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Simultaneous Energy and Information Transmission
in Gaussian Multiple Access Channels

Selma Belhadj Amor, Samir M. Perlaza, and Ioannis Krikidis

Abstract—In this paper, simultaneous wireless information and
energy transmission is studied from an information theoretic
standpoint. The main contribution is twofold: (i) the capacity-
energy region of the memoryless Gaussian multiple access chan-
nel is fully characterized; and (ii) the maximum sum-rate that
can be achieved when a minimum energy level is required at the
input of the receiver is determined. In particular, it is shown that
the sum-capacity for a given energy threshold can be achieved
by a simple power-splitting scheme.

Index Terms—RF energy harvesting, capacity-energy region,
multiple access channel, Gaussian channels, simultaneous wire-
less information and energy transfer (SWIET).

I. INTRODUCTION

S IMULTANEOUS wireless information and energy trans-
mission with co-located information and energy receivers

is a new communication paradigm, in which receivers extract
both information and energy from the same signal [1]. It is a
promising technology for low-power short-range communica-
tion systems such as sensor networks, machine to machine
networks, body area networks, etc. From an information
theoretic standpoint, this new paradigm is characterized by a
fundamental trade-off between information and energy trans-
mission, since both objectives are often antagonistic [10]. Most
of the current work in this area studies this trade-off from a
signal-processing or networking point of view [1] and focuses
on the feasibility aspects [9]. However, the fundamental limits
of this technology are still unknown and only a few works
appear in the literature.

The trade-off between information and energy transmis-
sion for a basic point-to-point communication was introduced
in [10]. This work was extended in [7] for a parallel point-
to-point channel (frequency-selective channel). More complex
network structures in which decoders are characterized by
an additional energy constraint were studied in [5], [6] and
[8]. Such additional constraints change the overall optimal
performance of the network. In the literature, different forms
of received energy constraints were considered in multi-
user/multi-hop networks. For instance, Gurakan et al. [8]
studied multi-hop networks in which energy is transmitted via
a dedicated channel. Gastpar [6] considered the Gaussian muti-
access channel (G-MAC) under maximum received energy
constraint. Fouladgar et al. [5] characterized the capacity-
energy region of the two-user discrete memoryless multi-
access channel (MAC) which involves an auxiliary time-
sharing random variable (RV) Q of cardinality |Q| 6 4.

Selma Belhadj Amor and Samir M. Perlaza are with the Institut National de
Recherche en Informatique et en Automatique (INRIA), Lyon, France (e-mail:
{selma.belhadj-amor, samir.perlaza}@inria.fr).

Ioannis Krikidis is with the Dept. of Electrical and Computer Engineering
at the University of Cyprus. Nicosia, Cyprus (e-mail: krikidis@ucy.ac.cy).

This research is supported in part by the European Commission under Marie
Skłodowska-Curie Individual Fellowship No. 659316.

In the standard G-MAC (without energy constraint), the
capacity region was determined independently by Cover [2]
and Wyner [11] and it is well-known that time-sharing is
not needed (|Q| = 1). However, when a minimum energy
level is required at the input of the receiver, Fouladgar et
al. [5] provided an example of coding scheme for the G-
MAC that requires additional transmitter coordination through
time-sharing in order to satisfy the energy constraint. Con-
sequently, a straightforward extension of the capacity results
in the standard G-MAC to the setup with minimum received
energy constraints is not possible as it involves considering all
possible time-sharing RVs.

This paper studies the G-MAC with a minimum received
energy rate constraint and provides an explicit expression of
the capacity-energy region. This region is achieved by a simple
power-splitting scheme at both transmitters. The maximum
sum-rate that can be achieved for a given energy rate required
at the input of the receiver is also provided. For clarity of
exposition, in what follows only the case of two users is
discussed. However, all our results easily extend to arbitrary
K > 2 number of users and for non-colocated receiver and
energy-harvester.

II. GAUSSIAN MULTIPLE ACCESS CHANNEL

Consider the two-user memoryless G-MAC in Fig. 1. At
each channel use t ∈ N, X1,t and X2,t denote the real
symbols sent by transmitters 1 and 2, respectively. The receiver
observes the real channel output

Yt = h1X1,t + h2X2,t + Zt, (1)

while the energy harvester observes

St = h1X1,t + h2X2,t +Qt, (2)

where h1 and h2 are the corresponding constant non-negative
channel coefficients, Zt and Qt are identically distributed zero-
mean unit-variance real Gaussian random variables. For the
ease of explanation, the receiver and the energy harvester are
assumed to be co-located, which justifies that they observe the
same channel coefficients.

Transmitter 1M1

h1x1,t

h2
x2,t

Transmitter 2M2

Zt

Qt

(M̂1, M̂2)Receiver

Energy
Harvester Energy

Yt

St

⊗

⊗

⊕

⊕

Fig. 1. Two-user memoryless Gaussian MAC.
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The G-MAC introduced above is fully described by two
parameters: the signal to noise ratios (SNRs) SNR1 and SNR2,
which are defined as follows:

SNRi , h2iPi, i ∈ {1, 2}. (3)

In this context, two main tasks are to be simultaneously
accomplished: information and energy transmission.

A. Information Transmission

The goal of the communication is to convey the independent
messages M1 and M2 from transmitters 1 and 2 to the common
receiver. The messages M1 and M2 are independent of the
noise terms Z1, . . . , ZN and are uniformly distributed over
the sets M1 , {1, . . . , b2nR1c} and M2 , {1, . . . , b2nR2c},
where R1 and R2 denote the transmission rates and n ∈ N is
the blocklength. The t-th symbol of transmitter i depends on
its message index Mi. More specifically,

Xi,t = f
(n)
i,t (Mi), t ∈ {1, . . . , n}, (4)

for some encoding functions

f
(n)
i,t : Mi → R. (5)

The symbols Xi,1, . . . , Xi,n satisfy an expected average input
power constraint

1

n

n∑
t=1

E
[
X2
i,t

]
6 Pi, (6)

where Pi denotes the average transmit power of transmitter i in
Joules per channel use, with i ∈ {1, 2}. The receiver produces
an estimation (M̂

(n)
1 , M̂

(n)
2 ) = Φ(n)(Y n) of the message-pair

(M1,M2) via a decoding function Φ(n) : Rn → M1 ×M2,
and the average probability of error is

P (n)
error , Pr

{
(M̂

(n)
1 , M̂

(n)
2 ) 6= (M1,M2)

}
. (7)

B. Energy Transmission

The energy transmission rate at the energy harvester is

B(n) ,
1

n

n∑
t=1

E
[
S2
t

]
6 1 + SNR1 + SNR2 + 2

√
SNR1SNR2.

(8)
The goal of the energy transmission is to guarantee that the

energy rate B(n) is not less than a given constant denoted by

0 < B 6 1 + SNR1 + SNR2 + 2
√

SNR1SNR2. (9)

Hence, the probability of energy outage is defined as follows

P
(n)
outage(ε) = Pr

{
B(n) < B − ε

}
, (10)

for some ε > 0 arbitrarily small.

C. Simultaneous Information and Energy Transmission
The MAC in Fig. 1 operates at the information-energy rate

triplet (R1, R2, B) ∈ R3
+ if both transmitters and the receiver

use a transmit-receive configuration such that: (a) reliable
communication at rates R1 and R2 is ensured; and (b) the
energy transmission rate during the whole block-length n is
higher than B. Under these conditions, the information-energy
rate triplet (R1, R2, B) is said to be achievable.

Definition 1 (Achievable Information-Energy Rate Triplets
(R1, R2, B)). The triplet (R1, R2, B) ∈ R3

+ is achievable if
there exists a sequence of encoding and decoding functions{
{f (n)1,t }nt=1, {f

(n)
2,t }nt=1,Φ

(n)
}∞
n=1

such that both the average
error probability and the energy-outage probability tend to
zero as the blocklength n tends to infinity. That is,

lim sup
n→∞

P (n)
error =0, (11)

lim sup
n→∞

P
(n)
outage(ε)=0, for any ε > 0. (12)

The fundamental limits on the information-energy trade-off
are accurately modeled by the capacity-energy region.

Definition 2 (Capacity-Energy Region). The capacity-energy
region E(SNR1,SNR2) of the G-MAC is the closure of all
achievable information-energy rate triplets (R1, R2, B).

III. MAIN RESULTS

A. Capacity-Energy Region
The capacity-energy region of the G-MAC is fully charac-

terized by the following theorem.

Theorem 1 (Capacity-Energy Region). The capacity-energy
region E (SNR1,SNR2) of the G-MAC is the set of all non-
negative information-energy rate triplets (R1, R2, B) that sat-
isfy

R1 6
1

2
log2 (1 + β1 SNR1) , (13a)

R2 6
1

2
log2 (1 + β2 SNR2) , (13b)

R1 +R26
1

2
log2

(
1 + β1 SNR1 + β2 SNR2

)
, (13c)

B 61 + SNR1 + SNR2

+2
√

(1− β1)SNR1(1− β2)SNR2, (13d)

with (β1, β2) ∈ [0, 1]
2.

The proof of Theorem 1 is presented in Section IV. The
remaining of this section highlights some important intuitions
arising from Theorem 1.

Fig. 2 shows the capacity-energy region E(SNR1,SNR2)
when SNR1 = SNR2 = 10 and illustrates the
three possible information-energy transmission regimes
depending on the required minimum energy transmission
rate B: (i) B ∈ [0, 1 + SNR1 + SNR2]; (ii) B ∈(
1 + SNR1 + SNR2, 1 + SNR1 + SNR2 + 2

√
SNR1SNR2

]
;

and (iii) B ∈
(
1 + SNR1 + SNR2 + 2

√
SNR1SNR2,∞

)
.

In Theorem 1, the terms β1 and β2 might be interpreted as
the fractions of power that transmitters 1 and 2, respectively,
allocate for information transmission. Following this interpre-
tation, it holds that for any achievable triplet (R1, R2, B),



3

R1 [bits/ch.use]R2 [bits/ch.use]

B
[J

o
u
le

s/
ch

.u
se

]

Q3

Q2

Q1

Q4 Q5

R1 [bits/ch.use]

R
2

[b
it

s/
ch

.u
se

]

Q1 Q4

Q5

Q2 and Q3

B
[J

ou
le

s/
ch

.u
se

]

R2 [bits/ch.use]

Q3

Q2

Q1

Q4 Q5

Fig. 2. 3-D representation of the capacity-energy region E (10, 10) in the plane (R1, R2, B). Left and right figures represent a bi-dimensional view in
the R1-R2 and B-R2 planes of E (10, 10), respectively. The figure in the center is a 3-D representation of E (10, 10). Note that poins Q1, Q2, and
Q3 are coplanar and satisfy that R1 = R2. In particular, Q1 = (0, 0, 1 + SNR1 + SNR2 + 2

√
SNR1SNR2); and the points Q2 and Q3 are also

collinear and R1 = R2 = 1
4
log2 (1 + SNR1 + SNR2). The points Q2, Q4 and Q5 are coplanar and they satisfy B = 1 + SNR1 + SNR2. In particular,

Q4 = ( 1
2
log2 (1 + SNR1) , 0, 1 + SNR1 + SNR2) and Q5 = ( 1

2
log2 (1 + SNR1) ,

1
2
log2

(
1 + SNR1

1+SNR2

)
, 1 + SNR1 + SNR2).

whenever the required minimum energy rate B is smaller
than the minimum energy rate required to guarantee reliable
communications at rates R1 and R2, the energy constraint is
vacuous. This is basically because transmitting information
is always enough to satisfy the energy rate constraint, which
implies that β1 = β2 = 1.

Note that any intersection of the volume E (SNR1,SNR2)
with a plane B = b, with b ∈ [0, 1 + SNR1 + SNR2], corre-
sponds to the set of triplets (R1, R2, b), in which (R1, R2) ∈
C(SNR1,SNR2), with C(SNR1,SNR2) the capacity region of
the G-MAC with parameters SNR1 and SNR2. That is, when
the energy rate constraint consists in guaranteeing an energy
rate that is lower than the maximum rate achievable with
independent symbols, all information rates in C(SNR1,SNR2)
are achievable. (See for instance points Q2, Q3, Q4, and Q5

in Fig. 2.)
On the other hand, when the energy rate constraint consists

in guaranteeing an energy rate B Joules per channel use, with
B ∈ (1+SNR1 +SNR2, 1+SNR1 +SNR2 +2

√
SNR1SNR2],

that is, when the energy rate B at the input of the receiver is
required to be higher than what is strictly necessary to guaran-
tee reliable communication, transmitters deal with a trade-off
between information and energy transmission through power-
splitting, i.e., 0 6 βi < 1, for i ∈ {1, 2}.

Finally, requiring a received energy level B within the inter-
val
(
1 + SNR1 + SNR2 + 2

√
SNR1SNR2,∞

)
constraints the

achievability of any positive rate (See point Q1 in Fig. 2, which
is achievable with (β1 = β2 = 0)).

B. Sum-Capacity with Minimum Energy Rate Constraint
The maximum information sum-rate

Rsum(SNR1,SNR2, B) of the G-MAC with parameters
SNR1 and SNR2 subject to a minimum energy rate constraint
B is the solution to an optimization problem of the form:

Rsum(SNR1,SNR2, B) = max
(r1,r2,b)∈E(SNR1,SNR2):b>B

r1 + r2.(14)

The solution to this problem is given by the following theorem.

Theorem 2 (Sum-Capacity with Minimum Energy Rate).
The information sum-capacity of the G-MAC with minimum
received energy rate B Joules per channel use is:

Rsum(SNR1,SNR2, B) =
1

2
log2

(
1 + β∗(SNR1 + SNR2)

)
(15)

with β∗ = min

{
1,
(

1+SNR1+SNR2+2
√

SNR1SNR2−B
2
√

SNR1SNR2

)+}
.

Proof: The sum-rate maximization problem in (14) can
be written as:

Rsum(SNR1,SNR2, B) = max
(β1,β2)∈[0,1]2

f0(β1, β2) (16a)

subject to: g0(β1, β2) > B, (16b)

where the functions f0 and g0 are defined as

f0(β1, β2) , min

{
1

2
log2(1 + β1SNR1 + β2SNR2),

1

2
log2(1 + β1SNR1) +

1

2
log2(1 + β2SNR2)

}
(17)

and

g0(β1, β2) , 1 + SNR1 + SNR2

+2
√

(1− β1)SNR1(1− β2)SNR2. (18)

For any nonnegative β1 and β2 it can be shown that

f0(β1, β2) =
1

2
log2(1 + β1SNR1 + β2SNR2), (19)

and thus the function f0 is monotonically increasing in
(β1, β2). The function g0 is motonically decreasing in (β1, β2).

Note that for any (β1, β2) ∈ [0, 1]2, it follows that

g0(min(β1, β2),min(β1, β2)) > g0(β1, β2) (20)

and

f0(min(β1, β2),min(β1, β2)) 6 f0(β1, β2)

6 f0(max(β1, β2),max(β1, β2)) (21)

with equality in (20) and (21) only when β1 = β2. Conse-
quently, the sum-rate maximization problem (16) can also be
written as:

Rsum(SNR1,SNR2, B) = max
β∈[0,1]

f0(β, β) (22a)

subject to: g0(β, β) > B. (22b)

This implies that the optimal β∗ is the highest feasible value:

β∗=min

{
1,

(
1 + SNR1 + SNR2 + 2

√
SNR1SNR2 −B

2
√

SNR1SNR2

)+
}
,
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which implies that Rsum(SNR1,SNR2, B) =
1
2 log2

(
1 + β∗(SNR1 + SNR2)

)
and completes the proof.

Note that, if 0 6 B 6 1 + SNR1 + SNR2, then β∗ = 1
and all the available power can be dedicated to the in-
formation transmission task. Alternatively, if 1 + SNR1 +
SNR2<B 6 1 + SNR1 + SNR2 + 2

√
SNR1SNR2, then

β∗ = 1+SNR1+SNR2+2
√

SNR1SNR2−B
2
√

SNR1SNR2
and there is a strict trade-

off between information and energy transmissions. Finally, if
B>1 + SNR1 + SNR2 + 2

√
SNR1SNR2, then β∗ = 0 and all

the available power must be used for energy transmission.

Remark 1. Time-sharing with power-control suggested in
Fouladgar et al.’s example [5] is strictly suboptimal and does
not achieve sum-capacity for a given minimum received energy
constraint.

Consider the sum-rate optimization problem proposed in [5]
in which both users use time-sharing with power control.
Specifically, a time-sharing parameter λ ∈ [0, 1] is chosen
and each transmitter i chooses powers P ′i (power dedicated
to information transmission) and P ′′i (power dedicated to en-
ergy transmission). Then, the sum-rate maximization problem
proposed in [5] can be written as

max
(λ,P ′

1,P
′′
1 ,P

′
2,P

′′
2 )∈[0,1]×R4

+

λ

2
log2

(
1 + h21P

′
1 + h22P

′
2

)
(23a)

subject to : λP ′i + (1− λ)P ′′i 6 Pi, i ∈ {1, 2} (23b)

1 + λ(h21P
′
1 + h22P

′
2) + (1− λ)(h1

√
P ′′1 + h2

√
P ′′2 )2 > B.

(23c)

For any feasible choice of (λ, P ′1, P
′′
1 , P

′
2, P

′′
2 ), by the

concavity of the logarithm, it follows that

λ

2
log2

(
1 + h21P

′
1 + h22P

′
2

)
6

1

2
log2

(
1 + λ

(
h21P

′
1 + h22P

′
2

))
.

(24)
Now, when λ = 1, then (24) holds with equality and the

problem (23) can be written as

max
(P ′

1,P
′
2)∈R2

+

1

2
log2

(
1 + h21P

′
1 + h22P

′
2

)
(25a)

subject to : P ′i 6 Pi, i ∈ {1, 2}, (25b)
1 + h21P

′
1 + h22P

′
2 > B, (25c)

which is unfeasible for any B > 1 + SNR1 + SNR2. When
λ ∈ [0, 1), then (24) holds with strict inequality and the
rate 1

2 log2

(
1 + λ

(
h21P

′
1 + h22P

′
2

))
is always achievable by a

power-splitting scheme in which βi = λ
P ′

i

Pi
, with i ∈ {1, 2},

for any optimal tuple (λ, P ′1, P
′′
1 , P

′
2, P

′′
2 ) in (23). This shows

that the maximum-sum rate achieved via time-sharing with
power control is always bounded away from the sum-capacity
(Theorem 2), except when λ = 1. That is, time-sharing with
power control is optimal in terms of sum-rate only when the
energy constraint is not active, i.e., B ∈ [0, 1+SNR1+SNR2].

IV. PROOF OF THEOREM 1

A. Proof of Achievability

Consider that each transmitter i, with i ∈ {1, 2}, uses
a fraction βi ∈ [0, 1] of its available power to transmit
information and uses the remaining fraction of power (1−βi)

to transmit energy. Given a power-split (β1, β2) ∈ [0, 1]2, the
achievability of rate-pairs satisfying (13a)-(13c) follows the
scheme described in [2], [11]. Additionnaly, in order to satisfy
the received energy constraint (13d), the transmitters send a
common randomness that is known to both transmitters and
to the receiver using all their remaining power. This common
randomness does not carry any information and does not
produce any interference over the information-carrying signals.
More specifically, at each time t, transmitter i’s channel input
can be written as:

Xi,t =
√

(1− βi)PiWt + Ui,t, i ∈ {1, 2}, (26)

for some independent zero-mean Gaussian information-
carrying symbols U1,t and U2,t with variances β1P1 and
β2P2, respectively, and independent thereof Wt is a zero-mean
unit-variance Gaussian energy-carrying symbol known non-
causally to all terminals. That is, the rate-pairs (R1, R2) can
be made arbitrarily close to the upper-bounds in (13a)-(13c)
by approximating transmitters 1 and 2 channel input symbols
by Gaussian RVs with variances β1P1 and β2P2, respectively.

The receiver subtracts first the common randomness and
then performs successive decoding to recover the messages
M1 and M2.

In the sequel, only the average received energy of the coding
scheme given by B(n) , 1

n

∑n
t=1 S

2
t is analyzed.

By the choice of (X1,t, X2,t), the sequence S1, . . . , Sn is
i.i.d. and each St follows a zero-mean Gaussian distribution
with variance B where

B , 1 + SNR1 + SNR2

+2
√

(1− β1)SNR1(1− β2)SNR2. (27)

By the weak law of large numbers, it holds that ∀ε > 0

lim
n→∞

Pr
(
|B(n) −B| > ε

)
= 0. (28)

Consequently,

lim
n→∞

Pr
(
B(n) > B + ε

)
= 0, and (29a)

lim
n→∞

Pr
(
B(n) < B − ε

)
= 0. (29b)

From (29b), it holds that ∀b ∈ [0, B],

lim
n→∞

Pr
(
B(n) < b− ε

)
= 0, (30)

which completes the proof of achievability of Theorem 1.

B. Proof of Converse

Fix an information-energy rate triplet (R1, R2, B) ∈
E(SNR1,SNR2). For this information-energy rate triplet and
for each blocklength n, fix encoding and decoding functions
such that

lim sup
n→∞

P (n)
error = 0, (31a)

lim sup
n→∞

P
(n)
outage(ε) = 0 for any ε > 0, (31b)

and such that the input power constraint (6) is satisfied for
each n.
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Using assumption (31a), applying Fano’s inequality under
the assumption that the common randomness sequence {Wt}
is known non-causally to all terminals and following similar
steps as in [2] and [11], it can be shown that the rates (R1, R2)
must satisfy:

nR1 6
n∑
t=1

I(X1,t;Yt|X2,t,Wt) + ε
(n)
1 , (32a)

nR2 6
n∑
t=1

I(X2,t;Yt|X1,t,Wt) + ε
(n)
2 , (32b)

n(R1 +R2) 6
n∑
t=1

I(X1,tX2,t;Yt|Wt) + ε
(n)
12 , (32c)

where ε
(n)
1

n ,
ε
(n)
2

n , and ε
(n)
1

n tend to zero as n tends to infinity.
Using assumption (31b), for a given εn > 0, for any η > 0

there exists n0(η) such that for any n ≥ n0(η), it holds

Pr(B(n) > B − εn) > 1− η (33)

From Markov’s inequality [4], the following holds

(B − εn) Pr
(
B(n) > B − εn

)
6 E

[
B(n)

]
. (34)

Combining (33) and (34) yields

(B − εn)(1− η) 6 E
[
B(n)

]
. (35)

which can be written as

(B − δn) 6 E
[
B(n)

]
, (36)

for some δn > εn (for a sufficiently large n).
The following evaluates the bounds in (32) and (36) for the

G-MAC.
Here we assume that at each time t the channel input

Xi,t = Ui,t + αi,tWt where Ui,t a zero-mean information-
carrying component with variance σ2

i,t, independent thereof
Wt is a zero-mean unit-variance energy-carrying component
that is known to all terminals, and the coefficients αi,t ∈ R
are deterministic and known to all terminals.

Define α2
i ,

1
n

n∑
t=1

α2
i,t and σ2

i , 1
n

n∑
t=1

σ2
i,t, for i ∈ {1, 2}.

The input sequence must satisfy the input power con-
straint (6) which can be written , for i ∈ {1, 2}, as:

1

n

n∑
t=1

E
[
X2
i,t

]
=

1

n

n∑
t=1

(
σ2
i,t + α2

i,t

)
= σ2

i + α2
i 6 Pi. (37)

For the considered (X1,t, X2,t) the bounds in (32) can be
written as

nR1 6
n∑
t=1

1

2
log2

(
1 + h21σ

2
1,t

)
+ ε

(n)
1 , (38a)

nR2 6
n∑
t=1

1

2
log2

(
1 + h22σ

2
2,t

)
+ ε

(n)
2 , (38b)

n(R1 +R2) 6
n∑
t=1

1

2
log2

(
1 + h21σ

2
1,t + h22σ

2
2,t

)
+ ε

(n)
12 , (38c)

and the average received energy is given by:

E
[
B(n)

]
= h21

(
1

n

n∑
t=1

(σ2
1,t + α2

1,t)

)
+ h22

(
1

n

n∑
t=1

(σ2
2,t + α2

2,t)

)

+2h1h2

(
1

n

n∑
t=1

α1,tα2,t

)
+ 1

(a)

≤ h21

(
1

n

n∑
t=1

(σ2
1,t + α2

1,t)

)
+ h22

(
1

n

n∑
t=1

(σ2
2,t + α2

2,t)

)

+2h1h2

(
1

n

n∑
t=1

α2
1,t

)1/2(
1

n

n∑
t=1

α2
2,t

)1/2

+ 1

where (a) follows by Cauchy-Schwarz inequality.
By the concavity of the mutual information and applying

Jensen’s inequality [3] in bounds (38) in the limit when n→
∞, it can be shown that any achievable information-energy
rate triplet (R1, R2, B) should satisfy

R1 6
1

2
log2(1 + h21σ

2
1),

R2 6
1

2
log2(1 + h22σ

2
2),

R1 +R2 6
1

2
log2

(
1 + h21σ

2
1 + h22σ

2
2

)
,

B 6 1 + h21(σ2
1 + α2

1) + h22(σ2
2 + α2

2) + 2h1h2|α1||α2|,

for some σ2
1 , σ2

2 , α2
1, and α2

2 such that (37) is verified. Let
R0(σ2

1 , σ
2
2 , α

2
1, α

2
2) denote this region. The capacity-energy

region is contained within the union of all R0(σ2
1 , σ

2
2 , α

2
1, α

2
2)

over all 0 6 σ2
1 + α2

1 6 P1 and 0 6 σ2
2 + α2

2 6 P2. In this
union, it suffices to consider α1 > 0, α2 > 0, and σ2

1 , σ2
2 ,

α2
1, and α2

2 that saturate the input power constraint (i.e., (37)
holds with equality). If βi ,

σ2
i

Pi
∈ [0, 1], i ∈{1, 2}, such a

region contains all information-energy rate triplets (R1, R2, B)
satisfying constraints (13) which completes the converse of the
proof.
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