [0, t].

Algorithm 9 generates the same system trajectory as the feedback would subject to continuous time sensing for all t ∈ [0, ∞). It is clear that the ow approach has advantages over the zero-order hold approach. Algorithm 9 may e.g., be applied as an open loop control based on a single measurement in which case the zero-order hold approach would fail. It is also clear that Algorithm 25 has problems with large hold times which are tolerable for Algorithm 9. Neither algorithm guarantees robustness under such circumstances, but that is a di erent matter. Clearly, one could obtain a performance comparable to that of Algorithm 9 without access to exact solutions by means of quadrature but this also introduces discretization errors and a computational cost.

Numerical Example

Numerical quadrature transfers System 1 to a discrete-time system that generates a sequence {R i } m i =0 . The use of Lie group variational integrators ensures that R i ∈ SO(n) at all discrete time instances {t i } m i =0 of the simulation [START_REF] Lee | Lagrangian mechanics and variational integrators on twospheres[END_REF]. This is accomplished by setting R i +1 = exp[Ω i (t i +1t i )]R i , where Ω i = Ω(R i ).

System 23 under Algorithm 25 and 27 with the negative matrix logarithm, i.e., Algorithm 13, as the underlying attitude control law is simulated on SO(3). The sample time is constant and the gains are set to one, i.e., k i = 1 for all i ∈ N in Proposition 26. The initial condition is

R 0 =          1 √ 3 1 √ 2 1 √ 6 1 √ 3 -1 √ 2 1 √ 6 1 √ 3 0 - √ 2 √ 3          .
The results are displayed in Figure 2. Note that Algorithm 25 behaves as predicted by Proposition 26 with a deadbeat control for ∆t = 1, asymptotical stability for ∆t = 1.5, and critical stability for ∆t = 2. The trajectory of the system generated by Algorithm 27 is invariant of the sample time. Although the deadbeat control yields faster convergence than Algorithm 27 it is not robust to changes in the sample time. Moreover, Algorithm 27 is continuous in time whereas Algorithm 25 is discontinuous in time and gives rise to chattering behavior. 

Conclusions

This paper explores the question of whether it is possible to formulate a closed-loop system on SO(n) that is almost globally asymptotically stable and admits the exact solutions to be determined explicitly. The answer is yes, and it turns out to be possible for a large class of feedback laws. Moreover, the exact solutions can be expressed rather elegantly in terms of the matrix exponential. The main tool used to uncover these solutions is the matrix di erential Riccati equation. The technique used to solve the equations can also be generalized to the case of SE(n). Some results are not straightforwardly generalized since they rely on diagonalizability via the spectral theorem for normal matrices.
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 1 Figure 1. Input norms for Algorithm 4 (red), 13 (blue), 15 (pink), and 17 (green). The parameter P = I in Algorithm 4, k = 2 in Algorithm 15, and k = 1 in Algorithm 17. The gains are scaled to have equal slope at the origin.
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 2 Figure 2. The error R -I F for System 23 under Algorithm 25 with ∆t ∈ {1, 1.5, 2} (pink) and Algorithm 27 with ∆t = 1 (red), ∆t = 1.5 (blue), and ∆t = 2 (green).

A. Lemmas

Lemma 28. The equations (1), ( 5), ( 6), [START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF], and (9) have unique solutions that belong to SO(n) for all t ∈ [0, ∞).

Proof. The proof in the case of ( 1) is similar to that in [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF]. The assumptions made in Algorithm 13 ensures uniqueness of the solution S (t; S 0 ) to (4) and hence of R (t; R 0 ) to [START_REF] Chaturvedi | Rigid-body attitude control: Using rotation matrices for continuous singularity-free control laws[END_REF]. In the case of [START_REF] Lee | Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[END_REF], we can use the change of variables X = R 1 /k from the proof of Proposition 16, to obtain [START_REF] Mayhew | Quaternion-based hybrid control for robust global attitude tracking[END_REF]. The uniqueness of the solution to [START_REF] Lee | Geometric tracking control of a quadrotor UAV on SE(3)[END_REF] implies that the solution X(t; R 0 ) to ( 8) is also unique. In the case of (9), it can be shown that SO(n)\N is an invariant set. The change of variables Y = (I + R) -1 is hence admissible. Then

where the right-hand side is polynomial in Y. Uniqueness follows by reasoning as in [START_REF] Markdahl | Analytical solutions to feedback systems on the special orthogonal group SO(n)[END_REF]. Reversing the change of variables proves uniqueness of R (t; R 0 ) for R 0 N . Lemma 29 (N.J. Higham [START_REF] Higham | Functions of matrices: theory and computation[END_REF]). Let A ∈ C n×n and f : C → C be given. Suppose f i (λ) exists for all i ∈ {0, 1, . . . , n -1} and all λ ∈ σ (A). Then f (A) is well-de ned, see [START_REF] Higham | Functions of matrices: theory and computation[END_REF], and satis es

Proof. For a proof, see [START_REF] Higham | Functions of matrices: theory and computation[END_REF].

Lemma 30. The matrices cosh -1 P and tanh P are well-de ned for P ∈ P ∩ GL(n, R) and satisfy

Proof. This follows from Lemma 29 by using that P is normal, i.e., unitarily diagonalizable, and calculating the corresponding scalar limits. Lemma 31. The set N is invariant under the dynamics (1).

Proof. Consider the time-evolution of σ (R). Take any eigenpair (λ, v) of R and impose the constraint v 2 = 1. Recall the following relations

which hold due to λ -1 = λ * for any complex λ of unit length.

The matrix R being normal and analytic implies, as a consequence of Rellich's Theorem, that its eigenpairs are locally analytic functions of the time [START_REF] Hinrichsen | Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness[END_REF]. Note that

The eigenvalue -1 hence constitutes an unstable node type of equilibrium. Conversely, suppose [Ω, S] = 0. Since R is a normal matrix it has a spectral factorization given by R = UΛU * , where U ∈ U(n) and Λ is a diagonal matrix. From [Ω, S] = 0 we get [Ω, R] = 0 which implies that Ω = UΞU * , where Ξ is a diagonal matrix. The matrix R being normal and analytic implies, as a consequence of Rellich's Theorem, that Λ and U are locally analytic functions of the time [START_REF] Hinrichsen | Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness[END_REF]. Then

Taken together, we have [U * U, Λ] + Λ = ΞΛ, where both Λ and ΞΛ are diagonal matrices. The commutator has zero diagonal due to Λ being diagonal and hence [U * U, Λ] = 0. It follows that Remark 33. This result is important because it allows us to replace the assumption of [ Ṡ, S] = 0 with [Ω, S] = 0. The latter assumption is preferable since Ω is the control input, i.e., we can design Ω. It is not, however, possible to chose Ṡ in general.

Lemma 34. The expression for Y(t ) given by (10) is well-de ned for all t ∈ (0, ∞), and so is atanh Y (t ).

These eigenvalues are strictly positive, i.e., sinh 2 X + e t I is nonsingular. It is also normal, whereby its principal square root can be calculated as detailed in Section 2. This shows Y(t ) to be well-de ned.

Recall the de nition of atanh given in Appendix A. Note that Y(t ) is skew-symmetric, implying that σ [Y(t )] ⊂ iR. Hence atanh Y (t ) is well-de ned.

then the spectrum of R belongs to the unit disc in C, and in particular it holds that -1 σ (R) implies -1 σ (R 11 ).

Proof. We prove that -1 ∈ σ (R 11 ) implies -1 ∈ σ (R). Take any v ∈ R n-1 . The matrix R being orthogonal gives Proof. By reasoning as done in the proof of Lemma 31, it can be shown that

Since -2 Σ 1 /2 v 2 2 Reλ > ε > 0 for Reλ < -1 /2 due to Σ εI, it follows that λ cannot converge to -1.