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Abstract—We show that for the multi-antenna Gaussian MAC
and BC with perfect feedback, the largest achievable regions with
linear-feedback schemes (called linear-feedback capacity regions)
coincide when the same total input-power constraint is imposed
on both channels and when the MAC channel matrices are the
transposes of the BC channel matrices.

In the two-user case, when either transmitters or receiver are
single-antenna, the capacity region for the Gaussian MAC is
known and the capacity-achieving scheme is a linear-feedback
scheme. With our results we can thus determine the linear-
feedback capacity region of the two-user Gaussian BC when
either transmitter or receivers are single-antenna. For these cases
we can also identify the linear-feedback schemes that achieve the
linear-feedback capacity.

Our results also extend to a partial-feedback setup where only
a subset of the feedback links are present.

I. INTRODUCTION

We study the multi-input multi-output (MIMO) Gaussian
multi-access channel (MAC) and broadcast channel (BC) with
perfect output feedback, where the transmitter(s) observe(s)
the channel outputs in a noise-free but causal way. It is well
known that feedback can increase capacity for these channels.
The exact capacity regions however are generally unknown.

In this paper we restrict attention to a specific class of
coding schemes, called linear-feedback schemes [1], where the
tansmitter(s) can use the feedback signals only in a linear way.
More specifically, in every channel use, the produced inputs
are restricted to linear combinations of the past feedback
signals and some information-carrying code symbols which
only depend on the messages available at the corresponding
transmitter. The best coding schemes known to date both for
the MIMO Gaussian MAC and BC with perfect feedback [2],
[3], [4], [5], [6], [7], [8], [9] are linear-feedback schemes.
For the two-user single-input single-output (SISO), the two-
user single-input multi-output (SIMO), and the two-user multi-
input single-output (MISO) Gaussian MAC [2], [3] linear-
feedback schemes even achieve the entire capacity region.
(Notice that also the rate-splitting extensions of the schemes
in [2] and [3] are linear-feedback schemes.)

Without feedback, the following duality relation is well
known [10], [11], [12]: under the same total input-power
constraint the capacity regions of the MIMO Gaussian MAC
and BC coincide when the channel matrices of the MAC and
BC are transposes of each other. Such a pair of MAC and
BC is called dual. We have recently shown a similar duality
relation for the SISO Gaussian MAC and BC with perfect
feedback when one restricts to linear-feedback schemes [13].

Our main result in this paper is the following new duality
result: with perfect feedback and when restricting to linear-
feedback schemes, the set of all achievable rates, called linear-
feedback capacity regions, coincide for the MIMO Gaussian
MAC and BC when the two channels are dual and when
the same total input-power constraint is imposed on both
channels. This result is particularly interesting for the two-user
SISO, SIMO, and MISO cases where computable single-letter
characterizations of the linear-feedback capacity regions of the
Gaussian MAC are known. With our duality result, we thus
immediately obtain single-letter characterizations of the linear-
feedback capacity regions for the two-user SISO, SIMO, and
MISO Gaussian BC.

We further introduce a class of (multi-letter) linear-feedback
schemes for the MIMO Gaussian MAC and BC that achieve
the linear-feedback capacity. Within this class we then identify
the pairs of schemes that achieve the same rate-regions over
dual MACs and BCs. Since we know the best linear-feedback
schemes for the two-user SISO, SIMO, and MISO MAC [2],
[3], we can identify the best linear-feedback schemes for the
two-user SISO, SIMO, and MISO BC.

For clarity of exposition, in what follows we consider only
two users. All our results extend to arbitrary K ≥ 2 number
of users. Moreover, our results also extend to partial-feedback
setups where only a subset of the feedback links are present.

II. MIMO GAUSSIAN BC WITH FEEDBACK

We consider the two-user memoryless MIMO Gaussian BC
with perfect feedback. The transmitter is equipped with κ
transmit-antennas and each Receiver i, for i ∈ {1, 2}, with νi
receive-antennas. At each discrete time t, if xt denotes the real
vector-valued input symbol sent by the transmitter, Receiver i
observes the real vector-valued channel output

Yi,t = Hixt + Zi,t, (1)

where Hi, for i ∈ {1, 2}, is a deterministic real νi-by-κ chan-
nel matrix known to transmitter and receivers and {Z1,t}nt=1

and {Z2,t}nt=1 are independent sequences of independent and
identically distributed (i.i.d.) centered κ-dimensional Gaussian
random vectors of identity covariance matrix.

The goal of the communication is that the transmitter
conveys Message M1 to Receiver 1 and Message M2 to Re-
ceiver 2. The messages are independent of the noise sequences
{Z1,t}nt=1 and {Z2,t}nt=1 and uniformly distributed over the
sets M1 , {1, . . . , b2nR1c} and M2 , {1, . . . , b2nR2c},



where R1 and R2 denote the rates of transmission and n the
blocklength. The transmitter observes causal, noise-free output
feedback from both receivers. Thus, the time-t ∈ {1, . . . , n}
channel input Xt can depend on the messages M1 and M2 and
the channel outputs Y1,1, . . . ,Y1,t−1 and Y2,1, . . . ,Y2,t−1:

Xt = ϕ
(n)
t (M1,M2,Y1,1, . . . ,Y1,t−1,Y2,1, . . . ,Y2,t−1), (2)

for some encoding function of the form ϕ
(n)
t : M1 ×M2 ×

Rν1(t−1) × Rν2(t−1) → Rκ.
We impose an expected average block-power constraint

1

n

n∑
t=1

E[‖Xt‖2] ≤ P. (3)

Each Receiver i decodes its corresponding message Mi by
means of a decoding function φ(n)

i of the form φ
(n)
i : Rνin →

Mi, for i ∈ {1, 2}. That means, based on the output sequence
Yn
i , Receiver i produces the guess M̂ (n)

i = φ
(n)
i (Yn

i ). The
average probability of error is

P
(n)
e,BC , Pr

[
(M̂1, M̂2) 6= (M1,M2)

]
. (4)

A rate-pair (R1, R2) is achievable over the MIMO Gaus-
sian BC with feedback under a power constraint P , if
there exists a sequence of encoding and decoding functions{
{ϕ(n)

t }nt=1, φ
(n)
1 , φ

(n)
2

}∞
n=1

, as described above, satisfying the
power constraint (3) and such that the average probability of
error P (n)

e,BC tends to zero as n tends to infinity. The closure of
the union of all achievable regions is called capacity region.

In the present paper, we focus on linear-feedback coding
schemes where the transmitter’s channel input is a linear
combination of the previous feedback output signals and an
information-carrying vector that depends only on the messages
(M1,M2) (but not on the feedback). Specifically, we assume
that the channel input vectors have the form

Xt = Vt +

2∑
i=1

t−1∑
τ=1

Ai,τ,tYi,τ , t ∈ {1, . . . , n}, (5)

where {Ai,τ,t} are arbitrary κ-by-νi matrices and Vt =

ξ
(n)
t (M1,M2) for some function ξ(n)

t : M1 ×M2 → Rκ.
The set of all rate-pairs achieved by linear-feedback

schemes is called linear-feedback capacity region and is
denoted Clinfb

BC (H1,H2;P ). The largest sum-rate achieved by a
linear-feedback scheme is called linear-feedback sum-capacity
and is denoted C linfb

BC,Σ(H1,H2;P ).

III. MIMO GAUSSIAN MAC WITH FEEDBACK

We consider the two-user memoryless MIMO Gaussian
MAC with perfect feedback. Each Transmitter i, for i ∈ {1, 2},
is equipped with νi transmit-antennas and the receiver with
κ receive-antennas. At each discrete time t, if x1,t and x2,t

denote the vector signals sent by Transmitters 1 and 2, the
receiver observes the real vector-valued channel output

Yt = HT
1x1,t + HT

2x2,t + Zt, (6)

where Hi, for i ∈ {1, 2}, is a deterministic real νi-by-κ
channel matrix known to transmitters and receiver and {Zt} is

a sequence of i.i.d. κ-dimensional centered Gaussian random
vectors of identity covariance matrix.

The goal of communication is that Transmitters 1 and 2
convey independent messages M1 and M2 (which are also
independent of {Zt}) to the common receiver. Since the
transmitters have perfect feedback, Transmitter i’s, i ∈ {1, 2},
channel input at time t, Xi,t, can depend on its message Mi

and the previous output vectors Y1, . . . ,Yt−1:

Xi,t = ϕ
(n)
i,t (Mi,Y1, . . . ,Yt−1), t ∈ {1, . . . , n}, (7)

for some encoding functions ϕ(n)
i,t : Mi × Rκ(t−1) → R.

The channel input sequences {X1,t}nt=1 and {X2,t}nt=1 have
to satisfy a total expected average block-power constraint P :

1

n

n∑
t=1

(
E[‖X1,t‖2] + E[‖X2,t‖2]

)
≤ P. (8)

The receiver decodes the messages (M1,M2) by means of a
decoding function φ(n) of the form φ(n) : Rκn →M1×M2.
This means, based on the output sequence Y1, . . . ,Yn, the
receiver produces its guess (M̂1, M̂2) = φ(n)(Y1, . . . ,Yn).
The average probability of error is defined as

P
(n)
e,MAC , Pr

[
(M̂1, M̂2) 6= (M1,M2)

]
. (9)

A rate-pair (R1, R2) is achievable over the Gaussian MIMO
MAC with feedback under a sum-power constraint P , if
there exists a sequence of encoding and decoding functions{
{ϕ(n)

1,t }nt=1, {ϕ
(n)
2,t }nt=1, φ

(n)
}∞
n=1

, as described above, such

that the average probability of a decoding error P (n)
e,MAC tends

to zero as n tends to infinity. The closure of the union of all
achievable regions is called capacity region.

Also here, we focus on the class of linear-feedback cod-
ing schemes where the channel inputs at Transmitter i, for
i ∈ {1, 2}, are given by linear combinations of the previous
feedback signals and an information-carrying vector that only
depends on the message Mi (but not on the feedback).
Specifically, we assume that the channel input vectors satisfy

Xi,t = Ui,t +

t−1∑
τ=1

Ci,τ,tYτ , t ∈ {1, . . . , n}, (10)

where {Ci,τ,t} are arbitrary νi-by-κ matrices and Ui,t =

ξ
(n)
i,t (Mi) for an arbitrary encoding function ξ(n)

i,t : M1 → Rνi .
Linear-feedback capacity and linear-feedback sum-capacity

are defined analougously to the BC. We denote them by
C linfb

MAC(HT
1,H

T
2;P ) and C linfb

MAC,Σ(HT
1,H

T
2;P ).

IV. DUAL SCHEMES FOR MAC AND BC AND
LINEAR-FEEDBACK CAPACITIES

The idea of our schemes is to divide the blocklength n
into n′ subblocks of equal length η. An inner code uses the
feedback to transform each subblock of η channel uses of the
original MIMO BC or MAC into a single channel use of a new
MIMO BC or MAC, with more transmit and receive antennas.
An outer code is then applied to communicate over the new
MIMO BC or MAC without using the feedback.



A. A class of linear-feedback schemes for the BC

Fix the blocklength n. Our schemes are parametrized by
• a positive integer η;
• κ-by-νi matrices {Ai,τ,`}, for ` = 2, . . . , η, τ =

1, . . . , `− 1, and i ∈ {1, 2};
• an encoding mapping f (n′) : M1 ×M2 → (Rκη)n

′
that

produces n′ , bnη c codevectors of size κη; and

• two decoding mappings g
(n′)
1 : (Rν1η)n

′ → M1 and
g

(n′)
2 : (Rν2η)n

′ → M2 that each decode a block of n′

output vectors of lengths ν1η and ν2η, respectively.
As already mentioned, the total blocklength n is divided into
n′ subblocks of length η. The matrices {Ai,τ,`} describe the
inner code that is used within each of the n′ subblocks. The
parameters f (n′), g

(n′)
1 , g

(n′)
2 describe the outer code that is

used to code over the n′ subblocks without using the feedback.
We now describe how the inner code transforms the first

block of η channel uses into a single channel use of the
new MIMO BC. All other blocks are transformed similarly.
Let X ,

(
XT

1, . . . ,X
T
η

)T
, Zi ,

(
ZT
i,1, . . . ,Z

T
i,η

)T
, Yi ,(

YT
i,1, . . . ,Y

T
i,η

)T
, for i ∈ {1, 2}, and let W denote the ηκ-

dimensional codevector produced by outer encoder f (n′) for
this first block. Define strictly-lower block-triangular matrices

AB
i =


0 . . . 0

Ai,1,2 0
Ai,1,3 Ai,2,3 0

...
. . .

Ai,1,η Ai,2,η . . . Ai,(η−1),η 0

 , i ∈ {1, 2}, (11)

where here 0 denotes the κ-by-νi matrix with all zero entries,
and the block channel-matrices HB

i , Iη ⊗ Hi, for i ∈ {1, 2},
where ⊗ denotes the Kronecker product.

The channel inputs in the first block are chosen as

X =
(
I− AB

1 HB
1 − AB

2 HB
2

)
W + AB

1Y1 + AB
2Y2. (12)

Define further the matrices

BB
i ,

(
I− AB

1 HB
1 − AB

2 HB
2

)−1
AB
i , i ∈ {1, 2}, (13)

after some algebraic manipulations, we can rewrite (12) as:

X = W + BB
1Z1 + BB

2Z2 (14)

and the corresponding outputs as:

Y1 = HB
1W + (I + HB

1 BB
1 )Z1 + HB

1 BB
2Z2, (15a)

Y2 = HB
1W + (I + HB

2 BB
2 )Z2 + HB

2 BB
1Z1. (15b)

Mapping (AB
1 ,A

B
2 ) 7→ (BB

1 ,B
B
2 ) in (13) is bijective and BB

i ,
for i ∈ {1, 2}, is strictly-lower block-triangular with blocks of
sizes κ× νi.

By (14), the total input power in the first subblock is

E
[
‖X‖2

]
= E

[
‖W‖2

]
+ tr(BB

1 (BB
1 )

T
) + tr(BB

2 (BB
2 )

T
).

Since all the n′ subblocks are constructed using the same
BB

1 and BB
2 , we conclude that the channel inputs {Xt}nt=1

to our original MIMO BC satisfy the average block-power

constraint (3) if tr(BB
1 (BB

1 )
T
) + tr(BB

2 (BB
2 )

T
) ≤ ηP and if the

codewords produced by the outer encoder f (n′) are average
block-power constrained to power

ηP − tr(BB
1 (BB

1 )
T
)− tr(BB

2 (BB
2 )

T
). (16)

Definition 1. Let RBC(η,BB
1 ,B

B
2 ,H

B
1 ,H

B
2 ;P ) denote the ca-

pacity region of the MIMO BC in (15) when the vector-input
W is average block-power constrained to power (16).

Recall that our inner code transforms η uses of the original
MIMO BC into a single use of the new MIMO BC (15).
Thus, if we design the outer code {f (n′), g

(n′)
1 , g

(n′)
2 } to

achieve the nofeedback capacity of MIMO BC (15) under
average input-power constraint (16) as described in [12], then
over the original MIMO BC we achieve the rate region
1
ηRBC(η,BB

1 ,B
B
2 ,H

B
1 ,H

B
2 ;P ). This proves the achievability

part of the following proposition. The converse can be shown
using Fano’s inequality, and is omitted here due to lack of
space.

Proposition 1.

C linfb
BC (H1,H2;P ) = cl

( ⋃
η,BB

1,B
B
2

1

η
RBC(η,BB

1 ,B
B
2 ,H

B
1 ,H

B
2 ;P )

)
where the union is over all positive integers η and all strictly-
lower block-triangular (ηκ)-by-(ην1) and (ηκ)-by-(ην2) ma-
trices BB

1 and BB
2 with blocks of sizes κ× ν1 and κ× ν2 that

satisfy tr(BB
1 (BB

1 )
T
) + tr(BB

2 (BB
2 )

T
) ≤ ηP .

B. A class of linear-feedback schemes for the MAC

Fix the blocklength n. The schemes are parametrized by
• a positive integer η;
• νi-by-κ matrices {Ci,τ,`}, for ` = 2, . . . , η, τ =

1, . . . , `− 1, and i ∈ {1, 2};
• two encoding mappings f

(n′)
1 : M1 → (Rν1η)n

′
and

f
(n′)
2 : M2 → (Rν2η)n

′
that produce n′ codevectors of

sizes ν1η and ν2η, respectively; and
• a decoding mapping g(n′) : (Rνη)n

′ → M1 ×M2 that
decodes a block of n′ output vectors of length κη.

The total blocklength is divided into n′ subblocks of length η.
The matrices {C1,τ,`} and {C2,τ,`} describe the inner code
used within each of the n′ subblocks of length η. The
parameters f (n′)

1 , f
(n′)
2 , g(n′) describe the outer code used to

code over the n′ subblocks without using the feedback.
We describe the first block of η channel inputs. The

inputs to the other blocks are similar. For i ∈ {1, 2}, let
Xi ,

(
XT
i,1, . . . ,X

T
i,η

)T
, Y ,

(
YT

1, . . . ,Y
T
η

)T
, and Z ,(

ZT
1, . . . ,Z

T
η

)T
and let Ui denote the ηνi-length codevector (a

column vector) produced by f (n′)
i for this first block. Define

the strictly-lower block-triangular matrices

CB
i =


0 . . . 0

Ci,1,2 0
Ci,1,3 Ci,2,3 0

...
. . .

Ci,1,η Ci,2,η . . . Ci,(η−1),η 0

 , i ∈ {1, 2}, (17)



where here 0 denotes an νi-by-κ zero matrix. Transmitter i’s
inputs during the first block are chosen as

Xi = Q−1
i Ui + CB

iY. (18)

Defining

DB
i , CB

i

(
I− (HB

1 )TCB
1 − (HB

2 )TCB
2

)−1
, i ∈ {1, 2}, (19)

and Q1 and Q2 as the unique positive square roots of the
(positive-definite) matrices

M1 , (I + DB
1 (HB

1 )T)T(I + DB
1 (HB

1 )T) + (DB
2 (HB

1 )T)TDB
2 (HB

1 )T

M2 , (I + DB
2 (HB

2 )T)T(I + DB
2 (HB

2 )T) + (DB
1 (HB

2 )T)TDB
1 (HB

2 )T,

we can rewrite the inputs (18) and the corresponding outputs:

Xi = Q−1
i Ui + DB

i

(
(HB

1 )TQ−1
1 U1 + (HB

2 )TQ−1
2 U2 + Z

)
(21)

Y = (I + (HB
1 )TDB

1 + (HB
2 )TDB

2 )

·
(
(HB

1 )TQ−1
1 U1 + (HB

2 )TQ−1
2 U2 + Z

)
. (22)

Mapping (CB
1 ,C

B
2 ) 7→ (DB

1 ,D
B
2 ) in (19) is bijective and DB

i ,
for i ∈ {1, 2}, is strictly-lower block-triangular with blocks of
sizes νi × κ.

Lemma 1. The channel inputs {X1,t}nt=1 and {X2,t}nt=1 to
the original MIMO Gaussian MAC satisfy the total average
input-power constraint (8), if tr(DB

1 (DB
1 )

T
) + tr(DB

2 (DB
2 )

T
) ≤

ηP and if the codevectors produced by f (n′)
1 and f

(n′)
2 are

total average block-power constrained to power

ηP − tr(DB
1 (DB

1 )
T
)− tr(DB

2 (DB
2 )

T
). (23)

Proof: The proof is omitted due to lack of space.

Definition 2. Let RMAC(η,DB
1 ,D

B
2 , (HB

1 )T, (HB
2 )T;P ) denote

the capacity region of the MIMO MAC in (22) under total
average block-power constraint (23) on the inputs U1 and U2.

If we design the outer code {f (n′)
1 , f

(n′)
2 , g(n′)} so that it

achieves the nofeedback capacity of the new MIMO MAC
in (22) under total average input-power constraint (23), then
over the original MIMO MAC we can achieve the rate region
1
ηRMAC(η,DB

1 ,D
B
2 , (HB

1 )T, (HB
2 )T;P ). This proves the achiev-

ability part of the following proposition. The converse is based
on Fano’s inequality and omitted here due to lack of space.

Proposition 2.

C linfb
MAC(HT

1,H
T
2;P )

= cl

 ⋃
η,DB

1,D
B
2

1

η
RMAC(η,DB

1 ,D
B
2 , (HB

1 )T, (HB
2 )T;P )


where the union is over all positive integers η and all strictly-
lower block-triangular (ην1)-by-(ηκ) and (ην2)-by-(ηκ) ma-
trices DB

1 and DB
2 with blocks of sizes ν1 × κ and ν2 × κ that

satisfy tr(DB
1 (DB

1 )
T
) + tr(DB

2 (DB
2 )

T
) ≤ ηP .

C. Dual linear-feedback schemes for MAC and BC

Definition 3. For a given k-by-` matrix M, we define its
reverse image as the `-by-k matrix M̄ , E`M

TEk, where Ek
denotes the k-by-k exchange matrix which is 0 everywhere
except for the counter-diagonal where it is 1. (In the following
we often drop the subscript and simply write E.)

Proposition 3. Let H̄B
i = Iη ⊗ H̄i. If

BB
i = D̄B

i , i ∈ {1, 2}, (24)

then the following two regions coincide:

RBC(η,BB
1 ,B

B
2 ,H

B
1 ,H

B
2 ;P )=RMAC(η,DB

1 ,D
B
2 , H̄

B
1 , H̄

B
2 ;P ). (25)

Proof: See Section VI.
Condition (24) is equivalent to

AB
i = C̄B

i . (26)

Remark 1. On a MIMO MAC with channel matrices H1 and
H2 the transmitters and receiver can mimic a MIMO MAC with
channel matrices H̄1 and H̄2. It suffices that each transmitter
multiplies (from the left) its input vectors by E before feeding
them to the channel and that the receiver and the transmitters
first multiply the output and feedback vectors by E (from the
left) before further processing.

Combining Proposition 3, (26), and Remark 1 we obtain:

Corollary 1. Consider a MIMO BC with channel matrices
(H1,H2) and its dual MAC with channel matrices (HT

1,H
T
2).

Fix the MAC-scheme parameters η, {C1,τ,`}, {C2,τ,`}, f (n′)
1 ,

f
(n′)
2 , and g(n′). Choose now the BC-scheme parameters

Ai,τ,` = C̄i,η−τ,η−`+2, (27)

and an optimal outer code f (n′), g(n′)
1 , and g(n′)

2 as described
in [12]. Then, our MAC and BC-schemes achieve the same
rate regions.

In the SISO case, all conditions (27) are summarized by

AB
i = C̄B

i . (28)

V. MAIN RESULTS

Theorem 1. Clinfb
BC (H1,H2;P ) = C linfb

MAC(HT
1,H

T
2;P ).

Proof: Follows by Propositions 1, 2, and 3, and since
Remark 1 implies C linfb

MAC(HT
1,H

T
2;P ) = Clinfb

MAC(H̄1, H̄2;P ).

Corollary 2. C linfb
BC,Σ(H1,H2;P ) = C linfb

MAC,Σ(HT
1,H

T
2;P ).

Let C linfb
MAC,SISO, Clinfb

MAC,SIMO, C linfb
MAC,MISO denote the linear-

feedback capacity regions for the SISO, SIMO, and MISO
Gaussian MAC with feedback. From the results by Ozarow [2]
& Jafar and Goldsmith [3] one readily obtains1 computable
single-letter expressions for these linear-feedback capacity
regions, which coincide with the true capacity regions for

1Ozarow and Jafar & Goldsmith determined the capacity regions under
individual power constraints for each transmitter. The capacity region under
a total power constraint is obtained by taking the union of these capacity
regions over all possible power splits.



the respective setups. By Theorem 1, we thus obtain single-
letter expressions for the linear-feedback capacity regions of
the SISO, SIMO, and MISO Gaussian BC:

Corollary 3. Consider the SISO case where the channel
matrices are scalars h1 and h2:

C linfb
BC,SISO(h1, h2;P ) = Clinfb

MAC,SISO(h1, h2;P ), (29)

where a computable single-letter characterization of
Clinfb

MAC,SISO(h1, h2;P ) is obtained from Ozarow’s result [2].

Corollary 4. Consider the SIMO and MISO cases where the
channel matrices are given by column vectors h1 and h2:

C linfb
BC,MISO(hT

1,h
T
2;P ) = C linfb

MAC,SIMO(h1,h2;P ) (30)

C linfb
BC,SIMO(h1,h2;P ) = C linfb

MAC,MISO(hT
1,h

T
2;P ) (31)

= C linfb
MAC,SISO(‖h1‖, ‖h2‖;P ), (32)

where the last equality follows from a result in [3]. A
computable single-letter characterization of C linfb

MAC,SIMO and
C linfb

MAC,MISO can be obtained from the results in [3].

In view of Corollary 1 and the MAC capacity-achieving
schemes in [2] and [3], for the SISO, the SIMO, and the
MISO BC we can easily deduce the parameters of our linear-
feedback schemes in Section IV-A that achieve the linear-
feedback capacity.

Remark 2. Analagous results also hold with partial feedback
where only a subset of the feedback links are present.

VI. PROOF OF PROPOSITION 3

Fix η and strictly-lower block-triangular matrices BB
1 ,B

B
2 .

Also, let DB
1 ,D

B
2 be given by (24). (Since BB

1 and BB
2 are

strictly-lower block-triangular, so are DB
1 and DB

2 .)
Consider the MIMO MAC (22) with (HB

i )T replaced by H̄B
i :

Y′=(I + H̄B
1 DB

1 + H̄B
2 DB

2 )(H̄B
1 Q−1

1 U1 + H̄B
2 Q−1

2 U2 + Z) (33)

where now Q1 and Q2 are the unique positive square-roots of

M1 = (I + DB
1 H̄B

1 )T(I + DB
1 H̄B

1 ) + (DB
2 H̄B

1 )T(DB
2 H̄B

1 ), (34a)
M2 = (I + DB

2 H̄B
2 )T(I + DB

2 H̄B
2 ) + (DB

1 H̄B
2 )T(DB

1 H̄B
2 ). (34b)

Since (I + H̄B
1 DB

1 + H̄B
2 DB

2 ) is invertible, under any given input
power constraint, MAC (33) has the same capacity as MAC

Y′MAC , H̄B
1 Q−1

1 U1 + H̄B
2 Q−1

2 U2 + Z. (35)

We now turn to BC (15). Let S1 and S2 be the positive
square roots of

N1 , (I + HB
1 BB

1 )(I + HB
1 BB

1 )T + (HB
1 BB

2 )(HB
1 B2)T (36a)

N2 , (HB
2 BB

1 )(HB
2 BB

1 )T + (I + HB
2 BB

2 )(I + HB
2 BB

2 )T. (36b)

Define W̃ , EW and notice ‖W̃‖2 = ‖W‖2. Since
multiplying the output vectors of a MIMO BC by invertible
matrices (here ES−1

1 and ES−1
2 ) does not change capacity, we

conclude: The MIMO BC (15) and the MIMO BC

Y′i,BC , ES−1
i HB

i EW̃ + Z̃i, i ∈ {1, 2}, (37)

where Z̃1 and Z̃2 are independent centered Gaussian vectors
of identity covariance matrices, have equal capacity when the
inputs W and W̃ are average block-power constrained to (16).

We conclude the proof by showing that the capacity regions
of the MIMO BC in (37) under power constraint (16) and the
MIMO MAC (35) under power constraint (23) coincide. In
view of (24), comparing (34) and (36), we have

EMiE = Ni, i ∈ {1, 2}, (38)

and thus by the definitions and uniqueness of Si and Qi,

Si = EQiE = EQT
iE, i ∈ {1, 2}, (39)

where we used the symmetry of Qi. This implies

ES−1
i HB

i E = Q−T
i EHB

i E = (H̄B
i Q−1

i )T, i ∈ {1, 2}, (40)

and the BC (37) and the MAC (35) are duals and have
therefore the same capacity regions under the same total
power constraints on the inputs [10], [11]. Since by (24), the
powers (16) and (23) are the same, this concludes the proof.
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