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We establish a formula for the probability of a quantum adiabatic transition between two permanently
degenerate energy levels which do not cross. This formula corresponds to the non-Abelian generaliza-
tion of the Landau-Dykhne formula that is valid for the nondegenerate case. It applies in particular in
cases of symmetry-induced degeneracy, a typical example being the Kramer degeneracy.

PACS number(s): 03.65.—w, 34.10.+x

I. INTRODUCTION

For almost ten years now, the geometrical phase, or
Berry phase, has been studied thoroughly from both the
theoretical and experimental points of view. Many of
these works can be found in the collection of reprints [1]
or are reviewed in [2] and [3]. The starting point of all
these developments was the famous paper [4]. (See also
[5] concerning the geometrical interpretation of the re-
sults.) This geometrical phase was derived for time-
dependent systems whose Hamiltonians vary slowly in
time, i.e., in the adiabatic limit. The adiabatic parameter
€ controlling this regime is defined as the inverse of the
typical time scale of the system and the adiabatic limit is
the limit e—~0. Soon after that Wilczek and Zee [6] gen-
eralized the case treated in [4] to what is sometimes
called the ‘“non-Abelian geometrical phase.” The non-
Abelian phase appears for systems displaying a per-
manent degeneracy, typically the Kramer degeneracy,
and the paradigm model is a spin-3 in a quadrupole elec-
tric field [3]. This direction of research was pursued by
several authors; see in particular [7-15].

Another important aspect of the adiabatic limit is the
quantum adiabatic transition (QAT), often called the
nonadiabatic transition, between two separate energy lev-
els. This phenomenon is important in atomic and molec-
ular physics—see, for example, [16—19]-—and also in nu-
clear physics [20], in solid-state physics [21], or in laser
physics [22,23]. Under an analyticity assumption on the
time dependence of the Hamiltonian of the system and
when the two energy levels display an avoided crossing,
the probability of a QAT is given by the Landau-Zener
formula [24-26]. See [27] and [28] for a mathematical
analysis of the validity of this well-known formula. In
more general situations this probability is usually com-
puted with the Landau-Dykhne formula [29]. Recently it
was realized simultaneously and independently by Berry
[30] and Joye, Kunz, and Pfister [31] that this formula
was not always valid and that a prefactor, of geometrical
nature, was missing. This amplitude can be written as
exp(2 Im@) where 0 is a complex phase which is the ana-
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lytic continuation of the geometrical phase in the com-
plex time plane. This amplitude is related to the parallel
transport of one eigenfunction along a loop around a par-
ticular complex level-crossing point. The probability of a
QAT is then given by this geometrical factor times a de-
creasing exponential in 1/e. The geometrical amplitude
of the probability of a QAT has been measured in a spin
experiment [32].

The main result of this paper is to show that in the
presence of a permanent degeneracy of the energy levels
it is possible to compute the asymptotic behavior of the
probability of a QAT when € tends to zero. Our work
generalizes the results of the papers [30] and [31] in the
same way as the paper [6] generalizes [4]. The ‘“non-
Abelian geometrical amplitude” in our formula corre-
sponds to the ‘“‘non-Abelian geometrical factor” in [6]
and is in fact obtained by an analytic continuation of it.
The non-Abelian geometrical amplitude reflects proper-
ties of the parallel transport of a set of eigenvectors in the
complex time plane around a complex crossing point of
the two eigenvalues under consideration. We concentrate
our exposition on the theoretical aspects for the simplest
case. We expect that the effects predicted by the formula
could be put into evidence experimentally (see [15]) in the
same way as the geometrical amplitude of [30] and [31]
has been measured by Zwanziger, Rucker, and Chingas
[32], although such an experiment could be more delicate
to perform. We think that mathematical rigor, whenever
it is possible, is not the least important quality of a
theoretical work. We therefore discuss carefully some
mathematical aspects of the problem. Our analysis is
presented in Secs. II and III. We first choose a basis-
independent approach, in which the nature of the non-
Abelian geometrical amplitude is quite evident. In order
to treat concrete examples we come back to a basis-
dependent formulation of the results, which is the con-
tent of Theorem 3.2. In Sec. IV we study the paradigm
model of a spin 2 in a quadrupole electric field. We show
in particular that we already have nontrivial geometrical
effects in the case of real quadrupole Hamiltonians be-
cause these Hamiltonians depend on three real parame-
ters.

2598 ©1993 The American Physical Society
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Several aspects of the QAT have been recently investi-
gated in a series of papers [33-37]. Many of these devel-
opments can be extended to the present situation.

II. THE GENERAL SITUATION

Let H(t) be an analytic time-dependent Hamiltonian
with two distinct energy levels e . (¢) and e _(¢) such that
the degeneracy of the energy levels is independent of ¢
and the degeneracy of e (¢) is the same as the degenera-
cy of e_(t). Let # be the Hilbert space. We may as-

sume, without restricting the generality, that
[H()]*=p(1)1, 2.1

with 1 the identity operator and p(t) a strictly positive
analytic function. The two energy levels are

e, =+Vp(r), Vi=1, 2.2)
and the corresponding spectral projections are
1 H(t)
P (t)=—= [1+ . 2.3
* (2) 2 €4 () ( )

We study scattering solutions of the Schrdodinger equa-
tion
. d _
lEZlﬁE(t)—‘H(t)lpﬁ(I) , (2.4)
where 1/¢ is the typical time scale of the system. These

solutions are normalized, ||1.(¢)]|=1, and are specified by
a boundary condition at t = — o0,

lim [{xy—|¢.(e))|=1, (2.5)
t——
where y_ is a unit vector in P_(— o )H
=lim, , P _(t)#. We want to find the asymptotic ex-
pression in € of the transition probability

P(X_, X 1+3E)= t lilfw [x o (e ?, (2.6)
where Y, is a wunit vector of P, (+ o )H=
lim, P, (t)#. The analysis of this probability is
based on the existence of eigenvalue crossings at complex
times. We state in the following condition assumptions
which are valid throughout the paper.

Condition 1. The Hamiltonian has an analytic con-
tinuation H(z) in a domain Q of the complex plane,
symmetrical with respect to the real axis. The set X of
zeros of p in Q) has 2m points, m =1, and all zeros are
simple. There exists g > 0 such that

infp(t)=>g . (2.7)
(ER
There exist «a>0 and orthogonal projections
Pi(+°0),Pi(—°°)SUCh that
lim sup, |[Pi(t+is)—P, ()| |t|'T*=0.
t=>Eo4iseq)
(2.8)

Remark. The zeros of p occur in pairs z and Z. The set

2599

X is therefore equal to {zj,27:j=1, ...,m}. By conven-
tion Imz; >0. Generically one pair of zeros is relevant
for the dominant contribution to the asymptotic behavior
of the transition probability. Which pair is actually
relevant is discussed later on after the statement of Con-
dition 2 in Sec. III. The other assumptions in Condition
1 are related to the noncrossing of the eigenvalues for real
time and to the existence of limiting projections in order
that the scattering problem be well posed.
Let U,(z,t’) be the evolution operator satisfying

isgt-UE(t,t’)zH(t)Us(t,t'),
Then ¢ (t)=U_(¢t,t')¢(t"). The adiabatic theorem says
that there exists another.evolution V(¢,t'), the “adiabat-
ic evolution,” defined as the solution of the equation (see,

e.g., [38))

Ut'ht)=1. (2.9

d N ld
lEdtVE(t’t) H(t)+ie dt[PM(t)]P,(t)
+L 1P ()]P, (1)
dt + +
(2.10)
XV(t,t'),
V(t',t')=1,
which is an approximate solution of (2.9):
sup, ||U(z,t")—V(t,t")||=O0(e) . (2.1D

(ty=t=1,)

In our case, because of assumption (2.8), the correction
term O(e) is independent of the time interval [f,7,].
Furthermore, we can write the adiabatic evolution as

V.(t,t")=exp —if'e+(s)ds Wi(t,t')P, (t')
£ t'
i t
- — > ! P~ ! s
+exp Eft,e (s)ds]W(t tP_(t")
(2.12)
where W(t,t’) is solution of the equation
. d .| d
o W(t,t')=i dt[P_(t)]Pﬁ(t)
d ,
dt
_.ld ,
=] ———P_(t),P‘(t)}W(t,t)
dt
=K()W(t,t'), Wi',t')=1. (2.13)

Both evolutions V,(z,t’) and W(t,t') have the same in-
tertwining property [39,40], which reads for W(z,t’)

W(t,t"\ P (t')=P, (t)W(t,t') . (2.14)
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The adiabatic evolution is characterized by the intertwin-
ing property (2.14) and by (2.11). On the other hand, the
evolution W(z,t') depends only on the spectral projec-
tions. It specifies how eigenfunctions of H(t') are trans-
ported into eigenfunctions of H(¢) during the adiabatic
evolution, when we have factored out the dynamical
phases. W(t,t’) has a purely geometrical interpretation
in terms of parallel transport [4,5]. The characteristic
property of this parallel transport is the following one.
Let ¢(¢') be an eigenfunction of H(t') for the eigenvalue
ey (t'). The transported function ¢(z)=W(t,t')¢(t') is
an eigenfunction of H(t) for the eigenvalue e, (¢) such
that

d -
Pi(t)dttﬁ(t)—o. (2.15)
This property is a consequence of
o2 iomiem=0, 2.16)

which is true for any projection Q(z).

By Condition 1 the Hamiltonian is analytic in the
domain (, and therefore the evolution U, has a single-
valued analytic continuation in this domain, which is
given by the solution of the equation

.. d N ,
ZSE;US(Z,Z )=H(z)U./z,z’),

By contrast the generator K of the evolution W has a
meromorphic continuation in the domain ), with poles
at the points of X, since

U.Jz,z')=1. (2.17)

K(t)=i ip_(z),P,m]
dt
—_ i (d
rrey dtH(t),H(t)]. (2.18)
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Consequently W has an analytic continuation in the
punctured domain O\ X, which is multivalued and which
satisfies the equation

i—d; W(z,z')=K(z)W(z,z'), W(z',z")=1. (2.19)

d
A similar assertion is true for V.
Let us fix a reference time ¢#'=0. It is natural to ex-
press the evolution U,(¢,0) as a product

U (1,0)=V,(£,0)4,(t) . (2.20)

From (2.9) and (2.10) we derive a differential equation for
A (1),

i:ld—t A (t)=—V (0,)K(t)V (1,004 (1),

A4, 0)=1. (21

A (t) is a unitary operator. Since ||K(z)||
=||V.(0,)K(2)V(2,0)] is integrable on R, the operators
lim,  ;,A.(t)=A,(X ) exist, and we define the opera-
tor A.(t,— )by

A(t,—0)=A,(1)A(—o). (2.22)

This operator is the solution of the integral equation

A(t,—o)=1+i [ V,(0,5)K(s)

XV, (5,004, (s,—o0)ds . (2.23)

The next lemma gives an expression of the transition
probability P(x _,X ;&) in terms of this operator.

Lemma 2.1. Let X_EP_(—o)H and
X+ EP (+ )H. The transition probability
P(x _,X +;€) is given by

Px _X+38)={x 4| W(+ ©,0)P (0) A (+ o0,— 0 )P_(0)W(0,— 0 )x_>|%.

Remark. If we want to compute the transition P(y _,x_;€) from Y _ €P_(— o )# to a vector ¥_ E P_(+ « ), we

have a similar expression

Py _,X—;6)=|{X_|W(+ 0,0)P_(0)4,(+ 00, — 00 )P_(0)W(0,— o0 )x_)|?.

(2.24)

This transition probability is of order 1 as e—0, as is well known [41,39].

Proof. By hypothesis 1.(t) satisfies the boundary condition lim, ,_|{y_[¢.(t))|=1.

Y (2)=U_(2,0)4.(0),
1= lim lx_1U.(£,0)1,(0))]

:tli‘P [{(x_|P_(— )V (t,0)4.(2).(0))]

= lim [{xY_|P_(—o)P_(t)exp

t—— o0

i t
. foeﬁ(s)ds

+{x_|P_(— )P (t)exp

={x_|P_(— o )W(—0,0)4,(— 0 )(0))]
= x_IW(—,0)4.(— ), (0))] .

Using (2.14) and

W(t,0) A (t (0))

__éfoteJr(s)ds}W(I,O)As(t)dze(O)) ‘

(2.25)



48 NON-ABELIAN GEOMETRIC EFFECT IN QUANTUM ...

2601

Thus the normalized vector ¢* =W (— ,0) 4 .(— )i, (0)EP_(— o )# differs from y _ by the phase factor {y_|¢*)

only:
p*={x-le*)x- .
Similarly, using (2.26),
PlYx5e)= lim (X, |U(5,009(0)

(2.26)

=|{x4 P (+0)W(+ 0,004 (+ ) (0))]?
=[x P (+ )W (+ 0,004 ,(+o0)Ad (—o0)W(0,— o )p*)|?

=|{x+|W(+,0)P(0)A4.(+ow,—w)P_(0)W(0,—w)x_)|*.

By this lemma we only need to deter-
mine the operators P (0)A4 (4 o,—x)P_(0) or
P_(0)A4.(+ o,—o)P_(0). We therefore introduce the
operators C® (¢) and C (¢) which are defined as

CE (1)=P_(0)A4.(t,— x)P_(0) (2.28)
and

C% (1)=P,(0)A4.(t,— 0 )P_(0) (2.29)
Let

R(t)=W(0,0)K(1)W(t,0) (2.30)
and note that
P_(0)R(¢)P_(0)=0, P_(0)R(¢)P,(0)=0 . 2.31)

From the integral equation (2.23) and (2.31) we have the
following equations for the operators C& (7 ):

Ce()=P_(0)+i [' exp éA(u) R(u)C% (u)du

ci=i ' exp|=Law) |RwCE (widu

where A(u)=fg[e_(s)—e+(s)]ds. It is also clear that
the operators C% (¢) have multivalued analytic continua-
tions in the punctured domain Q\X. The analytic con-
tinuations of C% along a path y are solutions of the
above integral equations (2.32) along the path y, where
now A() and K() denote the analytic continuations of
these quantities along the path y.

III. TRANSITION PROBABILITY

A basic idea, which is due to Landau [24] (see also
[25]), is to use the multivaluedness of the eigenvalues and
spectral projections in order to get two different expres-
sions of the wave function 3,. One writes the single-
valued function 1, in terms of the eigenvalues and eigen-
projections. By considering analytic continuations of ¥,
along two nonhomotopic paths in the punctured domain
one obtains two different expressions for ¢,. Let us im-

(2.27)

plement this idea in our case. Let z; €X, and let ¥ and ¥
be two paths from O to z as in Fig. 1, so that the closed
simple path 7y ! (first # and then y ~!) encircles only
the crossing point z;. Let 7 be some path homotopic to
7?7 ~1in the punctured domain. The value of the analytic
continuation of the eigenvalues e, (0) along the path 7
when we come back to 0 is denoted by e (0|7). Since the
point z; is a simple zero of the function p, we have

and
fAei(s)dSZIei(s)ds-i-fe;(s)ds ,
7 n Y

where in all integrals the integrand is given by its analytic
continuation along the integration path. Similarly we
have (2.3)

P.(0[n)=P+(0).

(3.2)

(3.3)

We can rewrite this result in terms of the operator W. As
above, let W(0|7) be the operator which we get after ana-
lytic continuation of W(,0) along the path 7. Since the
intertwining property (2.14) is conserved by analytic con-
tinuation, we have

W(0|n)P.L(0)=P_(0ln)W(ln)=P+(0)W(|n) . (3.4

The operator W(0|n) gives the relation between the two

determinations of the analytic continuation of W along y

and 7,
W(z|P)=W(z|y)W(l|y) . (3.5)

The evolution U, has a single-valued analytic continua-
tion. Thus we can write

o IR
FIG. 1. The paths y, 7, and 7.
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U.(2,0)=V_(z|ly) A (z|ly)
=V (z|P)A.(z|P)
=exp —-f e (s)ds |W(z|P)P,(0)A (z|9)+exp —~fe s)ds |W(z|#)P_(0)A4.(z]P)
=exp —éfne+(s)ds exp —éfye,(S)ds W(z|y)P_(0)W(0|n) A (z|P)
+exp —~fe s)ds |exp —-f e, (s)ds |W(z|ly)P,(0)W(O|n) A (z|P)
z]y)[exp ——f e, (s)ds |P_(0)+exp ——fe s)ds |P,(0) {W(0|np)A.(z]P) . (3.6)
Therefore
AE(ZI}/):[Cxp —é.fne+(5)ds P_(0)+exp ———é—fne_(S)ds P+(0)]W<o|n)AE(z|yA) 3.7)
From that identity we immediately obtain
C% (z]y)=exp —;fe (s)ds | W(0|m)C= (z]9) (3.8)
and
Ce (z|y)=exp ——f e, (s)ds |W(0|n)C% (z]9) . (3.9)

Let us suppose that we have a path ¥ in the punctured domain which goes from — o« to + o, passing over the point
z; and no other point of X. Then we can use the above identities in order to express the transition probability

P(x_,X +;€). Indeed, by Lemma 2.1
P(x_,X1;€

=exp

2
. Imf"e_(s)ds

How do we select the eigenvalue crossing point z;? This
is indeed an important question, since in the above ex-
pression for the probability the exponential factor clearly
depends on the choice of z;. How do we control the
operator C® (4 |7), which is given by the integral
equations (2.32) integrated along the path 7? The
difficulty here is that A(u) is a complex quantity along
the path 7, and we want to take the limit e—0. This
point was solved in an important paper by Hwang and
Pechukas [42]. They realized that one can control Egs.
(2.32) only along paths satisfying condition (d) below. It
turns out that the two problems are closely related, as
was pointed out in [31]. We can solve them if the follow-
ing condition holds.

Condition 2. There exists a smooth path 7 in the punc-
tured domain Q\ X and a point z; €EX with the following
properties. Let ¥ be parametrized by t ER.

(@) lim,_ 1, Rej(¢t)=% o0 and lim,  ;  ImP(z)=s,.

(b) 7(¢) goes above the point z; EX, Im 7(¢) Z0.

(c) 7(t) goes below all points ofX\ {z;}.

(d) ImA(y( t)) is a nondecreasing function of ¢.

[{x £ |W(+ 0,0)W(0|5)CE (+ »)|P)

)= {x4+|W(+ ©,0)C% (+ 0 )W(0,— 0 )y _)|?

W(0,—w)x_>]*. (3.10)

We call a path with property (d) a dissipative path. The
real axis is a dissipative path, but in a very special way
since InA=0. Condition 2 is analyzed in the whole sec-
tion 2.4 of [31], under the assumption that
lim, 4 H(t)=H(Xxo) exist. In particular a geometri-
cal interpretation of it is given. Under this extra assump-
tion it is shown that points (a), (b), and (d) already imply
point (c) of Condition 2 (see Theorem 2.1 in [31]). More-
over the relevant point z; is the closest point of X to the
real axis with respect to a metric naturally associated
with the problem, which is different from the Euclidean
metric. Examples illustrating this aspect are given in
[31].

Lemma 3.1. If Condition 1 holds, then

C® (+o)=P_(0)+0(e) .

If furthermore Condition 2 holds, then

i
Efne_(z)dz

XW(O[n)[P_(0)+0(e)] .

C& (+ o0 )=exp
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The path 7 is as above (see Fig. 1).

Proof. The first statement follows by integrating (2.32)
along the real axis, which is a dissipative path, and the
second statement follows by considering the same in-
tegral equations along the dissipative path 7. Using the
method exposed in [31] for the nondegenerate case we
can show exactly in the same manner that

sup[[CE [£(1)]—C™ (= )| =O(e) . (3.11)
te

The bound (3.11) corresponds to (2.57) of [31]. Therefore

CE (+w|7)=P_(0)+O0(¢) . (3.12)

O
|

PXx0)= lim (Y |9 () ]*=exp

Similarly, if Y_ € P_ (+ o )#, then
Px_,xe)= lim [(X_|¢(e))]?

=|{(Y_|W(+ ©,0)W(0,—w)xy_)*+0(e) .

The path 7 is as above (see Fig. 1).

Comments.

(i) The relevant complex eigenvalue-crossing point z; is
in the upper half-plane because we consider a QAT from
the lowest energy level e _ to the highest energy level e . .
In the converse situation the relevant complex

eigenvalue-crossing point is z;, and we must use instead
of the path 7 the complex conjugate of the path 7.

(i1) Because of (2.8) we can define W (t, — ), which
gives the parallel transport of vectors of P (— o0 )# into
vectors of P, (t)#. Thus in P(y_,Y_;e) the vector
W(+ 0,0)W(0,— w0 )y_=W(+ow,—ow)y_ is the vec-
tor in P_(+ o )#, which is obtained by transport-
ing the vector y_ along the real axis. Similarly the
vector W(+ o0,0)W(0|p)W(0,— o )y_ appearing in
P(X_,X+;€) is obtained by transporting the vector y_
along the real axis up to =0, then along the path 7,
and finally along the real axis from =0 to -+ .
However, since we follow the path 7, which goes
around the eigenvalue crossing z;, the vector
W (4 o0,0)W(0|)W(0,—w)y_E€P,(+ o )#. Because
of the uniformity of the condition (2.8) this vector is the
same as the vector obtained by transporting the vector
x_ along the path 7.

(iii) Under the assumption that lim,_ H(¢)
=H(+ ), the results of Theorem 3.1 can be illustrated
in the following way. Ignoring the divergence of the real
part of the integral in the next formula, we can write
symbolically the adiabatic approximation at zE€Q\X as
[see (2.12)]

Yoa(z)=V(z,—o0)y_
— ___L z ’ ’ _
exp . f e_(z')dz' |W(z,—o0)x_,

— 0

(3.13)

2
. Imfne,(z)dz
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Let us summarize these results in the next theorem.

Theorem 3.1. Let H(t) be a Hamiltonian such that
Conditions 1 and 2 hold. Let Y _€P_(— o )# and
X+ EP(+ ). If ¥ (t) is a normalized solution of the
Schrodinger equation

od
zedtwg(t) H(t)y (1)

subjected to the boundary condition

tngl [{x_lw.e)Y]=1,

then

(x| W(+ 0, 00W(0|n)W(0,—w)y_)|*+0(e)} .

where in (3.13) the integral is taken along a path from
— oo to z, and W(z,— o) is the solution of Eq. (2.13)
along the same path. (This solution is well defined.) Of
course expression (3.13) depends on the choice of the
path. If the chosen path is the real axis, then 1,4 is an
approximate solution of the Schrodinger equation up to
order O(¢), and to the leading order

P(X‘,;?,;E)ztnrf X gl 12 (3.14)
On the other hand, if we choose the path ¥, then the
function v,4 is not an approximate solution of the solu-
tion of the Schrodinger equation up to order O(g) along
that path. It is very misleading to say that there is an
adiabatic theorem in the complex plane along the path 7,
and that this theorem ‘‘says the same thing as its real axis
counterpart” [42]. However, it is true that to the leading
order

PX_,X13E)= l lim [{x [P . (3.15)
Note that in (3.14) and (3.15) the real part of the dynami-
cal phase does not play any role, and in this sense the
right-hand sides of these formulas are well defined.

(iv) The matrix generalizing the complex phase factor
exp(—i0), which gives rise to the geometrical amplitude
in the Landau-Dykhne formula, is

PL(O)W, (0)P_(0)=M" . (3.16)
Indeed
(X1 W (4 0,0)W (Ol W (O, — )y _)
={(X1|P,(+ o)W (+c0,0)W(O|n)W(O,— )
XP_(—e0)y_)
=(x | W(+ 0,00M W(0,—0)y_) . (3.17)

The operators W (+ «,0) and W(0,— o) are unitary
since they transport vectors along the real axis. Thus we
have to the leading order
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su P(X_,X+;€)
_ep_ (o= XXF

x4 €PL(+ o)X I=1]
(3.18)

=||M " ||?exp %Imfne,(z)dz

(v) If there exist limiting Hamiltonians such that
H(— o )=H(+ «), then the operator

P (—0)W(+w,—0)P_(—») (3.19)
appearing in
PX_X_3€)
=|(X-|P_(—®)W(+o,—0)P_(—o)y_)|
+O0(¢e)

is precisely the non-Abelian phase factor treated by
Wilczek and Zee [6].

To end this section, we briefly indicate a basis-
dependent way of computing the parallel transport W( )
and the probability of a QAT. We suppose that the di-
mension of the Hilbert space # is 2n so that each energy
level is n-fold degenerate. Let <pji(0), ji=12,...,n,
form an orthonormal basis of P, (0)#f. We set

@7 (t)=W(t,0)p;(0) . (3.20)
By construction [see (2.14)]

H(Dgi(H)=e (t)p;(1), j=1,2,...,n (3.21)
and

(@F()|gE(t))=6,, VIER. (3.22)

These basis vectors are characterized by the property [see

2.15)]
PL(D[@f())=0, Vj=12,...,n (3.23)

where we set '=d /dt. Consider now qaji(OIn), the analyt-
ic continuation of ¢;-:(0) along the loop 7. By (3.4) we
can write

PEOIM=WOlneF0)= 3 mEef(0).  (3.24)
k=1

This defines two n X n matrices M T whose elements are

(M*)=mjz, j,k€({L,2,...,n} (3.25)
such that the operator W(0|7) in the basis

{@1(0),@;5 (0), ...,@, (0),@](0),@5(0),...,9, (0)}

(3.26)
is given by the block matrix [see (3.16)]
M+

W(0|n)= M- o (3.27)
Note that the matrices M T satisfy the relation

det(M " )detM " =(—1)" (3.28)
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as a direct consequence of the Liouville formula

detW(1,0)=exp | [ "tr[ P (u),P_(u)]du {detW(0,0)

1 (3.29)

since tr[P”_(u),P_(u)]=0. Let dji be the coefficients of
X+ E P (£ 00)F in the basis vectors @ (£ o ):

dji=<¢jt(ioo)(xi>, j:1,2,...,n . (3030)

We can now express P(x_,X+;€) in a basis-dependent
way.
Theorem 3.2. Under the hypotheses of Theorem 3.1

P(X —, X +;E)=exp %Imf e_(z)dz
n

" 2
X > dfmyd; | +0(e)
k=1
=exp glmf e_(z)dz
€ ]

X {ld*|M~d")2+0(e)} ,

where (d* ) =dji and ( | ) is the scalar product in C".

To compute the eigenvectors W(t,O)q);L(O):(pji(t) we
can proceed as follows if we know an orthonormal basis
of instantaneous analytic eigenvectors of H(t), lﬁji(t ),

i=L2,...,m

HWH ) =e (Y1), j=1,2,...,n. (331
The eigenvectors (p;“r( t) can be written as
pi()=3 r5ni) (3.32)

k=1

with coefficients rk%(t) to be determined. We choose
@ (0)=1v(0). The vectors @i(t) being determined by
the characteristic property (3.23), we can write

0= (Yir(t)lg;' (1))

=3 1 (08 () ()Y (2)), Vjk
=1

(3.33)

which yields the system of equations

r,}j'(r)=z_l—<¢f<t)]¢%’(t)>r$<t), r(0)=58; ,

(3.34)
or, in terms of the matrices
[RE())=rg) (3.35)
and
(S =—EOlyF (1)), (3.36)
we have the equations
R*()=S*(t)R*(1), R*(0)=1 (3.37)

to be solved in C", where
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ST(r)y*=—8*(t) t€ER . (3.38)

We have thus reduced the initial 2n X2n Schrodinger
equation (2.4) to the nXn Schrodinger-like equation
(3.37).

Note that we can always choose the phases of the vec-
tors ¢ji(t) in such a way that S*(¢) is off diagonal. The
matrices S (¢) admit a multivalued analytic continuation
whenever the vectors tpf(t) admit an analytic continua-
tion, and the same is true for the solution of (3.37). Thus
we can use the expansion (3.32) to compute W(O|y).
Indeed, we can write the vectors ¥ (¢) under the form
¢}:(t)= Vi(t)tk}:(O), t €R, where V~(¢) are unitary n Xn
matrices defined by their elements vkij( t) in the basis
()1,

v ()=C(YFO)gf (1)) . (3.39)

These elements admit analytic continuations since the
vectors 1/;;4 do. Hence, for t €ER,

WEDIF () =GOV UV ()9F(0))

admits an analytic extension. We remark, finally, that if
the Hamiltonian is real, we can choose a real basis of in-
stantaneous eigenvectors ¢f(t) so that the generators
ST(¢) are antisymmetric matrices on the real axis.

(3.40)

IV. QUADRUPOLE HAMILTONIAN

We study in this last section a natural family of Hamil-
tonians displaying a permanent degeneracy. Let
Q=1{q;};;=1,2,3 be a real symmetric 3X3 traceless ma-
trix and {J;};—;, 3 be the components of a spin j. The
quadrupole Hamiltonian

3
H= 3 gq;JJ; 4.1)
ij=1

acting in the Hilbert space #=C%*! is the paradigm
Hamiltonian for time-reversal systems, for which, in the
case of half-integer values of j, the Kramer degeneracy
occurs [3]. Let us briefly recall this notion.

Let 7=exp(—imJ,)C be the antiunitary time-reversal
operator, where C denotes complex conjugation. The
operator T is antiunitary:

(plry)y=(ylr'p) (4.2)
with

r'=CexplinJ,)=7"". 4.3)

Using the standard representation of J where J; and J,
are real and J, is pure imaginary, we find that C com-
mutes with exp(—i#wJ,) and since exp( —imJ,) represents
a rotation of angle 7 about the y axis, we obtain

J=—=Jr . (4.4)
Hence we immediately get
[H,7]=0 4.5)

and

P?=exp(—i2wJ,)= T jENN (4.6)
-1, jE;.

Let j€N/2 and v be such that

Hy=ey . 4.7)
Then

Hry=ety (4.8)
and

(Ylrg) = —(Pylrg) =—(Ylry) , 4.9)
ie.,

(glry)=0. (4.10)

Thus any eigenvalue is at least twofold degenerate.

From now on we fix j =%, so that the dimension of the
Hilbert space considered is 4. As a consequence of this
choice and of the Kramer degeneracy, either H is a multi-
ple of the identity or it has two distinct and twofold-
degenerate eigenvalues. To see that the second alterna-
tive takes place, we must verify that trH=0. To derive
this equality, we can make use of the tensorial properties
of H which imply that trH is proportional to trQ =0 [14].
However, this identity will be clear from the explicit ma-
trix representation of H in the standard basis
{1j,m >} _j<m<;, which we now give.

Using the relations

J3’j,m>:m|j,m> )
Plj,m)=ji+Dljm),
Jolj,m)=Vij+1D)—m(m=*1)|j,m+1),

(4.11)

where J,=J,%iJ, we easily obtain the matrices
representing the operators (J;J;+J;J;), Vi,j=1,2,3 in
the standard basis ordered as follows:

(13,3013 =0 15,13,301 .

There are only five free coefficients in the matrix Q which
we choose to be

(4.12)

V73
BozT(‘In_‘hz) ’
B,=—V3q;,
B,=—V73q,; , (4.13)

B;=—3(qy;+92),

B4=\/§q12 .

We also define five corresponding operators, which take
the block matrix forms in our basis:
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Ji—=J3 |01
L= o)
AT LR R S A LA
Ll‘—"_—"/—?{_—_ 0 —o, |’
Ny, |92 0
L==—"7=""=10 -0,/ (4.14)
0'3 0
Ly=1[275-Ui+ID]= |, —oy |
W+, |0 =il
477 3 it o0 |

where o, j=1,2,3, are the Pauli matrices.
Proposition 4.1. (i),

2 -
L;=1, vj=0,1,...,4
L;,L,+L,L;=0, Vji#k€{0,1,...,4};

(i),
3 4
ij=1 ji=0
trH=0,
4
H?= 3 B?=31tr(Q?) .
ji=0

The proof of that proposition causes no difficulty and will
be omitted.

If we suppose that the matrix Q(¢) is chosen in such a
way that the quadrupole Hamiltonian

3 4
i,j=1 j=0

satisfies Condition 1, then we have in particular that

4
S Bi(t)Zg>0, ViER.
j=0

(4.16)

The complex eigenvalue crossings are generically square-
root branching points of the eigenvalues

(4.17)

In order to compute the operator W(z,0) we need a set of
analytic eigenvectors ¢ji(t ), j=1,2, of our Hamiltonian

B(t)o By(t)—iB,(t)
HO=p (1)+iByt) —Blto |°
(4.18)
B (1)
B(t)= [B,(t)
B,(t)

Let us adopt a block form for the vectors in C* and write
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Lo

X= |y ect, (4.19)

where ®,WEC? Defining { | ), as the scalar product in
C?, we have for any XvX2€ ct

(X1x2) =@, D), + (¥, |¥,), .

Consider the 2 X2 matrix (Bo). Its eigenvalues are given
by

(4.20)

+1v/B?+B2+B2 =4y (4.21)
and if (B? + B3)#0 and u+0, the vectors
B;+(—1Yu
&= p,+ip, | I=L2 (4.22)
satisfy
(Bo)g;=(—1Yug;, j=1,2. (4.23)

By means of these eigenvectors we can construct eigen-
vectors of H as follows.

Lemma 4.1. Under the conditions (A+pu)(A—p)
=B2+B270, (B?+B3)#0, and u+0 the orthonormal
vectors

. (BO—1B4)§j
VI |- g,
2V M AT (— 1) u][p+(—1)B,]
satisfy

Hyf=+MpF, j=1,2.

Proof. Using the block form (4.18) of H, the property
(4.23), and (&[5, ),=8,2u[p+(—1)*B;], the lemma is
proven by explicit computation. O
With this choice of eigenvectors, we can compute explic-
itly the coefficients of the generator S* in Eq. (3.37) for
the Hamiltonian (4.15). After some straightforward alge-
braic manipulations we obtain the following.

Proposition 4.2. Let zp;-—r(t) be the eigenvectors of H(t)
given in Lemma (4.1). Then, dropping the arguments,

<¢il¢ir>=(—l)k B(2)+B42t i
iV 2u*h | B +B?2
1/2
i | BotBL T b g pe ik
122 22175
2uX | B}+B3
B,B,—B,B, B,B,)—B,B/
<¢ji|’[/}ji_’>=l 420 0~ 4 122 281

2AMAF(—1Yu]  2ulp+(—1)B;]

These expressions are valid as long as the conditions of
Lemma 4.1 are satisfied. By integration of Eq. (3.37) with
the generator S¥(z) obtained from Proposition 4.2, we
obtain the eigenvectors (p;:(t) (3.20) given by (3.32) and
we can eventually compute the transition probability
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P(x_,X+;€) of Theorems 3.1 or 3.2 for any quadrupole
Hamiltonian (4.15). In the general case, of course, the in-
tegration cannot be done analytically, but the analytic ex-
pressions derived above can be used to perform a numeri-
cal integration in any case.

However, there exists a family of quadrupole Hamil-
tonians for which the integration can be done analytically
and for which the transition probability 7P(x_,x;€)
displays nontrivial properties. It is given by the three-
parameter family of real quadrupole Hamiltonians
characterized by

q2(1)=q4,(t)=0, i.e., B,(t)=B,(t)=0. (4.24)

Lemma 4.2. Let H(t),t €ER be a real quadrupole Ham-
iltonian satisfying Condition 1. Then the solutions R *(¢)
of (3.37) are given by

—sin6(t)
cosO(t)

cosO(t)

EPR
REO= ging(r)

where

(s)[B;(s)Bi(s)—B(s)B}(s)]

B
ou)=[! > ds .

2v/Bi(s)+B3(s)+B3(s)[B3i(s)+B3(s)]

Proof. By imposing the conditions, B,(t)=B,(t)=0
we obtain from Proposition 4.2

0 —1
SE)=(|y3 ) 2)

with

(Pl "))
_ By(t)[B5(t)B (t)—B,(t)B5(t)]
VB4 B O+ BIO[BA)+BA]

(4.26)
Hence
0 —1
Ri(t)“—‘exple(t)[1 0 }
_|cos6(r) —sinB(1)
sinf(z) cosB(t) (4.27)
O

Note that the analytic continuation of R¥(¢) along a
path from O to z is obtained directly from Lemma 4.2
provided the path does not pass through X and
{z|B}(z)+B3=0}.

Let us consider now the analytic continuation of the
vectors 1/}}»:(t) along a loop 7 based at the origin and
encircling the eigenvalue crossing z;. Let us denote
by f(0|n) again the result of the analytic continua-
tion of f(0) along_n, for any analytic function f(z).
Consider u(z)=1V/B%(z)+B3(z). At z;, the function
B3(z)+B?%(z)+B3(z) has a simple zero. If By(z;)=0,
then B3(z)+B2%(z) has a simple zero at z;,, and if

j
By(z;)#0, then B}(z;)+B3(z;)#0. Now, we choose 7 in
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such a way that it encircles z; but no other zero of u(z).
Then,

+u(0) if Bolz;)70
wOIM=1_ (0 if By(z;)=0

(4.28)
and by Condition 1
B;(0|ln)=B;(0), j=0,...,4
4.29)
A0[n)=—A(0) .
Thus
£;(0) if By(z;)70
GOM=1¢ (0) if By(z)=0 (4.30)
and consequently
Y. (0) if By(z;)#0
POl =t X | ! 4.31)
g 77 W (0) if By(z;)=0 :

where a);-*r equals +1 or —1, depending on the total phase
acquired along 7 by the function under the square root in
Lemma 4.1.

We have the following relations between the
coefficients a)j-i:
—of if By(z;)70
=
“i T |+oif if Bolz;)=0. @32
Indeed, consider the expression
APAF (— 1A F (—1)ku]
X[p+(—1VB;)[u+(—1kBy].  (4.33)
For j#k, it is equal to (remember that B, =B, =0)
AMur(A2—p)u?—B3)=A*u’B3B? . (4.34)

This expression acquires a total phase along 7 which is
equal to

mdmr, m€Z if By(z;)=0

(4.35)

+27+mdw, mE€Z if By(z;)70 .
As the phase of the analytic continuation of the square
root of (4.33) along 7 gives, by definition, the product
w}ia),“f, we obtain the relations (4.32). We recall the
definition (3.32), which implies

@(0]m)=cos[6(0]|7) ] (0]n)+sin[6 (0|7) 5 (0ln) , 1)
@E(0]m)=—sin[6(0]7) 1¥E(0]) +cos[ 6(0] ) J¥E(0l ),

and our choice @f(0)=¢;—‘r(0). With (4.32), we obtain the
following.

Proposition 4.3. Let H(t) be a real quadrupole Hamil-
tonian satisfying Condition 1. Then the matrices M™*
defined by (3.24) are given by

cos[6(0|n)] —sin[6(0]7)]

D1 | _sin[0(0]n)] —cos[6(0]n)] | I Bo(z)70
M*=
sin[6(0]7)]  cos[6(0|n)] | _
@1 |cos[6(0]n)] —sin[6(0[7)] if By(z;)=0
where
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By(z)(B;(z)B(z)—B,(z)B}(z))
6(0m)= [ I P dz, wf=1or —1.
12V B3(z)+B3}(z)+B2(z)[B3(z)+B%(z)]
[
Remarks. iltonians [see (A.17) in [32]].

(i) The quantity 8(0|7) has, in general, a nonvanishing
imaginary part, so that sin6(0|n) and cos8(0|7n) are not
bounded by 1.

(ii) As noted previously, the matrix M~ generalizes the
geometric amplitude appearing when the energy levels
are nondegenerate. In these situations, however, for real
Hamiltonians, the geometrical amplitude has an absolute
value of one (see [31]). This result is to be compared with
the present situation, where, although our quadrupole
Hamiltonian is real, ImO(0|n)70, so that M % are not
unitary matrices. This qualitative difference of behavior
comes from the fact that in the nondegenerate case, a real
Hamiltonian is a two-parameter Hamiltonian, whereas in
our case a real quadrupole Hamiltonian is a three-
parameter Hamiltonian.

(iii) Finally, the formula expressing 6(0|n) as a func-
tion of B, Bj, and B has the same form as the formula
yielding the complex phase factor in the general nonde-
generate case which is a three-parameter family of Ham-

Lemma 4.1 together with Propositions 4.2 and 4.3 and
Theorem 3.1 or 3.2 allow us to compute explicitly the
transition probability P(x_,x.;e) from any vector
X_EP_(—)C* to any vector ¥, EP, (+ «)C* when
the Hamiltonian H(t) is a real quadrupole Hamiltonian
corresponding to a spin j=3. The leading term of the
asymptotic expression of P(Y_,x ;&) ranges from O to
exp[(Z/E)Imfne_ z)dz]||M ~||?, depending on the vec-
tors Y — and ¥ ;. The norm ||M ~||#1, in general, so that
this simple example displays all the characteristic
features of P(x _,Xx +;€).
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