
HAL Id: hal-01221186
https://hal.science/hal-01221186v1

Submitted on 27 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Improving Backfilling by using Machine Learning to
predict Running Times

Eric Gaussier, David Glesser, Valentin Reis, Denis Trystram

To cite this version:
Eric Gaussier, David Glesser, Valentin Reis, Denis Trystram. Improving Backfilling by using Machine
Learning to predict Running Times. SuperComputing 2015, Nov 2015, Austin, TX, United States.
�10.1145/2807591.2807646�. �hal-01221186�

https://hal.science/hal-01221186v1
https://hal.archives-ouvertes.fr

Improving Backfilling by using Machine Learning to
predict Running Times

Eric Gaussier
University Grenoble-Alpes,

LIG, France
eric.gaussier@imag.fr

David Glesser
BULL – HPC division,

Grenoble, France
david.glesser@bull.net

Valentin Reis
University Grenoble-Alpes,

LIG, France
academic@valentinreis.com

Denis Trystram
University Grenoble-Alpes,

LIG, France
trystram@imag.fr

ABSTRACT
The job management system is the HPC middleware re-
sponsible for distributing computing power to applications.
While such systems generate an ever increasing amount of
data, they are characterized by uncertainties on some pa-
rameters like the job running times. The question raised in
this work is: To what extent is it possible/useful to take into
account predictions on the job running times for improving
the global scheduling?

We present a comprehensive study for answering this ques-
tion assuming the popular EASY backfilling policy. More
precisely, we rely on some classical methods in machine
learning and propose new cost functions well-adapted to the
problem. Then, we assess our proposed solutions through
intensive simulations using several production logs. Finally,
we propose a new scheduling algorithm that outperforms the
popular EASY backfilling algorithm by 28% considering the
average bounded slowdown objective.

Keywords
High Performance Computing, Running Time Estimation,
Scheduling, Machine Learning

1. INTRODUCTION

1.1 Context
Large scale high performance computing (HPC) platforms

are becoming increasingly complex. There exists a broad
range and variety of HPC architectures and platforms. As
a consequence, the job management system (which is the
middleware responsible for managing and scheduling jobs)
should be adapted to deal with this complexity. Determining
efficient allocation and scheduling strategies that can deal
with complex systems and adapt to their evolutions is a

ACM ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807646

strategic and difficult challenge.
More and more data are produced in such systems by

monitoring the platform (CPU usage, I/O traffic, energy
consumption, etc.), by the job management system (i.e., the
characteristics of the jobs to be executed and those which
have already been executed) and by analytics at the appli-
cation level (parameters, results and temporary results). All
this data is most of the time ignored by the actual systems
for scheduling jobs.

The technologies and methods studied in the field of big
data (including Machine Learning) could and must be used
for scheduling jobs in the new HPC platforms.

For instance, and this will be the focus of this paper, the
running time of a given job on a specific HPC platform is
usually not known in advance and moreover, it depends on
the context (characteristics of the other jobs, global load,
etc.). In practice, most job management systems ask the
users for an upper bound on the job running time, threat-
ening to kill it if it exceeds this requested value. This leads
to very bad estimates of the running times given by the
users [23]. A precise knowledge of the running times is even
more important since the algorithms used in most of these
systems assume that this value is perfectly known. Thus, it
is crucial to determine how to estimate the running times
in order to improve scheduling. We believe that there is a
huge potential gain in studying this question more deeply
and provide more efficient scheduling mechanisms.

Obviously, the job running time is not the only parameter
impacted by uncertainties. We focus on it as a proof of
concept in order to show that it is possible to improve the
scheduling performances for popular FCFS-BF (First Come
First Serve with Backfilling) batch scheduling policy. The
analysis provided on this work can be extended easily to
other scheduling policies.

1.2 Contributions
The main question addressed in this work is to determine

to what extent predictions of the running times may help
for obtaining a better schedule. For this purpose, we rely on
on-line regression methods and consider a family of loss (or
cost) functions that are used to learn the prediction model.
Then, we show how to use the predictions obtained by im-
proving popular scheduling algorithms. Finally, we perform
an experimental evaluation of the proposed new algorithms
using several actual log datas on various platforms. The re-

sults show an average gain of 28% compared to the classical
EASY policy (with a maximum of 86%) and 11% in average
compared to EASY++.

1.3 Content
We start by describing the problem in Section 2. Then,

we present and discuss in Section 3 the main existing ap-
proaches studied so far in parallel processing field for pre-
dicting running times and their use in scheduling. Section 4
recalls the main prediction approaches in machine learn-
ing and presents an original method for estimate the run-
ning time of the jobs based on linear regression. Then, we
present the studied scheduling algorithms and their adapta-
tion to predictive techniques in Section 5. Section 6 reports
the simulations done with actual log data. They show that
some combinations of prediction and scheduling algorithms
improve the system performances.

2. PROBLEM DESCRIPTION

2.1 Job management
We are interested in this work in scheduling jobs in HPC

platforms. The application developers (or users) submit
their jobs in a centralized waiting queue. The job manage-
ment system aims at determining a suitable allocation for
the jobs, which all compete against each other for the avail-
able computing resources. In most HPC centers, these users
are requested to provide some information about their appli-
cations in order to help the system to take better decisions.
In particular, it is expected that they give an estimation of
the running times. As a job is killed if its actual running
time is greater than its requested running time, users tend
to significantly increase the duration estimates [23].

Most available open-source and commercial job manage-
ment systems use an heuristic approach inspired by backfill-
ing algorithms. The job priority is determined according to
the arrival times of the jobs. Then, the backfilling mecha-
nism allows a job to run before another job with a highest
priority only if it does not delay it. There exist several vari-
ants of this algorithm, like conservative backfilling [14] and
EASY backfilling [9]. In the former, the job allocation is
completely recomputed at each new event (job arrival or job
completion) while in the second, the process is purely on-line
avoiding costly recomputations.

SLURM is the most popular job management system [25].
In the last release of the TOP500 ranking in November 2014,
SLURM was performing job management in six of the ten
most powerful systems, including the number one. It uses
EASY backfilling and includes the possibility to sort the
waiting jobs according to various priorities (like by increas-
ing age, size or share factors, etc.). Other job management
systems including MOAB [12], TORQUE [22], PBSpro [17]
or LSF [11] are built upon the same approach with their
own specificities. A review on job schedulers can be found
in Georgiou [7].

We focus on EASY backfilling as a basic mechanism for
assessing our approach. In the remaining of the paper, the
corresponding policy will be denoted in short by EASY.

2.2 Dealing with uncertainties
The objective of this section is to show by some simu-

lations on actual data that using good running time pre-

Table 1: AVEbsld performances of EASY (using re-
quested times) and EASY-Clairvoyant (using actual
running times). Values between parentheses show
the corresponding decrease in AVEbsld.

Log EASY EASY-Clairvoyant

KTH-SP2 92.6 71.7 (22%)

CTC-SP2 49.6 37.2 (25%)

SDSC-SP2 87.9 70.5 (19%)

SDSC-BLUE 36.5 30.6 (16%)

Curie 202.1 69.9 (65%)

Metacentrum 97.6 81.7 (16%)

dictions significantly improves the scheduling performances.
First, let us clarify the vocabulary: a job is over-predicted if
its predicted running time is greater than the actual running
time. Similarly, a job is under-predicted when the predicted
running time is lower than the actual running time.

Table 1 reports the comparison of simulations based on
the testbed detailed in Section 6. Each log runs with EASY,
first with the original user’s requested running times, then
with the actual running times (as if the users were entirely
clairvoyant). The metric used for comparison, AVEbsld is
described in Subsection 5.3.

The results reported in Table 1 emphasize that clairvoyant
simulations are in average 27% better than simulations us-
ing the original requested running times. As running times
are shorter in the clairvoyant case, more jobs can be back-
filled and thus, the performances are improved. Taking
into account actual running time values always improves the
scheduling performances, thus accurate running time esti-
mates are crucial for reaching good performances.

2.3 Formulation of the problem
The problem studied in this work is to execute a set of

concurrent parallel jobs with rigid resource requirements (it
means that the number of resources required by a job is
known in advance) on a HPC platform represented by a pool
of m identical resources (we do not assume any particular
interconnection topology). The jobs are submitted over time
(on-line).

There are n independent jobs (indexed by integers), where
job j has the following characteristics:

• Submission date rj (sometimes called release date);

• Resource requirement qj (processor count);

• Actual running time pj (sometimes called processing
time);

• Requested running time p̃j , which is an upper bound
on pj ;

• Additional data that has no direct impact on the phys-
ical description of the job (e.g. the time of the day
when the job is submitted or the executable name).
This data may be used to learn about jobs, users and
the system.

The resource requirement qj of a job is known when the job
is submitted at time rj , while the running time pj is given

as an estimate. Its actual value is only known a posteriori
when the job really completes.

The problem is to design several algorithms that predict
the running times in order to provide good scheduling per-
formances.

3. RELATED WORK

3.1 Prediction
Historically, job running time prediction has been first

attempted [8] by categorizing the jobs according to a prede-
fined set of rules. Then, statistics based on such job’s cat-
egory are used to generate a prediction. In this approach,
called Templates, a partitioning into templates has to be
provided by the job management system or the system ad-
ministrator. It can be seen as an ancestor of tree-based
regression models in which the binning has to be obtained
trough statistical analysis of the specific system and popula-
tion and/or discussion with a domain expert. The technique
was subsequently adapted [21] using a more automatic way
(a genetic algorithm evolving template attributes) to gen-
erate the rules. These works used minimal, high-level in-
formation about jobs similar to what can be found in HPC
logs.

There exist other works that use more specialized meth-
ods, but require the modeling of the jobs. For instance,
Schopf et al. predict running time of applications by ana-
lyzing their functional structure [20]. An another example
is the method developed by Mendes et al. which performs
static analysis of the applications [13].

A later survey [10] evaluates the use of more recent su-
pervised learning tools. This work focuses on two scientific
applications and uses in-depth information about both the
jobs (e.g. input parameters) and the machines (e.g. disk
speed). A closely related paper by Duan et al. [3] proposes
an hybrid Bayesian-neural network approach to dynamically
model and predict the running time of scientific applications.
It uses in-depth information about jobs and their environ-
ment as well.

All these previous approaches assume jobs and their run-
ning times to be identically distributed and independent
(i.i.d.), and therefore, they do not leverage dependencies be-
tween job submissions. A stochastic model [15] has been pro-
posed for predicting job running time distributions. By op-
position to the previous studies which only used job descrip-
tions, this technique only relies on historical running time
information. It treats successive running times of a given
user as the observations of a Hidden Markov Model [18],
and hence it does not use the hypothesis that job submis-
sions would be i.i.d..

3.2 Scheduling based on Predictions
There are only a few methods for performing scheduling

using predictive techniques.
The Hidden Markov Model used in [15] is a probabilistic

generative model, and as such it is possible to easily obtain
the conditional distribution of the running time of a job. As
a consequence, it is possible to design scheduling algorithms
that use job running time distributions as an input [16].

The most relevant work for scheduling jobs on large paral-
lel systems using predictions is [24], in which the average of
the two last available running times of the job’s user is used
as a prediction. It leads to surprisingly good results given its

simplicity. This work also introduces an improved version of
EASY: EASY++. This algorithm use the predicted value
for the backfilling. The waiting jobs are considered by their
order of arrival, but during the backfilling phase jobs are
sorted shortest first. They also introduce a correction mech-
anism: when the the prediction technique under-estimates a
running time, a new estimation of the running time has to
be obtained. The proposed correction mechanism is simple:
the authors add a fixed amount of time from a predefined
list of values each time they under-estimate.

To the best of our knowledge, there is no other work that
relies on state-of-the-art machine learning methodology for
running time prediction and evaluates the resulting schedul-
ing. In the following two sections, we present prediction and
scheduling mechanisms.

4. PREDICTION METHOD
We first outline in this section the characteristics that

the prediction method should have, prior to describing our
approach in detail.

4.1 Rationale
Let us first argue that an approach based on machine

learning for predicting the running times of jobs should have
the following characteristics:

It should be based on minimal information. In hope
that results extend well to new HPC systems and be
usable in mainstream job management system, a learning-
based system should prove its effectiveness on minimal
job descriptions. In this light, one reasonable approach
is to use information of the Standard Workload Format
(SWF) [5].

It should work on-line. This is motivated by previous stu-
dies which emphasize that dependencies between job
running times are so far from being i.i.d. that two suc-
cessive running times [24] are enough to predict run-
ning time with good accuracy. Therefore, an algorithm
based on batches (which re-approximates the learned
concept once every k jobs, where k � 1) should not
be favored.

It should use both job description and system history
Unlike previous studies that either assume jobs to be
temporally independent or rely exclusively on running
time locality [15], a holistic approach should leverage
both job descriptions and temporal dependencies.

It should be robust to noise. Because HPC jobs can have
an erratic behavior (e.g. they may fail or hang-up),
the data one is relying on will be noisy. The learn-
ing algorithm should be robust to this noise and avoid
overfitting.

It should accept an arbitrary loss function. Attempting
to minimize the cumulative loss of an arbitrary func-
tion allows for a ”declarative” statement of the harm
incurred by a misprediction. This last aspect is moti-
vated by the intuition that an inaccurate prediction of
a job’s running time would not harm the scheduling in
an identical way depending on the job’s characteristics
and the direction of the error. This will be explored

in detail in the next Subsection. Arbitrary loss func-
tions generally pose computational limitations, and in
practice convex loss functions are often used.

We now turn to the description of the prediction method.

4.2 A new prediction approach
A job j is represented by a vector1 xj ∈ Rn where n is

the number of features of the model. The features which we
feed the algorithm with are described in Table 2. These fea-
tures are taken from various sources of information, such as
the job’s description (p̃j and qj). Others are taken from his-

torical information (e.g. p
(k)
j−1) and some are taken from the

current state of the system (e.g. Jobs Currently Running).
Additionally, some features are taken from the environment
(e.g. Time of the day).

The prediction is achieved via a `2-regularized polynomial
model. This choice is motivated by the availability of highly
robust algorithms to fit on-line linear regression models [19],
even in the presence of an adversary scaling of the features.
The `2 norm regularizer is used to prevent the quadratic
model from overfitting and the polynomial representation
(here of degree 2) to take into account dependencies between
features. The regression function is:

f(w,x) = wᵀΦ(x) w ∈ R1+2n+(n2) (1)

where the wi are the parameters (to be learned) of the
model, and Φ is a vector of basis functions:

Φ(x) = (1, x1, · · · , xn, x1x2, · · · , xkxl, · · · , xn−1xn)ᵀ

Denoting the actual running time of job j by pj , the cumu-
lative loss for up to the N -th already-processed job is2:

N∑
j=1

L(xj , f(xj), pj)

where L(x, f(x), y) is the loss function associated with pre-
dicting a value of f(x) in the case where the actual running
time is y. The regression problem finally takes the form:

arg min
w

N∑
j=1

L(xj ,w
ᵀΦ(xj), pj) + λ||w||2 (2)

where λ is the regularization parameter. Once w has been
learned, new running times are predicted through Equa-
tion (1).

The choice of the loss function is crucial and not straight-
forward here as the impact of a bad prediction on the run-
ning time varies from job to job as well as from the direction
of the error (over- or under-prediction). Indeed, scheduling
algorithms behave differently with respect to under-prediction
and over-prediction: in the case of an under-prediction, a de-
structive effect on the planned schedule can happen, while
an over-prediction never makes a planned schedule feasible
but may imply unused resources. This suggests that one
should rely on asymmetrical losses, that can be based on

1As common in machine learning, we use bold letters to
denote vectors and standard letters for scalars.
2Note that one can also consider the k latest jobs or weigh
differently the jobs to favor recent ones. These variants are
straightforward to consider from the framework developed
here.

standard loss functions dedicated to either under- or over-
prediction. Another source of complication with respect to
prediction arises not just from the backfilling strategy, but
from the scheduling problem itself. The tasks have a two-
dimensional representation based on (qj , pj) and it is reason-
able to expect that the difficulty of finding a good schedule
should be dependent not only on the prediction error, but
also on how it is distributed among jobs of different q and
p. This suggests that the loss function should be weighted
differently according to the jobs considered, leading to:

L(xj , f(xj), pj) =

{
γj .Lu(f(xj)− pj) if f(xj) ≥ pj
γj .Lo(pj − f(xj)) if f(xj) < pj

where Lu is the underprediction basis loss function, Lo is the
overprediction basis loss function, and γj > 0 corresponds
to the weight of job j.

Figure 1 shows an example of an asymmetrical loss func-
tion with a unit weight γj , using a squared loss basis for
underprediction and a linear loss basis for overprediction.

f(xj)− pj

L(xj , f(xj), pj)

OverpredictionUnderprediction

0

1

1−1

γj = 1
Lu(z) = z2

Lo(z) = z

Figure 1: Example Loss function L, plotted with
respect to the difference of it’s second and third pa-
rameters f(xj)− pj (the prediction error).

In this study, we consider two standard loss functions for
under- and over-prediction, namely the squared loss (L(z) =
z2) and the linear loss (L(z) = z). It can be verified that
all the possible combinations of these two loss functions in
L are continuous and convex (even though not differentiable
everywhere) with respect to vector w.

Choosing the weighting factor γj is not straightforward.
On the one hand, a key property of backfilling algorithms is
that jobs of small area (small p, small q) are easier to back-
fill. Underpredicting small jobs can therefore mean delaying
a reservation, and one should therefore use a weighting fac-
tor which decreases with p and q. On the other hand, as
we consider systems with no preemption, once a large (large
p, large q ≈ m) job is started, almost no resources remain
available. Thus, jobs in the queue are doomed to wait a
long time. It follows that predicting jobs of large area cor-
rectly should be beneficial, and one should therefore use a
weighting factor which increases with p and q. To account
for these various elements, we explore four different possi-
bilities along with a constant weighting factor, all of which
are shown in Table 3.

Finally, for each choice of two basis loss function Lu and

Table 2: Features extracted from the SWF data, for job j, belonging to user k.

Feature Meaning

p̃j the time the user requested for her job.

p
(k)
j−1 the running time of the last job of the same user, or 0 if

such a job does not exist.

p
(k)
j−2 the running time of the second-to-last job of the same

user, or 0 if N/A.

p
(k)
j−3 the running time of the third-to-last job of the same user,

or 0 if N/A.

AV E
(k)
2 (p) the average running time of the two last historically

recorded jobs of the same user.

AV E
(k)
3 (p) the average running time of the three last historically

recorded jobs of the same user.

AV E
(k)
all (p) the average running time of all historically recorded jobs

of the same user.
qj amount of (CPU) resource requested by job j.

AV E
(k)
hist,rj

(q) average historical resource request of user k, taken at
release date of job j.

qj

AV E
(k)
hist,rj

(q)
amount of resource requested normalized by average re-
source request.

AV E
(k)
curr,rj (q) average resource request of the user’s currently running

jobs, at release date
Jobs Currently Running number of jobs of the user running, at release date
Longest Current running time longest running time (so-far) of the user’s currently run-

ning jobs, at release date
Sum Current running times sum of the running times (so-far) of the user’s currently

running jobs, at release date
Occupied Resources total size of resources currently being allocated to the

same user.
Break Time time elapsed since last job completion from the same user.{
cos(2∗π

tday
∗ (rj mod tday))

sin(2∗π
tday
∗ (rj mod tday))

time of the day the job was released. The periodic
feature is decomposed into its cosinus and sinus,
using the day period tday (length of a day in seconds){

cos(2∗π
tweek

∗ (rj mod tweek))

sin(2∗π
tweek

∗ (rj mod tweek))
time of the week the job was released. The periodic
feature is decomposed into its cosinus and sinus,
using the week period tweek (length of a day in seconds)

Table 3: Weighting factors considered for training
the model. The constants are chosen to ensure posi-
tivity of the weights with typical running times and
resource requests in the HPC domain. Logarithms
are used to alleviate the high range produced by
ratios.

γj Interpretation

1 Constant weight.

5 + log(
qj
pj

) Short jobs with large resource request
should be well-predicted.

5 + log(
pj
qj

) Long jobs with small resource request
should be well-predicted.

11 + log(1
qj .pj

) Jobs of small ”area” should be
well-predicted.

log(qj .pj) Jobs of large ”area” should be
well-predicted.

Lo along with weighting scheme γj , the regression model
(i.e. the vector w) is learned on an on-line training/testing
set by minimizing the cumulative loss through the Normal-
ized Adaptive Gradient [19] algorithm (NAG), a variant of
the classical Stochastic Gradient Descent [1]. The NAG al-
gorithm poses the advantage of being robust to adversarial3

scaling of the features. Robustness to feature scaling is a
requirement of our problem because some features are dif-
ficult or impossible to normalize (e.g. Break Time is un-
bounded). Section 6 describes the data sets retained as well
as the values of the parameters considered for the search.
Note that when γj = 1 and Lu(z) = Lo(z) = z2, one is
just considering a standard squared loss regression problem,
learned in an on-line manner.

5. SCHEDULING

5.1 The EASY algorithm
3The notion of adversary simply means that the scaling
can be arbitrary. See [2] for a comprehensive study.

As mentioned in Section 2.1, we target EASY because of
it is broadly used and it has well-established performances.

EASY is one of the most on-line version of backfilling algo-
rithms. Backfilling algorithms are based on a priority queue
where the jobs with the highest priorities are launched first.
A job with a lower priority can run before a higher priority
job if and only if it does not delay it. EASY is considered
as an on-line algorithm since the decision to launch a job
is only taken at the last moment. For instance as it is de-
picted in Figure 2, the decision to launch job 2 is taken after
the completion of job 1. Job 3 has been backfilled. In this
figure, we can measure the importance of running times in
backfilling algorithms. If the estimated running time of job
1 was much shorter, job 3 would not be backfilled.

time

processors

t0

1
2

3

Figure 2: Example of EASY for a queue of 3 jobs
ordered according to their index. The decision to
launch job 1 is taken at t0. The second ready job
(2) can not be executed since there are not enough
resources left. Thus, job 3 can also be launched at
t0. The decision to launch job 2 is finally taken when
job 1 and 3 complete.

Tsafrir et al. proposed in [24] a slightly modified version
of EASY, called EASY-SJBF, which performed better with
running time predictions than the standard version. During
the phase when the algorithm determines the candidate jobs
to be backfilled, the jobs are sorted by increasing predicted
running times instead of considering the FCFS order. They
argue that this way, more jobs will be backfilled and thus,
the overall performances will increase.

5.2 Correction mechanism
In this section, we are interested in the following question:

what happens to the schedule when the running times are
mispredicted?

The case of over-predicted running times is easy to han-
dle by backfilling since the situation is the same as without
learning where the users over-estimate the requested run-
ning times. In case of under-predicted running times, there
are two points to consider. First, we should determine a new
prediction for the remaining execution time and second, we
have to check whether the correction does not disturb too
much the scheduling algorithm. Both points are detailed as
follows.

First point. We prefer to update the running times by
some simple rules instead of computing again a prediction
by the learning scheme, which gave a wrong value. Obvi-
ously, these updated running times remain bounded by the
requested running times. These values are given by a cor-
rection algorithm. We consider the three following ones:

• Requested Time – Set the new prediction value to
be p̂j (the user requested running time);

• Incremental – Use the corrective technique from [24],

i.e. increase at each correction by an fixed amount of
time (1min, 5min, 15min, 30min, 1h, 2h, 5h, 10h, 20h,
50h, 100h);

• Recursive Doubling – Increase the prediction value
by the double of the elapsed running time.

Second point. Do backfilling variants handle the up-
dated prediction? As the considered backfilling algorithms
are on-line in nature, they adapt dynamically to the changes.
However, notice that under-prediction with backfilling can
lead to starvation. For instance, a large job will indefinitely
wait for its required resources if under-predicted shorter jobs
are systematically backfilled before. They will be launched
before the large one, leading to an unbounded delay.

5.3 Objective Functions
As it is commonly admitted [4], the performances of schedul-

ing algorithms are measured using the bounded slowdown,
which is defined as follows for job j:

bsld = max
(waitj + pj

max(pj , τ)
, 1
)

where waitj is the waiting time of job j (from the time it is
released in the system and the time it starts its execution)
and τ is a constant preventing small jobs to reach too large
slowdown values. In the literature, τ is generally set to 10
seconds. We will use this value in the experiments.

One related objective function usually used for comparing
performances is the average of bsld, defined as:

AVEbsld =
1

n

∑
j

max
(waitj + pj

max(pj , τ)
, 1
)

In this paper, all scheduling performances are measured with
this objective function.

6. EXPERIMENTS

6.1 Experiment objectives
The simulations we conducted aim at answering the fol-

lowing two questions:

1. Do the proposed predictive and corrective techniques
improve existing scheduling algorithms?

2. Which prediction loss function, correction mechanism
and backfilling variant work well together?

Previous studies have mainly focused on predicting running
times, independently of the scheduling algorithms, using
standard measures for the prediction error. In contrast, we
aim here at predicting running times for scheduling jobs with
backfilling, through a combination of appropriate loss func-
tions, correction mechanisms and backfilling variants. The
solutions we develop are thus closer to the problem of im-
proving HPC systems. Moreover, identifying efficient com-
binations of prediction technique, correction mechanism and
backfilling variants should provide insights into the behav-
ior of backfilling algorithms when running times are unsure.
In the rest of the paper, we refer to such combinations as
heuristic triples.

Table 4: Workload logs used in the simulations.

Name Year # CPUs # Jobs Duration

KTH-SP2 1996 100 28k 11 Months

CTC-SP2 1996 338 77k 11 Months

SDSC-SP2 2000 128 59k 24 Months

SDSC-BLUE 2003 1,152 243k 32 Months

Curie 2012 80,640 312k 3 Months

Metacentrum 2013 3,356 495k 6 Months

Table 5: Considered parameter values of the loss
function. There are three effective parameters, for
a total of 20 combinations.

Parameter Possible Values

Lu z 7→ z2, z 7→ z

Lo z 7→ z2, z 7→ z

γj See Table 3 (5 values)

6.2 Description of the testbed
We make use in our study of a set of actual workload logs,

described in Table 4. All these workload logs but Metacen-
trum are extracted from the Parallel Workload Archive [5].
Metacentrum is extracted from the personal website of Dal-
ibor Klusáček4. They come from various HPC centers, cor-
respond to highly different environments and have been se-
lected for their high resource utilization, which challenges
scheduling algorithms [6]. For each log, we run scheduling
simulations using every possible heuristic triples: prediction
technique, correction mechanism and backfilling variant.

All simulations are run using a fork of the open-source5

batch scheduler simulator pyss. The source of this forked
version is available on-line6.

All prediction techniques based on the different loss func-
tions and weighting schemes introduced in Section 4 are con-
sidered here, in conjunction, for comparison purposes, with
the actual running time pj , denoted as Clairvoyant, the
user requested time p̃j , denoted as Requested Time and
the average of the two previous running times for the jobs of

user k, denoted asAV E
(k)
2 (p) . For correction, we rely on the

three correction techniques presented in Subsection 5.2: Re-
quested Time, Incremental and Recursive Doubling.
Lastly, we rely on the two backfilling algorithms presented
in Subsection 5.1 , namely EASY and EASY-SJBF.

Notice that the case where Requested Time is used as
prediction technique and EASY as the backfilling variant
corresponds to the standard EASY backfilling algorithm.
Similarly, the case where Incremental correction method

is used with the AV E
(k)
2 (p) prediction technique and the

EASY-SJBF backfilling variant correspond to the EASY++
algorithm introduced by Tsafrir et al. [24].

As it is reasonable to expect that scheduling performances
due to a loss function (and therefore, a learned model) are
dependent on both the backfilling variant and correction
mechanism, we evaluate all of them together. This induces
a higher complexity and a high number of simulations. For

4http://www.fi.muni.cz/∼xklusac/
5pyss - the Python Scheduler Simulator, available at
http://code.google.com/p/pyss/
6 http://github.com/freuk/predictsim

●

●

70

80

90

20 30 40
AVGBSLD for SDSC−BLUE

AV
G

B
S

LD
 fo

r
M

et
aC

en
tr

um

Scheduler

●

●

EASY

EASY−SJBF

Prediction Method

● Clairvoyant

Requested Time

Machine Learning

AVE2
(k)

Figure 3: Scatter plot of heuristic’s relative perfor-
mance between the MetaCentrum and SDSC-BLUE
logs.

each workload log, the experimental campaign runs 128 sim-
ulations. As it is impossible to present all of them in detail,
we invite the reader to look at our repository6.

The experiment campaign contains significantly more heuris-
tic triples than workload logs, and this raises a multiple hy-
pothesis testing problem. Therefore, one should approach
the analysis of the results using sound statistical practices.

Subsection 6.3 outlines the best heuristic triple. After-
wards, Subsection 6.4 contains an analysis of the predictions
made.

6.3 Which heuristic triple is prevalent?

6.3.1 Raw results
As shown in Table 6 which displays the AVEbsld scores

for the different approaches, the results seem promising as
they tend to favor approaches based on learning (the Clair-
voyant results are reported for comparison purposes only
and correspond to an upper bound of what one can ex-
pect). However, one should not conclude too hastily, as
even though the best approach is always obtained using a
predictive-corrective approach (corresponding to the columns
EASY with Learning Techniques in Table 6), it is not clear
which heuristic triple is prevalent a priori.

In particular we observe that the SJBF variant introduced
by [24] is rather efficient at leveraging accurate values of
the running times, as the Clairvoyant EASY-SJBF al-
gorithm almost always outperforms its competitors.

6.3.2 Correlation between logs
A key part of the analysis of predictive techniques is to

see how performances correlate between different systems.
Figure 3 shows the AVEbsld between the MetaCentrum

and SDSC-BLUE logs, meant to illustrate the irregularity
of performances between logs. We can observe that Clair-
voyant EASY-SJBF is the best in both logs, but there is
no clear correlation between all the heuristic triples.

The correlation coefficient is measured here with the Pear-

Table 6: Overview of the AVEbsld for each simulations. For predictive techniques, only the best and the
worst AVEbsld are given. The best non-clairvoyant heuristic triples are outlined in bold.

Clairvoyant EASY EASY with Learning Techniques

Trace FCFS SJBF EASY EASY++ FCFS SJBF

KTH-SP2 71.7 49.8 92.6 63.5 62.6 - 93.2 51.4 - 74.5

CTC-SP2 37.2 17.6 49.6 85.8 25.5 - 163.5 16.3 - 134.7

SDSC-SP2 70.5 56.8 87.9 79.4 70.9 - 102.3 69.7 - 194.8

SDSC-BLUE 30.6 13.2 36.5 21.0 16.5 - 48.0 12.6 - 47.8

Curie 69.9 12.1 202.1 193.5 26.3 - 9348.8 24.3 - 4010

Metacentrum 81.7 67.2 97.6 87.2 86.3 - 98.1 81.5 - 89.8

Table 7: AVEbsld performance of the heuristic
triples resulting from cross validation. Values in
parenthesis show the AVEbsld reduction obtained
respective to EASY.

Log C-V Heuristic triple EASY EASY++

KTH-SP2 51.4 (44%) 92.6 63.5 (31%)

CTC-SP2 20.5 (59%) 49.6 85.8 (-72%)

SDSC-SP2 75.0 (15%) 87.9 79.4 (10%)

SDSC-BLUE 34.7 (05%) 36.5 21.0 (42%)

Curie 27.9 (86%) 202.1 193.5 (04%)

Metacentrum 84.2 (14%) 97.6 87.2 (11%)

son’s Correlation coefficient, which is computed for each cou-
ple of logs. With a mean of 0.26 (min: 0.01, max: 0.80), this
coefficient is low. This means that it is not possible to know
from the result on one log if a heuristic triple will perform
well on another logs. However, one can still try and learn
an appropriate heuristic triple from existing systems, as de-
scribed below.

6.3.3 Triple selection
We consider here a leave-one-out cross validation process

in which 5 logs are (alternatively) used to select the best
triple, the performance of which is evaluated on the 6th
log. The idea is to assess whether one can select a good
heuristic triple from existing logs. The experiment is re-
peated six times (for the six logs) and the results are aver-
aged over the six repetitions. The best heuristic triple is the
one that optimizes the sum of the AVEbsld on the 5 logs.
Table 7 displays the obtained results. As one can note, the
results obtained with this selection process, denoted C-V
(for cross-validation) heuristic triple, significantly outper-
forms the EASY and EASY++ approaches on all workloads
except SDSC-BLUE.

Even more interestingly, it turns out that the best heuris-
tic triple on all logs using the selection method above is the
same7 and corresponds to the following setting:

Prediction Technique : Regression function described in
Section 4 with the loss function:

7with one exception: the C-V Heuristic selected for SDSC-
SP2 uses the Requested Time correction mechanism. This
could account for it’s degraded performance.

L(xj , f(xj), pj) =

{
log(rj .pj).(f(xj)− pj)2 if f(xj) ≥ pj
log(rj .pj).(pj − f(xj)) if f(xj) < pj

(3)

Correction mechanism : Incremental

backfilling variant : EASY-SJBF

6.3.4 Summary
We have shown here that one can learn an appropriate

heuristic triple from existing logs. This heuristic triple yields
better scheduling performances than EASY and EASY++.
Furthermore, on the workloads considered, a heuristic triple
singles out as it is the one always selected. This heuristic
triple obtains an average AVEbsld reduction of 28% com-
pared to EASY and 11% compared to EASY++, and can
reduce the AVEbsld by 86% compared to EASY (on the
Curie workload for example). This triple uses the Incre-
mental correction technique and the SJBF queue ordering
from [24], as well as a machine learning-based approach
with custom loss functions (3). We call this loss function
E-Loss (for EASY-Loss) and briefly discuss its behavior in
the next Subsection.

6.4 Prediction analysis
The first question one usually asks after having used a

predictive technique is, what is the prediction accuracy? Ex-
perimental results outline that while prediction performance
is important, choosing the right loss for the prediction is
even more critical. This is observed in Table 8 which shows
the prediction errors of both the AV E

(k)
2 (p) prediction tech-

nique and our E-Loss based approach.

Table 8: MAE and E-Loss for different prediction
techniques. All values are in seconds.

Prediction Technique MAE Mean E-Loss

AV E
(k)
2 (p) 5217 10.2×108

E-Loss Learning 6762 2.35×105

One can see from these values that while the AV E
(k)
2 (p)

performs well with respect to the Mean Average Error (MAE),
its performance on the E-Loss is quite poor.

Equation (3) shows that the E-Loss is an asymmetrical
loss function, with a linear branch for under-prediction and
a squared branch for over-prediction. Therefore this loss

0.00

0.25

0.50

0.75

1.00

6 12 18 24
Predicted Value (hours)

C
um

ul
at

iv
e

D
en

si
ty

Prediction Method

Actual value

E−Loss Regression

Requested Time

Squared Loss Regression

AVE2
(k)

Figure 5: Experimental cumulative distribution
functions of predicted values obtained using the
Curie log.

function discourages over-prediction. Additionally, the E-
Loss uses a weighting factor that increases with the size of
jobs in terms of p and q. A helpful visualization for under-
standing how the E-loss behaves in practice is the empirical
cumulative distribution function (ECDF) of the prediction
errors produced by the resulting machine learning model.
Figure 4 shows the ECDFs of such prediction errors for
main prediction techniques. From this figure, one can see
the behavior of the E-loss with respect to that of the stan-
dard squared loss. The E-loss ECDF is shifted to the left,
which means that more under-prediction errors are indeed
made than with standard regression. This is coherent with
intuition gleaned from the analysis form of the loss function.

Finally, Figure 5 shows the ECDF of the values that were
predicted. On this graph, we see that in order to generalize
well with respect to the E-Loss, the learning model ends up
being strongly biased towards small predictions. This dis-
placement suggests that there might be a beneficial effect to
backfilling jobs very aggressively when using EASY-SJBF.

6.5 Discussion
As mentioned above, the proposed approach outperforms

EASY++ with a 11% of reduction in average AVEbsld, and
has a reduction of 28% in average AVEbsld when compared
to EASY. This result is obtained by changing the predic-
tion technique of EASY++ to one that uses a custom loss
function that we refer to as E-loss. We have furthermore
observed that on each log, roughly 0.1% of jobs have ex-
tremely high values of bounded slowdowns. Such a behavior

is obtained with every heuristic triple based on AV E
(k)
2 (p)

or Machine Learning prediction techniques. Extreme val-
ues seem to be a shortcoming of incorporating predictions
without a mechanism for dealing with extreme prediction
failures. Moreover, because such failures are often due to
jobs that do not run properly, we are confronted here with
an evaluation problem, as the cost of such events could be in-
curred on the user rather than the system. New performance
evaluation measures are needed to deal with such problems,

especially for schedulers without no-starvation guarantees
(as other authors already suggested [6]).

7. CONCLUSION
The purpose of this work was to investigate whether the

use of learning techniques on the job running times is worth
for improving the scheduling algorithms. We proposed a
new cost function for prediction and run simulations based
on actual workload logs for the most popular variants of
backfilling. The results clearly show that this approach is
very useful, as they reduce the average bounded slowdown
by a factor of 28% compared to EASY. Moreover, the pro-
posed approach may be extended easily to other scheduling
policies.

There are two derived interesting questions that could be
studied in the future: First, to extend this study to other
learning features. For instance, using a more precise knowl-
edge of the jobs should lead to even better results. Reaching
this goal needs either to adapt the simulations or to test on
a real system. Second, we would like to go one step further
by learning directly on the priority of waiting jobs (using
Learning To Ranks algorithms) instead of learning on the
job features like what we did for the running times.

Acknowledgments.
The authors would like to warmly thank Yiannis Georgiou
for his unfailing support. They are also indebted to Krzysztof
Rzadca for helpful discussions and support. We thank grace-
fully the contributors of the Parallel Workloads Archive,
Victor Hazlewood (SDSC SP2), Travis Earheart and Nancy
Wilkins-Diehr (SDSC Blue), Lars Malinowsky (KTH SP2),
Dan Dwyer and Steve Hotovy (CTC SP2), Joseph Emeras
(CEA Curie), and of course Dror Feitelson. The Metacen-
trum workload log was graciously provided by the Czech
National Grid Infrastructure MetaCentrum.

The work is partially supported by the ANR project MOE-
BUS.

8. REFERENCES
[1] L. Bottou. Stochastic learning. In Advanced lectures

on machine learning. 2004.

[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[3] R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan,
and T. Fahringer. A hybrid intelligent method for
performance modeling and prediction of workflow
activities in grids. In Cluster Computing and the Grid,
2009.

[4] D. G. Feitelson. Metrics for parallel job scheduling and
their convergence. In Job Scheduling Strategies for
Parallel Processing. 2001.

[5] D. G. Feitelson, D. Tsafrir, and D. Krakov.
Experience with using the parallel workloads archive.
Journal of Parallel and Distributed Computing, 2014.

[6] E. Frachtenberg and D. G. Feitelson. Pitfalls in
parallel job scheduling evaluation. In Job Scheduling
Strategies for Parallel Processing, 2005.

[7] Y. Georgiou. Resource and Job Management in High
Performance Computing. PhD thesis, Joseph Fourier
University, 2010.

0.00

0.25

0.50

0.75

1.00

−6−12−18−24 0 6 12 18 24
Prediction Error(hours)

C
um

ul
at

iv
e

D
en

si
ty

Prediction Method

E−Loss Regression

Requested Time

Squared Loss Regression

AVE2
(k)

Figure 4: Experimental cumulative distribution functions of prediction errors obtained using the Curie log.

[8] R. Gibbons. A historical application profiler for use by
parallel schedulers. In Job Scheduling Strategies for
Parallel Processing. 1997.

[9] D. A. Lifka. The anl/ibm sp scheduling system. In Job
Scheduling Strategies for Parallel Processing, 1995.

[10] A. Matsunaga and J. Fortes. On the use of machine
learning to predict the time and resources consumed
by applications. In Cluster, Cloud and Grid
Computing, 2010.

[11] LSF (Load Sharing Facility) Features and
Documentation. http://www.platform.com/workload-
management/high-performance-computing.

[12] Moab Workload Manager Documentation.
http://www.adaptivecomputing.com/resources/docs/.

[13] C. Mendes and D. Reed. Integrated compilation and
scalability analysis for parallel systems. In Parallel
Architectures and Compilation Techniques, 1998.

[14] A. W. Mu’alem and D. G. Feitelson. Utilization,
predictability, workloads, and user runtime estimates
in scheduling the ibm sp2 with backfilling. Parallel
and Distributed Systems, 2001.

[15] A. Nissimov. Locality and its usage in parallel job
runtime distribution modeling using HMM. Master’s
thesis, The Hebrew University, 2006.

[16] A. Nissimov and D. G. Feitelson. Probabilistic
backfilling. In Job Scheduling Strategies for Parallel
Processing, 2008.

[17] B. Nitzberg, J. M. Schopf, and J. P. Jones. Pbs pro:
Grid computing and scheduling attributes. In Grid
resource management. 2004.

[18] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition.
Proceedings of the IEEE, 1989.

[19] S. Ross, P. Mineiro, and J. Langford. Normalized
online learning. Uncertainty in Artificial Intelligence,
2013.

[20] J. M. Schopf, F. Berman, J. M. Schopf, and
F. Berman. Using stochastic intervals to predict
application behavior on contended resources. In

International Symposium on Parallel Architectures,
Algorithms, and Networks, 1999.

[21] W. Smith, I. Foster, and V. Taylor. Predicting
application run times with historical information.
Journal of Parallel and Distributed Computing, 2004.

[22] G. Staples. Torque resource manager. In
Supercomputing, 2006.

[23] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling
user runtime estimates. In Job Scheduling Strategies
for Parallel Processing, 2005.

[24] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling
using system-generated predictions rather than user
runtime estimates. 2007.

[25] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm:
Simple linux utility for resource management. In Job
Scheduling Strategies for Parallel Processing, 2003.

