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Waves and instabilities in rotating free surface flows

J. Mougel1,a, D. Fabre1 and L. Lacaze1,2

1 Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, Allée Camille Soula, 31400 Toulouse, France
2 CNRS, IMFT, 31400 Toulouse, France

Abstract – The stability properties of the rotating free surface flow in a cylindrical container is studied
using a global stability approach, considering successively three models. For the case of solid body rotation
(Newton’s bucket), all eigenmodes are found to be stable, and are classified into three families: gravity
waves, singular inertial modes, and Rossby waves. For the case of a potential flow, an instability is found.
The mechanism is explained as a resonance between gravity waves and centrifugal waves, and is thought
to be at the origin of the “rotating polygon instability” observed in experiments where the flow is driven
by rotation of the bottom plate (see L. Tophøj, J. Mougel, T. Bohr, D. Fabre, The Rotating Polygon
Instability of a Swirling Free Surface Flow, Phys. Rev. Lett. 110 (2013) 194502). Finally, in the case of the
Rankine vortex which in fact consists in the combination of the two first cases, we report a new instability
mechanism involving Rossby and gravity waves.
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1 Introduction

Rotating flows with a free surface are of major impor-
tance in a large range of fields ranging from geophysics to
many industrial applications. These flows are known to
support rich dynamics and spectacular examples are pro-
vided by a very simple experiment consisting of a cylin-
drical container partly filled with a liquid, in which the
fluid motion is driven by a rapidly rotating bottom while
the side wall is maintained fixed (see Fig. 1a). For high
enough rotation rates, a symmetry breaking is observed,
leading to the formation of polygonal patterns rotating at
a constant angular velocity on the free surface. This phe-
nomenon, first observed in [2], has been revisited in [3–6]
and the experimental patterns observed by [5] are repro-
duced here on Figure 1b.

The objective of this paper is to give a brief sum-
mary of a research effort, conducted along the past two
years, aiming at explaining those polygonal patterns as re-
sulting from a linear instability of the axisymmetric flow
predating them. For this purpose, we developed a global
stability approach which allows to study the linear dy-
namics of various models of free surface swirling flows.
After presenting the general method, we will review the
results obtained with three successive models. First, in
the case of a solid-body rotation, we observe only stable
modes. However, the linear dynamics of this flows turn
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out to be rather interesting, as it involves singular modes
displaying analogy with some kinds of inertial waves ex-
isting in rotating stars and spherical shells [7], and Rossby
waves similar to those existing in a closed container with a
non-flat bottom. Secondly, in the case of a potential rota-
tion, we report the existence of an instability mechanism
existing for all azimuthal wavenumbers m ≥ 2. The mech-
anism is explained as a resonance between gravity waves
and centrifugal waves, and was recently proposed to be at
the origin of the aforementionned polygonal patterns [1].
Finally, we will show preliminary results obtained using
an improved model combining an inner region in solid-
body rotation and an outer region in potential rotation
(Rankine model).

2 General equations

Using cylindrical coordinates (r,θ,z), we consider a
general azimuthal base flow of the form U0 = Uθ(r)eθ .
The flow occupies a domain defined by 0 < r < R and
0 < z < h(r), where R is the radius of the cylindrical tank,
and h(r) is the altitude of the free surface. Neglecting the
effect of surface tension, the shape of the free surface is
related to the flow through the equation h′ = gc/g where
h′ is the derivative of h with respect to r, g is the gravity
and gc = U2

θ /r is the centrifugal acceleration (this condi-
tion means that the free surface is perpendicular to the
total acceleration −gez + gcer).



(a () b)

Fig. 1. (a) Experimental configuration: rotating bottom plate (black); fixed outer wall (white); fluid, typically water (grey).
(b) Experimental visualisations from [5] displaying typical polygonal shapes.

To investigate the stability of such flows we add
small amplitude perturbations, under modal form, i.e.
ǫ[u, v, w, p, η] exp i(mθ − ωt), with m the azimuthal wave
number and ω the complex frequency. The eigenmode
structure has velocity and pressure [u, v, w, p] components
defined in the bulk (as function of r and z) while the
component η corresponding to the vertical free surface
displacement is defined on the boundary of the domain
(function of r only). For sake of simplicity we absorb the
constant density in the pressure component. Restricting
to the inviscid case1, the linearized equations governing
the dynamics of the perturbations are obtained from the
Euler and continuity equations :
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On the bottom and side walls we apply non-penetration
boundary conditions. At the free surface, we obtain lin-
earized dynamic and kinematic boundary conditions of
the form :

p− gη = 0; −i

(

ω −m
Uθ

r

)

η = w − h′u. (2)

In the following we impose an analytical form for Uθ and
perform a global stability analysis of this particular flow.
In the finite element framework equations (1) and (2)
can be written under the form of a generalized eigenvalue
problem AX = ωBX with ω the eigenvalue, X the corre-
sponding eigenmode and A and B complex matrices con-
structed with the finite element software FreeFem++ [9].
We note ω = ωr + iωi, where ωr will refer to the oscil-
lation frequency and ωi to the growth rate. In particular
ωi > 0 will denote instability.

1 The linearized equations in the general case, retaining vis-
cosity and surface tension, are given in [8].

3 Solid body rotation (Newton’s Bucket)

The first case under investigation corresponds to a
solid rotation of the whole liquid, corresponding to an
azimuthal velocity profile of the form Uθ = rΩ. This flow
can be parametrized by a Froude number F = Ω

√

R/g

and a gravitational Reynolds number C−1 = R3/2
√
g/ν.

It is a classical exercise to show that the free surface
is parabolic. Assuming that the volume of liquid is con-
served and equal to πR2H , where H is the liquid height at
rest, one can further show that the bottom remains “wet”
for F < 2

√

H/R and gets “dry” above this threshold (see
Fig. 2a).

In the inviscid case one can reduce equations for the
perturbation in the bulk (1) to a single equation for pres-
sure which is known as Poincaré’s equation:
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A well-known feature of this equation is that the nature
of the possible solutions change drastically depending on
the relative frequency (with respect to the rotating frame)
ω − mΩ (see [10] for instance). Three cases have to be
considered.

First, if |ω −mΩ| > 2Ω, the equation is elliptic, and
regular eigenmode solutions are expected to exist. Numer-
ical results from the global stability analysis show that
this is effectively the case, and Figure 2b shows that the
solutions organize into two sets of branches. Figure 3a
displays the typical structure of the corresponding eigen-
modes : the structure is regular and the maximum pres-
sure levels are located along the free surface. These modes
are thus recognized as gravity waves, and in the limit of
vanishing rotation (F ≈ 0) their frequencies match with
those of the pure sloshing modes in a cylindrical container
with flat surface [11].

Secondly, if |ω−mΩ| is smaller than 2Ω (but not too
small compared to Ω), the Poincaré equation becomes hy-
perbolic. In such cases, regular eigenmode solutions are
not expected to be met (except in the limit of small rota-
tion where the surface becomes flat, and a separation of
variables is possible). Instead, computations in the strictly
inviscid case reveal the existence of a dense set of eigen-
functions corresponding to singular inertial modes. The
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Fig. 2. Solid body rotation (with H/R = 0.5) : (a) shape of the free surface for F =[1,
√

2, 1.5]. (b) Oscillation rates of the
normal modes as function of F , m = 2 (inviscid case). The black lines correspond to the regular gravity waves; the grey area
indicates the range of existence of the singular inertial modes, and the dashed line corresponds to ω = mΩ, in the vicinity of
which the Rossby waves are found.

(a () b () c)

Fig. 3. Solid-body rotation (H/R = 0.5): structure in the meridional plane of some eigenmodes (pressure component
Re[p(r/R, z/R)/p(1, h(1))]) obtained for F = 0.8, H/R = 0.5, m = 2. (a) Regular gravity wave (inviscid case). (b) Singu-
lar inertial mode with ray pattern. (c) Rossby wave. (plots (b) and (c) are viscous results with C−1 = 10−7; here viscosity is
introduced into the bulk equations only for sake of regularization).

range of existence of these singular eigenmodes is indi-
cated by the shaded area in Figure 2b. The singularity
can be regularized by introducing a small amount of vis-
cosity. Figure 3b displays the structure of a viscous mode
obtained in this way (see [8] for details about the nu-
merical implementation of the viscous case). Such modes
are found to exhibit a striking ray-like structure, similar
to the patterns observed in other configurations such as
spherical shells [7], or rotating stars.

The third interesting case is met if the relative fre-
quency |ω −mΩ| is close to zero, i.e. when the perturba-
tions are almost stationnary with respect to the rotating
frame. In this case, the Poincaré equation (3) becomes de-
generate, and the Euler equations (1) reduce, at leading
order, to the geostrophic equilibrium. In such a quasi-
geostropic context, variations of the height of liquid is
known to allow for the possibility of a type of slow waves
called Rossby waves. Such solutions are well-known in the

case where the variation of height is due to a non-flat
bottom (see [10], p. 85 for instance). In the present case,
variation of height is also present because of the parabolic
shape of the free surface, and the numerical results effec-
tively demonstrates the existence of such Rossby waves.
An example of such a wave is displayed in Figure 3c. As
can be seen, the structure of the mode (as displayed by
the pressure component) is nearly independent of the ver-
tical direction, which is a characteristic of flow motion in
the quasi-geostrophic limit.

Note that as the rotation is increased, Figure 2b in-
dicates that some of the branches of gravity waves enter
the “hyperbolic” interval. Complex interactions between
the three kinds of modes are expected in this case. An-
other interesting feature is the discontinuity met along
the branches of gravity waves at the wet/dry transition

for F = 2
√

H/R. These features are the object of current
investigations.
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Fig. 4. Potential rotation (with H/R = 0.94): (a) shape of the free surface for ξ/R = [0.1, 0.3, 0.5]. (b) Oscillation rates ωr

for m = 2. (c) Growth rate ωi for m = 2 (black), m = 3 (dark grey) and m = 4 (light grey).

4 Potential rotation

Although the solid-body rotation model considered
above seems the most natural model for the flow in a
cylinder with a rotating bottom, theoretical arguments
as well as experimental observations using PIV (see [3])
actually indicate that the potential rotation is a more
appropriate model, especially in the cases with high ro-
tation rate. We thus consider, as our second model, a
potential model defined as Uθ(r) = Γ/(2πr) where Γ is
the circulation. In this case the free surface is concave,
with expression h(r) = Γ 2/(8π2g)

(

1/ξ2 − 1/r2
)

, valid for
r > ξ, where ξ is the radius of the central ‘dry’ region (see
Fig. 4a). The parameters Γ and ξ are related through the
conservation of the volume of liquid, assuming again a
total volume πR2H where H is the liquid height at rest.
Here we find more convenient to parametrize the results
in terms of ξ/R and H/R.

In the global stability analysis, if we restrict to the
inviscid case, we can take advantage of the potential na-
ture of the base flow and assume the perturbation to be
potential as well, leading to great simplifications in the
analysis. Such a global analysis was carried out in [1],
were it was shown that the potential flow is generically
unstable to perturbations with wavenumbers m > 1.

In [1], we mostly focussed on the case (H/R = 0.276),
which was documented in the experiments of [5]. In the
present paper, we consider more particularly the case
(H/R = 0.94), which corresponds to the experimental
studies by [6]. In that experiment, only elliptical patterns
(m = 2) have been observed. Figure 4c displays the am-
plification rates predicted by the global analysis in that
case as function of ξ/R. It is found that instabilities with
wavenumber m = 2 are by far the most amplified ones in
this case, suggesting that the potential instability mech-
anism could also be at the origin of the observed pat-
terns. Note that in the experiment, the elliptical patterns

were found to alternate temporally with axisymmetric
states, a phenomenon called “surface switching”. This
phenomenon is certainly non linear and thus cannot be
predicted by our approach.

Figure 4b displays the real part of the frequency (for
the same conditions as in Fig. 4c), restricting to the case
m = 2. This figure illustrates the fact that instabilities
arise in ranges of ξ corresponding to the crossing between
two families of branches. In reference [1], we argued that
these two families of branches actually correspond to two
different kinds of surface waves: the branches going up-
wards are gravity waves, since the restoring force respon-
sible for them is the gravity acting on the external part
of the free surface where it is nearly horizontal, while the
branches going downwards are centrifugal waves since in
their case the restoring force is the centrifugal effect act-
ing on the inner part of the free surface where it is nearly
vertical.

For particular values of ξ we see that two waves of
each type can resonate. It has been shown that this res-
onant behavior leads either to an instability creating two
complex conjugate modes during the merging, or to a sta-
ble no-merging process where both waves exchange iden-
tities. The selection of the crossing process is related to
the energy of both waves as defined in [12] and an in-
stability can be found only if one wave has negative en-
ergy and the other positive energy (here a wave having
negative energy means that the wave+base flow system
has less energy than the base flow). In reference [1] it is
found using Cairns terminology (see [12]) and a simple
2D model that the energy of the gravity and centrifu-
gal waves respectively read Eg ∼ (ω − mUθ(R)/R) and
Ec ∼ (ω −mUθ(ξ)/ξ). These expressions mean that the
centrifugal waves should be slower than the base flow and
the gravity waves faster for the instability to occur (i.e.
existence of a critical radius rc ∈ [ξ, R] where the global
mode and the base flow have the same angular velocity).
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Fig. 5. Rankine model (with H/R = a/R = 0.5): (a) shape of the free surface for F = [0.5, 1, 1.5] (the vertical line separates
the vortex core from the outer potential zone). (b) Oscillation frequencies ωr of some of the wave solutions encountered in the
global stability analysis for C−1 = 10−4 and m = 2 (full lines: gravity waves; dotted line: Rossby wave; dashed line: regular
Kelvin-Kirchhoff wave; grey area: range of existence of singular inertial waves). (c) Growth rate of the encountered unstable
mode.

From Figure 4c, it can be noted that instability “bub-
bles” get much narrower when m increases and in fact
the maximum growth rate decreases rapidly. This fact is
confirmed by an ongoing asymptotic study, conducted in
the shallow water limit, which indicates a trend with the
form ωimax =

√
me−Cm with C > 0. Thus the fact that

no polygons with more than 6 corners are observed ex-
perimentally [2,5] could simply mean that the theoretical
instability obtained in the potential case is too weak to
be observed in the real setup for these values of m.

5 Rankine vortex

A drawback of the potential model considered in
the previous section is that the free surface necessarily
touches the bottom at some location r = ξ (see Fig. 4a),
so it certainly cannot account for the “wet” states ob-
served experimentally at low or moderate values of the ro-
tation rate. Indeed, in such cases, the experimental results
of [3] indicate that in the central region of the container,
the motion is actually close to a solid-body rotation. This
leads one to introduce an improved model combining an
inner core in solid body rotation and an outer potential
zone (Rankine vortex). The velocity of this base flow then
reads

Uθ = Ωr for 0 < r 6 x, Uθ =
Γ

2πr
for x < r < R, (4)

with a the radius of the vortex core, and Γ = 2πΩa2

(assuming continuity at r = x). In the following we de-

fine the control parameter as F = Ω
√

R/g, and we fix
H/R = 0.5 and x/R = 0.5, a choice which is supported
by recent results [13] suggesting that the radius of the
inner core does not depend much upon the Froude num-
ber. Figure 5a displays the shape of the corresponding
free surface. The boundary of the vortical core at r = x is
associated with a change of curvature of the free surface,

from concave to convex. With the chosen parameters, the
wet/dry transition occurs at F ≈ 1.77.

Global stability results of this flow for m = 2 are dis-
played in Figures 5b and 5c. Figure 5b depicts the os-
cillation frequencies of the modes as function of F . The
results show some similarity with those obtained in the
case of solid-body rotation (not surprisingly, since the
Poincaré equation also holds in the inner zone in solid
body rotation). As previously, we observe the existence
of regular gravity waves (plain lines), a dense set of sin-
gular modes (grey area), and some Rossby-like waves in
the range ω ≈ mΩ (dotted line). The model also leads
to the existence of a new kind of wave with a differ-
ent nature, whose frequency follows approximatively the
trend ω ≈ (m − 1)Ω (dashed line in Fig. 5b). Inspection
of the structure of this wave shows that it corresponds
to an oscillation of the boundary of the solid-body ro-
tation core; allowing to identify it with the classical two-
dimensional oscillation mode of a vortex patch, also called
the Kelvin-Kirchhoff (KK) wave (see [14]). In the sample
case displayed in Figure 5c, we observe a double crossing
between a gravity wave and a Rossby wave in the approx-
imate range F ≈ [1.4, 1.7]. This interaction is unstable,
and yields modes with positive amplification rates in this
range (Fig. 5c). Note that the stability of a Rankine vor-
tex with free surface was also studied in a related work [13]
using a simplified approach, which restricts the flow to a
narrow gap along the bottom and lateral walls. This ap-
proach allowed to study in detail the interaction between
gravity and KK waves, which was shown to generally
give rise to an instability. This resonance was proposed
to be at the origin of the sloshing phenomenon observed
in some experiments [6]. The global stability results pre-
sented here suggest a second mechanism involving grav-
ity and Rossby waves. The gravity-KK wave interaction
is not revealed by global stability in the sample case pre-
sented in Figure 5 because the corresponding branches do
not cross, but it certainly exists in other ranges of parame-
ters. Additional efforts are needed to delimitate the range



of existence of gravity/KK and gravity/Rossby interac-
tions. Experimental results should also be reexamined to
identify the footprint of the waves present in the setup
and responsible for pattern formation.

6 Summary and perspectives

To conclude, this paper synthesized global stability
results obtained for three models of rotating flows with
a free surface, which are highly relevant for experiments
with a rotating bottom. The first model, namely solid
body rotation, is always stable but turns out to be
academically interesting as inertial, gravity and Rossby
waves can be found in this case. The second model consist-
ing of a potential rotation admits two families of waves,
namely gravity and centrifugal waves, whose interaction
was proposed to be at the origin of the symmetry break-
ing appearing experimentally [1]. However, this mecha-
nism is only suited for strong rotation rates. The third
considered model, which is more relevant for smaller ro-
tation rates, includes an inner core in solid body rotation
and an outer potential region. It combines the physical
mechanisms of the two first cases, and hence admits five
kind of waves in the general case (which also includes the
“dry” states) namely gravity, centrifugal, Rossby, Kelvin-
Kirchhoff and singular inertial. The interplay between all
these families of waves, and their relevance to the exper-
imentally observed patterns, will be the object of future
investigations.
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