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Abstract—We show that with perfect feedback and when
restricting to linear-feedback schemes, the regions achieved over
the two-user scalar Gaussian memoryless MAC and over the
two-user scalar Gaussian memoryless BC coincide, if the MAC
and the BC have equal channel coefficients and if the same
(sum-)power constraint P is imposed on their inputs. Since the
achievable region for the MAC is well known (it equals Ozarow’s
perfect-feedback capacity region under a sum-power constraint),
we can characterize the region that is achievable over the scalar
Gaussian BC with linear-feedback schemes.

I. INTRODUCTION

Feedback is known to increase the capacity of multi-user
channels such as the multi-access channel (MAC) and the
broadcast channel (BC). But for most multi-user channels
the exact capacity region is open even with perfect output-
feedback. A notable exception is the two-user memoryless
Gaussian MAC whose capacity was derived by Ozarow [1].
Ozarow’s capacity-achieving scheme is a linear-feedback
scheme, i.e., a scheme where at each time the transmitters
send linear combinations of the past feedback signals and of
code symbols that only depend on their own message. Kramer
extended this scheme to K ≥ 3 users [2]. Under symmetric
power constraints P for all users, Kramer’s scheme achieves
the largest sum-rate among all linear-feedback schemes [3],
and it achieves the sum-capacity when P is sufficiently large
[2]. (It is yet unknown whether the scheme achieves the sum-
capacity also when P is small.)

For the memoryless Gaussian BC the capacity region with
perfect feedback is unknown even with two receivers. Achiev-
able regions based on linear-feedback schemes have been
proposed in [2], [4], [5], [6], [7], [8]. Non-linear feedback
schemes have been proposed in [14], [9], [10]. The best known
achievable regions are due to linear-feedback schemes.

The linear-feedback schemes in [5], [6], [7] are designed
based on control-theoretic considerations. For some setups,
e.g., uncorrelated noises of equal variance [7], these schemes
achieve the same sum-rate over the Gaussian BC under power
constraint P as Ozarow’s scheme achieves over the Gaussian
MAC under a sum-power constraint P . Thus, there is a duality
in terms of sum-rate between the BC-schemes in [5], [6], [7]
and Ozarow’s MAC-scheme [1].

In this paper, we prove a duality between arbitrary linear-
feedback schemes over the two-user scalar Gaussian MAC

and BC, similar to the MIMO (nofeedback) MAC-BC duality
in [11], [15]. Specifically, we show that the regions achieved
by linear-feedback schemes over the two-user scalar Gaussian
MAC under sum-power constraint P and over the two-user
scalar Gaussian BC with uncorrelated noises under the same
power constraint P coincide, if the scalar channel coefficients
of the MAC and the BC are equal. Since the set of achievable
regions over the Gaussian MAC using linear-feedback schemes
is known—it equals Ozarow’s achievable region under a sum-
power constraint—our result allows to characterize the region
that is achievable with linear-feedback schemes over the two-
user scalar Gaussian BC with uncorrelated noises. We can
also identify the optimal linear-feedback schemes over the
scalar Gaussian BC and show that for equal noise-variances
the control-theoretic schemes in [5], [6], [7] achieve the largest
sum-rate among all linear-feedback schemes.

II. GAUSSIAN MAC WITH FEEDBACK

Consider the two-user memoryless scalar Gaussian MAC
with perfect output-feedback in Figure 1. At each time t ∈ N,
if x1,t and x2,t denote the real symbols sent by Transmitters 1
and 2, the receiver observes the real channel output

Yt = h1x1,t + h2x2,t + Zt, (1)

where h1 and h2 are constant nonzero channel coefficients and
{Zt} is a sequence of independent and identically distributed
(i.i.d.) zero-mean unit-variance1 Gaussian random variables.

The goal of communication is that Transmitters 1 and 2
convey their independent messages M1 and M2 to the common
receiver. The messages M1 and M2 are independent of the
noises {Zt} and uniformly distributed over the sets M1 ,
{1, . . . , b2nR1c} and M2 , {1, . . . , b2nR2c}, where R1 and
R2 denote the rates of transmission and n the blocklength.

The two transmitters observe perfect feedback from the
channel outputs. Thus, the time-t channel input at Transmit-
ter i ∈ {1, 2} can depend on all previous channel outputs Y t−1

and its message Mi:

Xi,t = f
(n)
i,t (Mi, Y

t−1), t ∈ {1, . . . , n}, (2)

1Assuming unit-variance entails no loss in generality because otherwise the
receiver can simply scale its outputs appropriately.
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Fig. 1. Two-user Gaussian MAC with feedback.
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Fig. 2. Two-user Gaussian BC with feedback.

for some encoding function f
(n)
i,t : Mi × Rt−1 → R. The

channel inputs {X1,t}nt=1 and {X2,t}nt=1 have to satisfy an
expected average sum-power constraint

1

n

n∑
t=1

(
E[X2

1,t] + E[X2
2,t]
)
≤ P, (3)

where the expectation is over the messages and the realizations
of the channel. The receiver produces a guess

(M̂
(n)
1 , M̂

(n)
2 ) = Φ(n)(Y n)

by means of a decoding function Φ(n) : Rn →M1 ×M2.
The average probability of error is

P
(n)
e,MAC , Pr

[
(M̂1, M̂2) 6= (M1,M2)

]
. (4)

We say that a rate-pair (R1, R2) is achievable over the Gaus-
sian MAC with feedback under a sum-power constraint P , if
there exists a sequence of encoding and decoding functions{
{f (n)

1,t }nt=1, {f
(n)
2,t }nt=1,Φ

(n)
}∞
n=1

as described above, satisfy-
ing (3) and such that the average probability of error P (n)

e,MAC
tends to zero as the blocklength n tends to infinity. The closure
of the union of all achievable regions is called capacity region.

In the present paper we focus on linear-feedback schemes
for the MAC, where the channel inputs can be written as

Xi = Vi + CiY, i ∈ {1, 2}, (5)

where Y ,
(
Y1, . . . , Yn

)T
is the channel output vector, C1 and

C2 are n-by-n strictly lower-triangular matrices and Vi is an
n-dimensional information-carrying vector Vi = ϕi(Mi). The
mapping ϕi : Mi → Rn as well as the decoder mapping Φ(n)

can be arbitrary (also non-linear). The strict-lower-triangularity
of the matrices C1 and C2 ensures that the feedback is used
in a strictly causal way. (Notice that any nofeedback scheme
is of the form in (5) with C1 = C2 = 0.)

The set of all rate-pairs achieved by linear-feedback
schemes is called linear-feedback capacity region and is
denoted C linfb

MAC(h1, h2;P ). The largest sum-rate achieved by a
linear-feedback scheme is called linear-feedback sum-capacity
and is denoted C linfb

MAC,Σ(h1, h2, P ). Since Ozarow’s capacity-
achieving scheme [1] is a linear-feedback scheme,2 the general
feedback capacity region and the linear-feedback capacity
region coincide. They are both given by

C linfb
MAC(h1, h2;P ) =

⋃
P1,P2≥0:
P1+P2=P

⋃
ρ∈[0,1]

RρOz(h1, h2;P1, P2) (6)

2Notice that also Ozarow’s rate-splitting scheme has the form in (5) because
the feedback signals are combined linearly with code-symbols.

where RρOz(h1, h2;P1, P2) is the set of all nonnegative rate-
pairs (R1, R2) satisfying

Ri ≤
1

2
log
(
1 + h2

iPi(1− ρ2)
)
, i ∈ {1, 2}, (7a)

R1 +R2 ≤
1

2
log
(
1 + h2

1P1 + h2
2P2 + 2

√
h2

1h
2
2P1P2ρ

)
. (7b)

The linear-feedback sum-capacity is given in Equation (8) on
top of the next page, where ρ?(h1, h2;P1, P2) is the unique
solution in [0, 1] to the following quartic equation in ρ

(1 + h2
1P1 + h2

2P2 + 2
√
h2

1h
2
2P1P2ρ) =

(1 + h2
1P1(1− ρ2))(1 + h2

2P2(1− ρ2)). (9)

III. GAUSSIAN BC WITH FEEDBACK

Consider the two-user scalar Gaussian BC with perfect
output-feedback in Figure 2. We now have one transmitter
and two receivers. At each time t ∈ N, if xt ∈ R denotes the
transmitter’s channel input, Receiver i ∈ {1, 2} observes the
real channel output

Yi,t = hixt + Zi,t, (10)

where h1 and h2 are constant non-zero channel coefficients
and {Z1,t}nt=1 and {Z2,t}nt=1 model the additive noise at Re-
ceivers 1 and 2. The noise sequences {Z1,t}nt=1 and {Z2,t}nt=1

are independent and each consists of i.i.d. centered Gaussian
random variables of unit variance3.

The goal of the communication is that the transmitter
conveys Message M1 to Receiver 1 and Message M2 to
Receiver 2. The transmitter observes perfect output-feedback
from both receivers. Thus, the time-t channel input Xt can
depend on all previous channel outputs Y t−1

1 and Y t−1
2 and

the messages M1 and M2:

Xt = g
(n)
t (M1,M2, Y

t−1
1 , Y t−1

2 ), t ∈ {1, . . . , n}, (11)

for some encoding function g(n)
t : M1×M2×Rt−1×Rt−1 →

R. We impose an expected average block-power constraint

1

n

n∑
t=1

E[X2
t ] ≤ P, (12)

where the expectation is over the messages and the realizations
of the channel. Each Receiver i ∈ {1, 2} produces the guess

M̂
(n)
i = φ

(n)
i (Y ni )

3As for the MAC, assuming Z1,t and Z2,t have unit variance entails no
loss in generality.



C linfb
MAC,Σ(h1, h2;P ) = sup

P1,P2≥0:
P1+P2=P

1

2
log

(
1 + h2

1P1 + h2
2P2 + 2

√
h2

1h
2
2P1P2 · ρ?(h1, h2;P1, P2)

)
(8)

for some decoding function φ(n)
i : Rn →Mi.

The average probability of error is

P
(n)
e,BC , Pr

[
(M̂1 6= M1) or (M̂2 6= M2)

]
. (13)

A rate-pair (R1, R2) is achievable over the Gaussian
BC with feedback and power constraint P , if there
exists a sequence of encoding and decoding functions{
{g(n)
t }nt=1, φ

(n)
1 , φ

(n)
2

}∞
n=1

as described above, satisfying the
power constraint (12) and such that the average probability of
error P (n)

e,BC tends to zero as n tends to infinity.
Also here we restrict attention to linear-feedback schemes

for the BC where the transmitter’s channel input vector X ,(
X1, . . . , Xn

)T
can be written as:

X = W + B1Z1 + B2Z2, (14)

where Zi ,
(
Zi,1, . . . , Zi,n

)T
represents the noise vector at

Receiver i, B1 and B2 are strictly lower-triangular matrices,
and W is an n-dimensional information-carrying vector

W = ξ(M1,M2) (15)

The mapping ξ : M1×M2 → Rn and the decoding operations
φ

(n)
1 and φ(n)

2 can be arbitrary.
Taking a linear combination of the information-carrying

vector W and the past noise vectors Z1 and Z2 is equivalent
to taking a (different) linear combination of W and the past
outputs Y1 and Y2. Thus, the strict lower-triangularity of B1

and B2 ensures that the feedback is used strictly causally.
Linear-feedback capacity and linear-feedback sum-capacity

for the BC are defined analogously as for the MAC. We denote
them by Clinfb

BC (h1, h2;P ) and C linfb
BC,Σ(h1, h2;P ).

IV. MAIN RESULTS

We first present multi-letter expressions for C linfb
MAC(h1, h2;P )

and C linfb
BC (h1, h2;P ). They are used to prove Theorem 1 ahead.

Definition 1. Given η ∈ N and η-by-η matrices D1 and D2,
let Q1 and Q2 be the positive square roots of the (positive-
definite) η-by-η matrices

M1 , (Iη + h1D1)T(Iη + h1D1) + h2
1DT

2D2 (16a)
M2 , h2

2DT
1D1 + (Iη + h2D2)T(Iη + h2D2) (16b)

and let RMAC(η,D1,D2, h1, h2;P ) denote the (private mes-
sages) nofeedback capacity [12] of the MIMO MAC

ỸMAC , h1Q−1
1 V1 + h2Q−1

2 V2 + Z̃ (17)

when the η-by-1 input vectors V1 and V2 have to satisfy

tr(KV1 + KV2) ≤ max{0, ηP − tr(D1DT
1)− tr(D2DT

2)}, (18)

where KVi denotes the covariance matrix of Vi and in (17) Z̃
is a centered Gaussian vector of identity covariance matrix Iη .

Proposition 1. The linear-feedback capacity of the scalar
Gaussian MAC under sum-power constraint P satisfies

Clinfb
MAC(h1, h2;P )=cl

 ⋃
η,D1,D2

1

η
RMAC(η,D1,D2, h1, h2;P )

(19)

where the union is over all positive integers η and strictly
lower-triangular η-by-η matrices D1 and D2.

Observe that [1] and Proposition 1 imply that the right-hand
sides (RHSs) of (19) and (6) coincide.

Proof: For fixed η, D1, and D2, the rate region
1
ηRMAC(η,D1,D2, h1, h2;P ) is achieved by coding over
blocks of η channel uses. Choose the η channel inputs of
Transmitter i for a given block as

Xi = Q−1
i Vi + CiY, i ∈ {1, 2}, (20)

where
Ci , Di(Iη + h1D1 + h2D2)−1, (21)

and where Y denotes the η-by-1 vector consisting of the
channel outputs in this block and Vi is an η-by-1 vector that
depends on Message Mi, and over which we can code. The
corresponding output vector is

Y = (Iη−h1C1−h2C2)−1(h1Q−1
1 V1 + h2Q−1

2 V2 + Z). (22)

By coding over the vectors V1 and V2 of the different
blocks, we can achieve the capacity of the MIMO MAC
in (22), which equals the capacity of the MIMO MAC in (17).
Algebraic manipulations show that the inputs in a given
block (20) are sum-power constrained to P , if (18) holds and
if ηP − tr(D1DT

1)− tr(D2DT
2) is positive.

More details and the converse are omitted for brevity.

Definition 2. Given η ∈ N and η-by-η matrices B1 and B2, let
S1 and S2 be the positive square roots of the η-by-η matrices

A1 , (Iη + h1B1)(Iη + h1B1)T + h2
1B2BT

2 (23a)
A2 , h2

2B1BT
1 + (Iη + h2B2)(Iη + h2B2)T (23b)

and let RBC(η,B1,B2, h1, h2;P ) denote the (private-
messages) nofeedback capacity of the MIMO BC [13]

ỸBC
i , hiS

−1
i W + Z̃i, i ∈ {1, 2}, (24)

when the η-by-1 input vector W has to satisfy

tr(KW) ≤ max{0, ηP − tr(B1BT
1)− tr(B2BT

2)}, (25)

where KW denotes the covariance matrix of W and where
in (24) Z̃1 and Z̃2 denote independent centered Gaussian
vectors of identity covariance matrix Iη .

Proposition 2. The linear-feedback capacity region of the
Gaussian BC with feedback is:

C linfb
BC (h1, h2;P )=cl

 ⋃
η,B1,B2

1

η
RBC(η,B1,B2, h1, h2;P )

 (26)



where the union is over all positive integers η and strictly
lower-triangular η-by-η matrices B1 and B2.

Proof: For fixed η, B1, and B2, the rate region
1
ηRBC(η,B1,B2, h1, h2;P ) is achieved by coding over blocks
of η channel uses, if the channel inputs in a block are

X = W + B1Z1 + B2Z2, (27)

where Z1 and Z2 denote the block’s η-by-1 noise vectors
at Receivers 1 and 2 and W is an η-by-1 input vector that
depends on the messages (M1,M2). Receiver i’s outputs Yi

in a block are then given by

Yi = hiW + hiB1Z1 + hiB2Z2 + Zi, i ∈ {1, 2}. (28)

By coding over the inputs W of the different blocks, we can
achieve the capacity of the MIMO BC in (28), which coincides
with the capacity of the MIMO BC in (24).

More details and the converse are omitted for brevity.

Theorem 1. The linear-feedback capacity regions of the scalar
Gaussian BC under power constraint P and of the scalar
Gaussian MAC under sum-power constraint P coincide:

C linfb
MAC(h1, h2;P ) = C linfb

BC (h1, h2;P ). (29)

Corollary 1.

C linfb
MAC,Σ(h1, h2;P ) = C linfb

BC,Σ(h1, h2;P ). (30)

Corollary 2. If h1 = h2 = h, then

C linfb
BC,Σ(h, h;P ) =

1

2
log
(
1 + h2P + h2P · ρ?(h, h;P, P )

)
(31)

and thus the control-theoretic scheme in [7] achieves the
linear-feedback sum-capacity.

Proof: By a symmetry argument. Omitted.
Proof of Theorem 1: We show that

RMAC(η,D1,D2, h1, h2;P ) = RBC(η,B1,B2, h1, h2;P ), (32)

coincide if

Bi = D̄i, i ∈ {1, 2}, (33)

where for a matrix A, Ā , EηATEη is called its reversed image
and Eη is the exchange matrix which is 0 everywhere except on
the counter-diagonal where it is 1. The theorem then follows
by Propositions 1 and 2, and since the mapping in (33) is
one-to-one over the set of strictly lower-triangular matrices.

Under (33), the RHSs of the power constraints (18) and (25)
coincide. Moreover, under power constraint (18), the MIMO
MAC in (17) has the same capacity as the MIMO MAC4

ȲMAC , EηỸ
MAC = h1Q̄−1

1 V̄1 + h2Q̄−1
2 V̄2 + Z̄, (34)

where Z̄ , EηZ̃ and where V̄i , EηVi has to satisfy the
power constraint (18) when V̄i replaces Vi. Now, Equal-
ity (32) follows by the MIMO MAC-BC (nofeedback) duality
in [11], [15] and because under (33) the MAC ȲMAC is dual

4Multiplying ỸMAC by Eη from the left only reverses the order of receiving
antennas.

to the BC in (24). In fact, under (33), h1Q̄−1
1 = h1S−T

1 and
h2Q̄−1

2 = h2S−T
2 .

Remark 1. The optimal MAC scheme is described in [1].
From this we can deduce the optimal MAC-parameters V1,
V2, C1, and C2 describing the block inputs in (20). (A
different set of parameters is required to approach each point
on the boundary of the capacity region.) Now, by (32) and
comparing (21) and (33), from these parameters we can
deduce the optimal BC-parameters B1 and B2 describing the
block inputs in (27). Finally, the results in [13] tell us how to
code and decode over the resulting MIMO BC in (28).

Remark 2. Theorem 1 extends to the scalar Gaussian MAC
and BC with K ≥ 3 users.
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