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The Schriidinger equation in the adiabatic limit when the Hamiltonian depends 
analytically on time and possesses for any fixed time two nondegenerate eigen- 
values e,(t) and e,(f) bounded away from the rest of the spectrum is considered 
herein. An approximation of the evolution called superadiabatic evolution is 
constructed and studied. Then a solution of the equation which is 
asymptotically an eigenfunction of energy e,(t) when t-, - co is considered. 
Using superadiabatic evolution, an explicit formula for the transition 
probability to the eigenstate of energy ez(t) when t+ + CO, provided the two 
eigenvalues are sufficiently isolated in the spectrum, is derived. The end result is 
a decreasing exponential in the adiabaticity parameter times a geometrical 
prefactor. 

1. INTRODUCTION 

During the last years several theoretical and experimental works have been devoted to 
different aspects of the adiabatic regime of quantum dynamics. We consider here two aspects 
of this physically important regime: the construction of approximate evolutions of the Schrii- 
dinger equation called “superadiabatic evolutions” and the explicit computation of the prob- 
ability of a transition between two nondegenerate energy levels, isolated in the spectrum of the 
Hamiltonian. From the mathematical point of view the adiabatic limit for time-dependent 
systems is of the same kind as the semiclassical limit for stationary systems. It is a singular limit 
which cannot be tackled by usual perturbation methods. Recently a mathematical theory of the 
two considered aspects has been developed when the time-dependent Hamiltonian is analytic in 
time. The transition probability for two-level systems has been studied in Refs. l-3 and was 
shown to be exponentially small in the adiabaticity parameter for general systems in Ref. 4. On 
the other hand, the existence of superadiabatic evolutions has been shown in Ref. 5. However, 
no general formula for the transition probability between isolated levels in the adiabatic limit 
can be found in the literature. It is the goal of this paper to establish such a formula for general 
(unbounded) Hamiltonians. 

The paper is divided into two parts. We first construct a superadiabatic evolution which 
approximates the true evolution of the Schrijdinger equation up to exponentially small correc- 
tion terms with respect to the parameter controlling the adiabatic regime. Once the superadi- 
abatic evolution is defined, we show that the computation of the transition probability of the 
initial problem reduces to an effective two-dimensional problem, which we analyze as in Ref. 1. 

The concept of superadiabatic evolution can be traced back up to a paper of Garrido,6 who 
considered evolutions different from the usual adiabatic evolution which he used to obtain 
higher-order corrections to the adiabatic theorem of quantum mechanics. But it is Berry7V8 who 
emphasized the importance of such evolutions in the present problem and introduced the 
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concept of superadiabatic evolutions. Independently of Berry’s work, Nencit? introduced sim- 
ilar ideas, in a more general setting and controlled the correction terms, showing in this way the 
existence of these evolutions. We construct our superadiabatic evolution iteratively, as in Refs. 
6-8, but using the simple iteration scheme of Ref. 2. The iterative schemes of Refs. 6-8 or 5 are 
equivalent to ours which is however more suitable for the kind of estimates we are doing. In 
particular, the dependence of our estimates with respect to the spectrum of the Hamiltonian is 
better than in Ref. 5. This improvement is important for the second part of the paper, in which 
we compute the transition probability between two nondegenerate energy levels by means of 
our superadiabatic evolution. The computation is done for the following scattering experiment: 
the system is prepared at time t= - CO in an eigenstate of one of the energy levels and the 
transition is measured at time t= 00. The transition probability is known to be exponentially 
small in this context,4 but here our result is an explicit formula for this transition probability, 
which has the same structure as our formula for two-level systems in Ref. 1: it is the product 
of an exponentially small term in E, which is expressed through the analytic continuation of the 
energy levels into the complex-time plane, with a factor independent of E, which has a geo- 
metrical origin similar to the Berry phase.9”t’0 The exponential decay rate is the same as for 
two-level systems but in the actual computation of the geometrical prefactor we must now take 
into account the global “rotation” in the Hilbert space of the spectral subspace spanned by the 
two eigenvectors associated with e,(t) and e,(t). 

II. SUPERADlABATlC EVOLUTION 

Let &” be a separable complex Hilbert space, and H(t), ER, a family of self-adjoint 
operators, bounded from below, defined on a common dense domain DC%. The time- 
dependent Schrodinger equation in the adiabatic regime can be written as 

ie itqdt) =H(t)cp,(t), pJs) =p*eD. (2.1) 

Here t is a resealed time and E a small positive parameter, which controls the adiabatic regime. 
The adiabatic limit corresponds to the singular limit e-0. We study this equation under the 
following two hypotheses: 

(I) Analyticity: There is an open neighborhood a={t+is: 1 SI < r} of the real axis, such 
that for each z&, H(z) is a closed operator defined on D, and for each LED the function 
H(z)cp is analytic in z&. 

(II) Separation of the spectrum: For each PER the spectrum o(t) of H(t) is divided into 
two parts u1 (I) and a*(t), ol (t) being bounded, so that the sets in R2 

~‘==C(t,;l):n~uj(t),t~lfg}, i=1,2 (2.2) 

are disjoint. The distance between ol (t) and oz( t) is larger than some positive constant g. 
The spectral projector associated with the spectral subset o1 (t) is denoted by Q(t). The 

solution q(t) of the Schriidinger equation can be expressed as 

q(t) = w4sbp*, (2.3) 

where U( t,s) is a two-parameter family of unitary operators, strongly continuous in t and s and 
which leave the domain D invariant. For all t,, t2, t3 

Wt,,t,) U(f,J,) = Ww,L WWl)  =I (2.4) 

and U is strongly differentiable in t and s on the domain D, 
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and 

a 
ie 7g U(t,s) =H(t) U(&s) 

a 
ic z U(t,s) = - U(t,s)H(s). 

(2.5) 

(2.6) 

We call U the evolution associated with the Eq. (2.1) (see, e.g., Ref. 11, Chap. 2). 
Let P(t), be a smooth family of projectors, which decompose the Hilbert space 

A?=P(t)Xe(II--P(t))&4 (2.7) 

We say that an evolution V is compatible with the decomposition of the Hilbert space if for all 
t and s 

P(t)v(t,s)=v(t,s)P(s). (2.8) 

Under the assumption II the adiabatic evolution is compatible with the decomposition of the 
Hilbert space given by the spectral projectors Q(t) and I- Q(t). It is defined as the solution of 
the equation 

k& V(t,s)=(H(t)+k[Q’(t),Q(t>])V(t,s), V(s,s> =I[, (2.9) 

where ’ denotes the derivative with respect to t. It approximates the true evolution U up to 
correction terms of order O(E): for all t and s there exists a constant M  such that 

IIU(t,s) - V(t,s)ll<M lt-SIE. (2.10) 

Since the adiabatic evolution is compatible with the decomposition of the Hilbert space given 
by the spectral projections Q(t) and H-Q(t), a transition from one of these spectral subspaces 
into the other one is of order O(s). The main purpose of this section is to construct another 
smooth decomposition of X into 

&“=Q,(tWN--Q&M’ 

and another evolution V*( t,s) compatible with this decomposition, 

Q,(t) V,(v) = V,WQ,(d 

(2.11) 

(2.12) 

and such that for all t and s there exist a constant M  < CO and a constant r > 0 with the property 

IIU(t,s)-V,(t,s)lI<MIt-slexp(-C%). (2.13) 

Such an evolution is called a superadiabatic evolution. The projector Q,(t) is a spectral pro- 
jector of a Hamiltonian H,(t) which we define by iteration in the next section, starting with 
H(t). The evolution V* is the solution of 

ie& V,(t,s) =WJt) +i4Qi(t),Q,(t) I)V,(t,s), V*(s,s) =I[. (2.14) 

Note that both V* and the projector Q, are E dependent. 
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A. Iteration scheme 

We study here the iteration scheme, which gives the operator H*(t) . The construction is 
local, and we consider it in an open fixed disc D(z,q) ={z’& 1 ]z’--21 < 7) CR. We make the 
hypothesis 

(III) There exists a simple closed path I’ in the complex plane, counterclockwise oriented, 
such that for all z’@ (z,q) the spectrum a(~‘) of H(z’) can be divided into two disjoint parts 
ol(z’) and oz(z’), with ol(z’) in the interior of I’. 

If R(z,A) =(H(z) -A)-‘, then we can write for all z’&(z,q) the spectral projector Q(z’) 
associated with ol(z’) as 

Q(f) = -& jir R(z’,A)~A. (2.15) 

We now motivate the iteration scheme of Ref. 2. Let us consider the true evolution U( t,s). The 
projector Q(S) evolves to the projector Q,(t) = U( t,s>Q(s) U(s,t) at time t, and Q,(t) is solu- 
tion of the Heisenberg equation 

kQ:(f) = [WO,Q,(t>l. (2.16) 

Since Q,( t)Q:( t) Q,( t) ~0, the derivative of Q,(t) can be written 

iQ~(t)=titQ:(f),Q,(~)l,Q,(~)l (2.17) 

and therefore we rewrite the Heisenberg equation as 

[I--d[Q:(t),Q,(t)I,Q,(t)l=o. (2.18) 

The idea is to find iteratively an approximate solution of the above equation. This can be done 
even for complex z&. The leading order in Eq. (2.18) will vanish if we replace QJ z) by the 
approximation Qc(z) =Q(z>, since we obviously have [H(z),Q(z)] =O. Thus we write formally 

Q,(z) =Qo(z> +ERI(z,E), (2.19) 

where R, (z,E) is a remainder. We are hopeful that it will be of order 1 in E. Inserting this 
expression for QJz) in Eq. (2.18), we obtain 

[H(Z) -k[Q~(z),Q&)l+0(~),Q,(~) 1 =O, (2.20) 

where ’ denotes d/dz. Now the leading term of this equation is equal to zero if we choose as 
a second approximation 

Q,(z) =Q,(z,E) +zR2(z,e), (2.21) 

where Q,(z,e> is a spectral projector of the operator 

H,(z,E) d?(z) -k[Q&),Q&>l. (2.22) 

This definition makes sense since according to perturbation theory, assuming E to be small, the 
spectrum of H, (z,E) is still separated in two disjoint pieces, one of which is bounded. We define 
Qi (z,E) as the projector corresponding to the bounded part of the spectrum of Hi(z,e) which 
tends to Qo(z> as e-0. Again we are confident that R2(z,e) is of order 1 in E. Now we repeat 
the same procedure and we are led to the equation 
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. 

[H(z)-k[Q;(z,e),Ql(z,e)] +O(d,Q,(z)l =O. 
Similarly, the leading order will be set to zero by the choice 

Q,(z) =Q+e) +~IWd, 

(2.23) 

(2.24) 

where Qz(z,e) is a well-defined spectral projector of 

Hz(z,e) =H(z) -ie[Q;(z,~),Q,(z,~)l, (2.25) 

when E is small and Rf(z,e) is a remainder. We can repeat the whole process as many times as 
we wish, which provides us with a hierarchy of Hamiltonians whose spectral projectors should 
solve the Heisenberg equation to an increasing accuracy. We define then an iterative scheme 
starting with H,(z) EH(z) by the equations 

with 

Hqkd =H(z) -eKq-dW, (2.26) 

Kq-,(z,~)=i[Q~-,(z,~),Q,-~(z,~)l, (2.27) 

Q,-, (z,E) being the spectral projector associated with the bounded part of the spectrum of 
Hq- 1 (z,E). As we shall see, this iterative scheme is generally not convergent, as those of Refs. 
6-8. We now show how to use effectively this iterative method. In the sequel we drop the E 
dependence in the notation for quantities like Hp Qp etc. 

Proposition 2.1: Let hypothesis III be true. Let a, 6, and c be constants such that for all 
integers p, all z’ED(z,v) 

ti) llR8’(Z’,~)lI = II 
-$ RO(z’,A) / I<&’ ( 1 ;;)I, Ad?, 

(ii) IlK$“(z’)Il<b&’ P! 
(1+/J)“’ &I--. 

If E is small enough, E<E* with E* given by Eq. (2.32), then there exists a constant d, given 
by Eq. (2.50), such that 

IIK’%f) -Ktp_),(z’)ll<bPdV’+~ 
(p+q)! 

Q (l+P)2 

for all z’~D(z,q), all integers p and q such that 

p+(I< GE I 1 zN*. 
Here [x] is the integer part of x and e is the basis of the neperian logarithm. Moreover for all 
z’~D(z,rl) and p+q<N* 

II@ ) (z’) II<2bcP 
P! 

Q (l+pf* 

Let us briefly comment on the content of this proposition. If we consider the difference 
between two consecutive terms of the sequence {H,),.,, we obtain 
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Hq+dz) --HP(z) = -E(K~(z) -x,-,(z)). (2.28) 

Hence, by the above proposition, we have, roughly speaking, a behavior of the type 

IH,+,W -Hq(-4 I -@(dc)qq!, (2.29) 

where dc is constant, provided q(N*. If we forget about this restriction, we see that we have 
the typical behavior of asymptotic series, converging at the first steps and then diverging as 
q+ co for fixed E. The natural idea, which we shall use in Sec. II B, is to stop the sequence at 
the step where the difference between consecutive terms is the least. Using Stirling formula, we 
get that the optimal truncation is at the Pth step, P= [l/ecde] yielding an exponentially 
small difference in l/e [see Eq. (2.78)]. These behaviors are common to the schemes used in 
Refs. 5, 7, and 8. 

Prooj Let a be the best constant such that for all integers n 

c l l a nl,n2~N (l+Q2 (1+n2)2’(l+n)Z’ n*+n*=n 
Let e be small enough so that 2gab < 1 and 

1 
S(g):=- 

l--2gab< 03’ 

We define E as the largest E so that 

c (2S( g)ga2ab)k<a, 

(2.30) 

(2.31) 

bl 

where a is the constant of Eq. (2.30). From now on 0 < e < e* and 6 = 6 ( l *) > 1 is independent 
of e. Let us do the first iteration. Since 2abe < 1 we can define, for all z’~D(z,q) and all A&, 

and 

IIU-gR&d-‘(I<-- 1 -!abgG6. 

(2.33) 

(2.34) 

Since R. and K. are bounded holomorphic operators on D(z,v>, the same is true for 
(I-gR&o)-1 if AC. 

Lemma 2.1: For all ~GN and z’~D(z,v) 

II 
~t~-gR,(r’.l)K,(z’))‘1/4 (lp;;)2. 

ProoJ For A.& we have using Eq. (2.30) 

II W&d(P)ll~ab i. (fl)@  ( 1 Tkj2 f1 $~~~)paab@  ( 1 cpj2 . (2.35) 

Then we use the formula 
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2 (H--A(z))-‘= ki* .,>,Z 
,...,nk> 1 ( n*~.nk)tn-a(z))-‘A(z)(“‘) 

n,+“‘+“k=p 

X(14(z))-‘A-*A(z)(“k)(I--A(z))-’ (2.36) 

and we get 

II ; (I--ER&o) -’ 
II 

<p!& kg, (daab) kak- * 
1 

(l+P)2’ 
(2.37) 

where the factor ak-’ comes from the summation over n l,..&t which is done iteratively as 
follows 

1 

nl>l,...,nk>l (l+nl)2(l+n2)f”’ (l+n,# 
n,+“‘+“k=,, 

c 1 1 
= c 

nl>l,...,n&2>hm>2 (1+n1)2 *** (l+nk-2)’ nk-,>,,nk>, 
?I,+“’ +nk-2-!-m=P nk-l+“k=m 

c 1 1 1 
<a 

nl>&>l...,nk-l>l (l+n1)2(1+n2)z”’ (l+nk-lf 
“1+“2”‘+“k-,=P 

using Eq. (2.30). Since g < g* 

II ; (H--R&o)-’ 
II 

<s ( lpyp)2. 

We can define for A.& 

1 1 
2 

(l+nk-1) (l+nkf 

(2.38) 

(2.39) 

cl 

R,W) =(P-gR,(z,il)K,(z))-‘R,(z,;l), (2.40) 

which is the resolvent of Ho(z) -gKo(z) at A. Using lemma (2.1), Leibniz formula and Eq. 
(2.30) we have for A& 

II -$, R,(z,AZ) 
II 

<asaP P! 
(l+P)z* 

(2.41) 

The next step is to estimate II@ “(z) -J$‘)(z)ll. We have 

+ lltQo(Q;-Q;))‘p’Il. 
Since all iler are in the resolvent set of H, we can write 

(2.42) 
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Q,(z) -Qo(z) = -& f (Rl(z,/l) -Ro(z,A))drl= Ro(z,a>Ko(z)R,(z,il)da. 
I- 

(2.43) 

Using Leibniz formula we have 

(2.44) 

and therefore 

Il(Q -Qo)~P)~I<ITJ~a36a2b&’ ‘! 1 2n U+pjz’ 
(2.45) 

where I r I is the length of the path I?. Using again a Riesz formula for the projectors Q. and 
Q, and the estimates for R. and RI, we get 

and 

IIQ’p’II <Ifl aGaP ‘! 1 2TT (l+p)“’ 

Lemma 2.2: (Ref. 5) Let A and B be two bounded operators such that 

and 

Then 

By Lemma 2.2 

and 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

We introduce 
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Therefore we can write, since a > 1 and 6 > 1, 

II@ ‘)-@ “I[ ebdCP+’ 
(p+l)! 
(l+pY’ 

(2.50) 

(2.51) 

We estimate llKf/l for l+p<P. 

ll~I”I1611~lp’--K~p)II+II~~p)II 

<ebdcP+’ ;;;;i+b@  ( 1 fp)l 

=bCP (l+p) 
‘! z(l+edc(p+l)) 

<b&‘) ( 1 fpji ,c, (ecdN*lk 
> 

=b- e cp 
P! 

e-1 tl+p12 

(2.52) 

With these last estimates we have finished all estimates for the first iteration. 
We do again all estimates for the next iteration. For all kl? and all z’~D(z,q) we have by 

our hypothesis on E [see Eq. (2.31)], 

(2.53) 

and 

II(~&~)(p)~~62buacP P! 
u+pF* 

(2.54) 

As for Lemma 2.1 we get with Eq. (2.32), 

II g (I-&$1)-1 <p!& i (2e6aab)kak-1 (lJp)i 
II k=l 

<p!C+% ( 1 ipI f $ (2eaa2Wk 
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1 
<P!cQ (l+py. (2.55) 

The resolvent of H2(z) =H(z) --eKI(z) is given at AZE~ by 

R,W) =(P-~Ro(z)K,(z))-‘Ro(Z) 

and thus for 1 +p<W’ 

(2.56) 

II g R2(z,il) GaGa II P! 
U+pP’ 

(2.57) 

Then we estimate 1) (K,--K, ) @)[I as above. For A# 

Qz(z) -Q*(z) = -& 

=-- R,(z,~)(K,(z) -&(z))Mz,A)dA. (2.58) 

We get for p+ l<N* 

Il(Q -Q,)(p)ll<lrlE2bda4~2a2P+’ (p+l)! 2 2?r w-pF 

Thus 

Il((Q '-Q')Q )(P)ll<- 
2 12 203bd(j'a6Cp+2 (p+2): 

(l+P> 

and 

Il(Q '(Q -Q ))'P 'll<~ 
12 1 2a3b&a6&'+2 (p+2); 

(l+p) * 

Therefore 

and for all 2+p<N* 

P! <bP (l+p)2(l+~dc(p+2)+~c.12c2(p+2)2) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

cb- e P P! 
e-1 (l+p)” 
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FIG. 1. The contour Tr for ER. 

P! 
G2bcp (l+pf (2.63) 

We can iterate this procedure since all estimates are reproduced as long asp+q(N* is satisfied. 
El 

6. Superadiabatic evolution 

We now construct the superadiabatic evolution. Since we consider later on a scattering 
situation we add to the hypothesis I and II the hypothesis 

(IV) Behavior for large times: There exist two self-adjoint operators H+ and H- bounded 
from below and defined on D, and an integrable function b(t) on W, behaving like l/ I I I 1+a at 
infinity for some a > 0, such that 

and 

SUP II(~(~+i~)--H+)~llcb(f)(II~~I+II~+~l1>, t>O 
I4 <r 

(2.64) 

SUP II(H(t+is)--H-)~lI<b(f)(ll~ll+llH-~ll), ~0. 
ISI <r 

(2.65) 

Let t be some point of the real axis. Since H(t) is self-adjoint we have for all ;1 in the 
resolvent set of H(t), with dist(,l,a( t)) = distance of A. to the set a(t), 

(2.66) 

where a(t) is the spectrum of H( t). For each r we choose Ir as in Fig. 1, so that for any AEI’, 

dist(A,o(r))>i dist(a, ( t),a2( t))$ . (2.67) 

It follows from condition II and Eq. (2.19) in Ref. 4 that we may choose the width r of the 
neighborhood 0 so that for each ZED( t,r) ={zE@: Iz--tl <r}, and all t& 

(2.68) 

hence hypothesis III is satisfied. Moreover, by lemma 2.2 in Ref. 4 that there exists a constant 
C’ such that for all z~D(t,r) and all ER 

(2.69) 
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with b(t) the integrable function of condition IV. Using Cauchy formula we get for all z 
eD(t,r/2), 

and 

2p 
IIK~p’(z)II<C’b(t)p! - . 

0 r 

(2.70) 

Therefore we can apply proposition 2.1 with c= 8/r, a =4/g, and b = C’b( t). Hence there exists 
E* independent of t such that for all E<E* the iteration scheme is well defined up to order 
ZF=[(ecde)-‘1 with 

(2.72) 

where L is the supremum of the length of the paths Tr We set for all EW 

H*(f):=H,(t)=H(t)--EKNU_,(t) (2.73) 

and 

Q,(t):= -& f R,(t,A.dA. 
rr 

(2.74) 

Since IIKm-l(r)II=O(b(r>), we have 

lim llQ,(d -Q(t) II =O. (2.75) 
f+*m 

The superadiabatic evolution is defined by the equation 

ie &  V,(V) = W ,(f) +Ei[Q~(t),Q,(t)l> V,(@ ), V*(s,s) =I. (2.76) 

Theorem 2.1: Under the hypotheses I and II, there exists E*, a positive constant r, and a 
positive function J(t) such that for all t, SER 

Q,(t) ~&,s) = V&,dQ,(4 

and 

IIU(t,s)-V*(t,s)ll<( I:b(t’)dr’lexp(-7E-‘). 

If hypothesis IV holds as well 

s 
- b(t)dr< co. 
-02 

Proq? The first part of the theorem can be found in Ref. 11 Chap. 4. Let us prove the last 
part. We consider the expression 
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iei (V;‘(t,s)U(t,s))= V;‘(t,s)(-H,(t) -SW(~) +H(t))V,(t,s)(V,-‘(t,s)U(t,s)) 

=EV~‘(r,S)(KN*-*(r)--KN*(r))Y*(r,s)(V~1(r,s)U(t,s)). 

From Proposition 2.1 and Stirling formula we have 

fllu,_,(t)--KN*(t)ll(C’b(t)ENCdNcCNrN*! 

=O(b(t))(edcN ) * fle-@JN* 

= O(b( t))e-(2-p)Nc 

=K(f)exp( -re-l), 

where p is any small positive number, 6(t) = o(b( t)) and 

2--P 2 O<r=ecd=O -$ f ( ) 
Hence it follows that 

II~~l(t,s)U(t,s)-nll<l S’b(~~)dt’lexp(-7E-1). 
s 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

Remarks: ( 1) If the bounded part o1 (t) of the spectrum has a length which is uniformly 
bounded, then the decay rate 7=0(g) when g becomes large. (2) In general, the projectors 
Q,(t) are a distance of order E away from the spectral projectors Q(t) of the Hamiltonian. But 
if H(t) has its n first derivatives equal to zero at t = to, then we easily see that 

QJto)=Q(to)+WE”+‘). (2.81) 

(3) It follows from this theorem that a solution of the Schriidinger equation initially in the 
spectral subspace Q(s)% will follow this subspace up to an error of order E/ t-s1 . Neverthe- 
less, there exist projectors Q,(t), close to Q(t), such that a solution initially in Q,(s)Z will 
be confined to the subspace Q,(t)&“, for exponentially long times. Moreover, if hypothesis IV 
holds, this solution will be in Q* (t)X up to an exponentially small correction, and this for any 
time t. As a consequence, if we take s= - CO, t= + ~0 and use the fact that H* and H coincide 
at infinity, we can see that the transition probability from Q( - CO )&” to (I- Q( + CO ))X is of 
order exp( -T/E). Note also that we obtain the physically expected behavior of the transition 
probability as a function of the gap g since 7=0(g). 

III. ADIABATIC TRANSITION PROBABILITY 

Let H(t) be a time-dependent self-adjoint operator satisfying the hypothesis I, II, IV, and 
(V) Existence of complex eigenvalue crossings: The part of the spectrum o1 (t) consists of 

two separated eigenvalues el (t) < e2( t) for all t4R and there exists z*&, Im z* > 0, such that 
the energy-levels el and e2 have analytic (multivalued) continuations in n\{z*,p} and are 
equal at z* and z*. At the eigenvalue-crossings z* and .? the energy-levels e, and e2 have a 
square-root-type singularity. 
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FIG. 2. The loop y encircling the eigenvalue crossing point z*. 

Remark: It is implicitly assumed that the parts of spectrum ‘TV and 02(z) are disjoint for 
any ~4. 

Let P;(t), i= 1,2 be the spectral projector associated with ei( t), i= 1,2. We study the 
normalized solution qB( t) of the Schrodinger equation 

ie g % (t) =H(Ocp,(t), Q)JO) =~*ED, (3.1) 

subject to the boundary condition 

l im I(Pl(t)p,(t)ll=l, 
f---m 

(3.2) 

when t + + CO. The boundary condition means that the system is prepared at time t--t - CO in 
an eigenstate of energy el ( - CO ) of H( - CO ) = H-. We compute the transition probability 

921(~) = l im IIP2(t)p,(t)l12, 
t-co 

(3.3) 

which gives the probability to measure the energy e2( + 03 ) at time c = + ~/3. We can obtain an 
asymptotic formula for 9 21 (E) when the distance between (pi = {el (t) ,e2( t)) and the rest of 
the spectrum az(r) is large enough, i.e., when g is large enough. To do this we need, as in our 
previous papers 1 and 2, an additional hypothesis. Let us make it explicit and give the formula 
for .Y2i(e). 

Let y be a loop starting at to as in Fig. 2. Here to is any fixed point of IX. Let r,!+ (to) and q/t2(to) be two normalized eigenvectors of H(t,), 

H(td$j(fo) =ej(to)$j(to>, j=1,2, 

whose phases are fixed by imposing the condition 

(3.4) 

($j(t) l$/j(t)) iEO* i= 192 W tER. (3.5) 

We analytically continue el (to) and r/r ( to) along the path y and we denote by Z1 (to) and $, (to) 
the result of the analytic continuation when we come back to to. By hypothesis V we have 

~~(to)=e2(to), ~l(to)=e-ie2~ctOlr)~2(fo), (3.6) 

where 021 (to I y) is in general a complex phase. We also define J, el (z)dz as the integral of the 
analytic continuation of el along y. Both quantities 8,, ( to I r) and l, ei (z)dz depend only on 
the homotopy class of the loop y based at to. Moreover, Im 8,, (to I r) and Im J y e, (z)dz do not 
depend on the choice of to and the choice of the phase of tlr2(to). By analytic continuation we 
also define the multivalued function 
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FIG. 3. The level lines of Im A,,(z) near 9. 

An(z) = s ’ (e,(f) -e*(z'))dz (3.7) 
r0 

on a\{.?,,?}. The structure of the level lines of Im At2(z), near z* is as in Fig. 3. There are 
exactly three level lines which meet at z *. They are called critical. It is not difficult to show that 
the three critical lines have no intersection point in sZ\{z*,z*}, and that they are always in the 
upper half plane. We have a similar situation at 2”. The next hypothesis is a global condition 
on the behavior of the critical lines. 

(VI) Existence of infinite critical lines: There exist two critical lines of A,,(z) in 0, one 
going from z* to - 00, and the other one going from z* to + 03. 

The condition VI is analyzed in details in Ref. 1. In particular, a geometrical formulation 
of this condition is given. We can now state our main result. 

Theorem 3.1: Let H(t) be a self-adjoint operator analytic in f, satisfying conditions I, II, 
IV, V, and VI. Let p,,(t) be a normalized solution of the Schrodinger equation 

a 
'e-g qdf) =H(tbp,(t) (3.8) 

such that 

l im II4(fh(f)ll= 1. (3.9) 
t-.--m 

If inf a~dist(ol(t),a*(t))/lel(t) - ez(t) I is large enough, then 

9221(4=lim llPz(t)~Jt)ll*=exp(2 Im &t(toIY))exp 2 -t Im 
t-m 

( E Jy elodz)U +O(e)). 

Remark: The last condition on the spectrum of the Hamiltonian means that the decay rate 
r of theorem 2.1 is larger than 12 Im J ,, el (z)dz I. Physically this condition means that the 
probability to make a transition into the spectral subspace of 02( 00 ) is smaller than p2,. 

Moreover, we have an explicit formula for Im e2t in terms of the matrix elements of the 
reduced Hamiltonian Q( t)H( t) in the time-dependent two-dimensional subspace Q( t)X Let 
rpl(z) and 4)*(z) form a basis of analytic vectors of Q(Z)%, Wz4 which are orthonormal 
when z= t&. Without loss of generality we assume that el (t) + e,( t) = 0 so that we can write 
for tdR 

H(t) Ip(t)x=B(f) ‘S 
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in the basis {cp, (t),~)*( t)} with si, j= 1,2,3, the spin-l/2 matrices, and with an analytic “mag- 
netic field” B(t) defined by its components 

h(f)=2 Rebpl(d IH(t)q2(t)), 

B3(0 =2(9,(t) IW)q1W. 
With these definitions, the eigenvalues of H(t)Q(t) are given by the relation 

ej(r)=(-l)Jj&G, j=1,2, 

(3.11) 

(3.12) 

where 

(3.13) 

Proposition 3. I: 

Im t)*, =Im 
B3(Z)(Bl(z)B~(z)--*(Z)B;(Z)) 

2 dpW (&W  + B:(z)) dz+Re 

4(z) +i&(z) 4 (z) -i&(z) 
-(~2/~);)(~))+--775yj- (~,l~;)(z)+2\lp(zs (4)214);)(~) 

where the loop 0 is based at the origin, encircles z* and contains no zero of B:(z) + B;(z) and 
(piI ai> (z> is th e analytic continuation of (qj( t) ( p;(t) ), &IL 

Remark: The first term in the above formula coincides with the expression of Im e2t given 
in Ref. 1 for two-level systems but the necessary time dependence of the basis of Q(t)X 
induces, in general, supplementary terms. Note that the “magnetic field” B(t) depends explic- 
itly on the chosen basis in Q(t)%‘. However, as explained in the Appendix, there exists a 
natural basis of Q(t)% given by the usual parallel transport operator [see Eq. (A16)] such 
that the expression of Im e2t in terms of the matrix elements of H in that basis contains no 
supplementary contributions. But it should be noted that there is, in general, no explicit 
formula giving the vectors of this particular basis. The proof of that proposition together with 
an explicit choice of basis vectors having the required properties can be found in the Appendix. 

A. Reduction to an effective two-dimensional problem 

We derive here an expression for the transition probability Y2, which shows that the 
asymptotics of P2, can be computed by solving an effective two-dimensional problem if r of 
proposition 2.1 is large enough. The exposition follows Sec. IV of Ref. 4. It is convenient to 
decompose the superadiabatic evolution V, into two parts, 

v*(m:= ~*(m~*(4oA (3.14) 

where W,(f,O) is defined by 

a 
i z W,(M) =KN*(~) w,(N), W*(W) =I (3.15) 
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and leaves the domain D invariant (see Lemma 5.1 in Ref. 4). From now on s=O and we omit 
this index. The decomposition equation (3.14) is a generalization of the decomposition of the 
adiabatic evolution into a “parallel transport” W*(t) and a “dynamical phase factor” Q,(t). 
The operator Q,(t) is the solution of 

ic & Q,(t) = WG’(t)H,(t) W,(t)@,(t) &*(t)@*(t), Q,(O) =I. (3.16) 

The evolution IV* is compatible with the decomposition of Z into 

so that we have 

and a* satisfies 

Therefore we can write 

Q,(t) W ,(t) = W ,(t)Q*(O) (3.18) 

[@,,CO,Q,Wl =a (3.19) 

(3.17) 

U(t) = W*(r)@*(r)A*(r), (3.20) 

with A,(t) satisfying Eq. (2.71). From Eq. (2.78) we see that A,(t) has well-defined limits 
when t + f CO. The operator H,(t) commutes with Q,(O) and if E is small enough Q,(O) 
= e(t) + e(t) with 

iyt) = W,-‘(t>Fp W*(t), i= 1,2, (3.21) 

where e(t) are spectral projectors of fi* ( t) . It is therefore possible to decompose the evolu- 
tion a,(t) as we did for U(t). We introduce the evolution p.+(t) 

ie$ P*(t)= 
( 

ri,(t)+ie i ?*(t)*(t) P*(t), j=l at J 1 
F*(O) =I[ 

and we set 

(P*(t):= ?*(t)A^*(t). 

By construction p*(t) is compatible with the decomposition of Q,( 0)X into 

Q,(O>&“=@(t)2%?‘e~(t)Z 

since 

@y(t) P*(t) = P*(t)$O), j= 1,2. 

The operator A,(t) is the solution of the equation 

* a 
i&A,(t) = -(?;‘(t)i C -k(t)?(t) F*(t)&(t), Al,(O) =I. 

( j=* at J 1 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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Since Il~f=,(a/at)~(t)~(t)II is integrable as t+ f 03 the operator A”,(t) has well-defined 
limits when t -+ f 03. We also have 

lim Ilq(t)-Pj(t)ll=O 
t-+*m 

(3.27) 

by Eq. (2.73). 
Proposition 3.2: Let v(t) be a normalized solution of 

ie &  q,(t) =H(Oq(t) 

satisfying the boundary condition 

lim IIpAt)~Wll=l. 
t-r-co 

If E is small enough, then 

921= lim  llP2(t)~(t>l12=ll~(0)~*( c0 )A,( 03 )A;‘( - 00 I&( - 00 )*(O)II*. 
t-++CO 

Moreover, 

A,(oo)A,‘(--oo)=I[+A(co,--oc,) 

and 

with M  and r as in proposition 2.1. 
Proof: Let q(t) with q(O)=?* be given. We have [using Eqs. (3.27), (3.21), (3.23), and 

(3.2511 

1= lim IIPl(t)q(t>ll 
f-+--m 

= lim Ilp;‘(t) lV,(t)@ ,(t)A,(t)~*ll 
t---m 

= lim II W,(t)~(t)<P*(t)A*(t)~*l( 
t---m 

= lim Illj;“(t)~*(t>A,(t>A,(t)~*lI 
t-.--m 

= lim II ~*(t)~(O)~,(t)A,(t)~*ll 
t-.--m 

= IpyCO>d*C - 03 )A*( - 00 )q,*II. 

Therefore we can write 

q*=A,‘(-m )A;‘(-eo)Jt, 

with Ic, E e(O)%‘, By a computation similar to Eq. (3.28) we have 

(3.28) 

(3.29) 
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l im I IP2WaW II = l im II~(t)qdt)II 
t-m t-m 

=Il&O)& 03 )A*( UJ )cp*ll 

The last assertion follows from proposition 2.1 and from 

A*(t)=l[+ o s ’ ~-‘(t’)(K~~l(t~)--Knn(t’))Y~(t’)A~(t’)dr’. * (3.31) 

El 

By proposition 3.2 we can write 

~(O)~,(,)(n+A(~,-~x,)24”,‘(--))Ii;C(O) 

=&O)AI*( co ,I,‘( - eo )@(O) 

+&O)&( co )A( 03,- co )A,‘( - co )e(O) (3.32) 

and if T is large enough the dominant term of P21 as E tends to zero will be given by 

Il~co)~*c co )A^;‘( - co )~(0)112. (3.33) 

But this expression is the transition probability of the following two-dimensional problem in 
Q,(O)%: Let $(t) be a normalized solution of the equation 

a n 
ie;i; tCt(t) =H,WW (3.34) 

such that 

lim Il*(t)$(t)ll=l. (3.35) 
t---m 

Then, by a computation similar to the one above, 

@2t= lim ll~(t)~(t)~~*=Il~(O)A^,(oo )&‘(- co )*(0)/l* (3.36) 
t--.x 

is the transition probability from e( - CO ) to e( + 03 ). We have therefore reduced the 
initial problem to an effective two-dimensional problem. 

B. Asymptotic formula for the transition probability PSI in the adiabatic limit 
In this paragraph we compute an asymptotic expression for the transition probability &21 

of the problem (3.34) and (3.35). If the decay rate 7 is large enough, then 9,, has the same 
asymptotic expression. This is what we mean by the condition stating that the two levels must 
be sufficiently isolated in the spectrum. We assume that conditions V and VI are also satisfied. 
We recall that W,(t) is defined by 

a 
iz w,(t) =&dt) W ,(t), WJO)=I (3.37) 

and that 
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I;*(r) = W ,-% )H*W W*(t), (3.38) 

with 

H*(t) =H(t) -eKm-l(t). (3.39) 

In this section we consider only the operator fi*( t) on the time-independent two-dimen- 
sional subspace Q,(O).Z. If E is small enough, then H,(t) has two separated eigenvalues 
et(t) and er( t). By the perturbation theory and proposition 2.1 

~(r)=ej(t)+O(~llK~-l(r)I()=ej(t)+O(~b(r)), j=L2, (3.40) 

with b(t) the integrable function of condition II. The corresponding spectral projectors are 

&r, = w,-‘(r)Fyr) W*(r), i= 1,2. (3.41) 

We analyze the boundary problem 

ie; W ) =ri,W (fL 

l im ll*(W(Oll=L lI$(t)ll=l (3.42) 
t---m 

by the method developed in Ref. 1. We first show that Eqs. (3.42) can be studied in the band 
CI, provided E is small enough. 

Lemma 3.1: Let 0 < p < r be given. Then, there exists e(p) > 0 such that for all E <e(p), 
fi*( i) has an analytic continuation in a neighborhood of {z=t+is( IsI <p}. 

Pro& It is sufficient to show that Keml and K,+ have analytic continuations in a neigh- 
borhood of {z=t+isl IsI <p}, since this implies that H* and W, have analytic continuations 
in the same neighborhood. For large values of I t( the analytic continuation follows from 
proposition 2.1, since we can apply it with D(z,v) replaced by {z=r+isl IsI<p,r>R} or 
{z= r + is I I s I (p,r < -R), by choosing R large enough. Indeed we can verify the hypothesis of 
this proposition using condition IV. Let us consider the compact set n =(z= r 
+ is I Is I <p, ( r I <R}. For each z&I we can find a 77 (z) so that proposition 2.1 applies. There- 
fore the union of the open discs D(z,r)(z)) is a covering of CI and consequently we can cover CI 
by a finite number of discs D(z,q(z)). Thus there exists a nonzero e(p) so that, for all E <e(p), 
Ke _ , and Ke have analytic continuation in a neighborhood of {z= r + is I 1s I < p). 0 

In the band R there is an eigenvalue-crossing point for el (z) and ez(z) at z* with Im z* > 0. 
Let 0 < r’ -C r be given with Im z* < r’. By RouchC’s theorem there is exactly one eigenvalue 
crossing point i* for e:(z) and e;(z) in the band {z=r+islO(sgr’}, which is near z* provided 
E is small enough. Moreover the singularity of e?(z) at is is of the same type as the one of e&z) 
at z*. Let y be a closed path as in Fig. n 4. Let $ i(ro), i= 1,2 be two normalized eigenvectors 
of H(r,) with eigenvalues ej(ro). Let $(r,), resp. fl(ro), j= 1,2, be two normalized eigen- 
vectors of g*( to), resp. H* ( to) with eigenvalues e: ( to). The phases of r@(r) are fixed as in Rq. 
(3.5). We make an analytic continuation of all these objects along the path y and we denote 
with a - the result of the analytic continuation when we come back to r,,. We know that 

&(&I) =ez(ro) (3.43) 

and 

(3.44) 
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FIG. 4. The path y encircling ic and F. 

For small enough E we also have 

and therefore 

and 

where $ = Wi’fl. Since W,(r) is analytic in the band we conclude that 

~~l(~oIy)=~2*1(~oIy). 

By perturbation theory again, we can write 

flCr0) =$jCro) +Xj(r0), j= 12, 

with 

Therefore we have 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

=exp(--ieal(rol~))~S(rO)+~l(rO). (3.51) 

After analytic continuation we still have IIF, (to) II= O( E). Therefore we ccmclu& that 

and thus 

(3.52) 

(3.53) 
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It remains to show that the generalized Dykhne formula is valid for our problem (3.42). 
According to Ref. 1 it is sufficient to show the existence of a path rdt+q(r) in a, such that 

(2 lb,,, Rev(r)= f CO, lim,,,, Im q(r) = s, with s, < r, 

(ii) 77 goes above the eigenvalue-crossing P, 
(iii) along the path 7 ( r) Im A&(7 ( r)) is a nondecreasing function. 

The function AyZ(z) is defined as the analytic continuation of the function 

s ’ (eT(z') -eF(z'))dz'. 
t0 

(3.54) 

Condition VI implies (see Ref. 1) the existence of such a path c when we replace P by z* and 
AT, by A,, which is given by 

s ’ (el(z’) -e2(2’))dz’. (3.55) 
4 

Let 6 be such a path and p be large enough so that 

I Im 50) I < p, tap. (3.56) 

Using a perturbative argument, as in Ref. 2, we can prove the existence of a path 7,~ with 

IIm rl(r>I <p, ra (3.57) 

satisfying the above properties. It is then straightforward to check that thejntegration by parts 
procedure used in Ref. 1 gives uniform bounds in E when performed on H*. Therefore, there 
exists some E*, such that for all E < E* 

@si(e)=exp(2 Im @ ,)exp(Ze-’ Im JYe:)(l+O(e)). 

Note that e:(r) is the eigenvalue of the operator H,(r) which can be written as 

(3.58) 

H,(r) =H(r) --EKO(r) +E(KO(r)-Km--l(r))=H(r) --EKo(r)+0(8). (3.59) 

Let $i (r) be the eigenvector of H(r) for the eigenvalue el (r). Then 

(3.60) 

The term of first order in e vanishes because 

f?(r) [Q’(r),Q(r)]Pl(r) =0 

since for any projector P(r) we have 

P(r)P(r)P(r)=O. 

(3.61) 

(3.62) 

Therefore we have 
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kzr(e)=exp(2 Im &i)exp(Z-l Im Jle,)(l+O(e)) (3.63) 

provided E is small enough. 0 

IV. CONCLUSION 

Let us briefly summarize the results and methods we used in this study of the adiabatic 
regime. 

We first consider the construction of a superadiabatic approximation when the Hamil- 
tonian possesses a gap in its spectrum by means of a local divergent iterative scheme. We make 
use of regular perturbation theory to control its terms in an efficient way and obtain their 
behavior as a function of both the parameter E and their index n. The superadiabatic evolution 
is then obtained by an optimal truncation at fixed E of the iterative scheme. An important point 
of this construction is that we get useful estimates on the accuracy of the superadiabatic 
approximation as a function of the gap. As a by-product we obtain the physically expected 
behavior of the exponentially small transition probability across the gap, as a function of gap: 
the exponential decay rate is proportional to the width of the gap (see the remarks below 
theorem 2.1) . 

The second part of the paper is a combination of the above technique and previous tech- 
niques to compute the leading term of the transition probability between two nondegenerate 
levels e,(r) and e2( r) well separated from the rest of the spectrum. As a first step, we use our 
superadiabatic evolution to decouple the transitions between the two levels from the transitions 
out of the two-dimensional eigenspace Q(r)% they live in: we reduce the computation of the 
initial transition probability to the computation of the transition probability for an effective 
two-level system, up to corrections which are shown to be negligible if the two levels are 
sufficiently isolated in the spectrum. This last property which is expected on physical grounds 
comes from the estimates as functions of the gap in the first part of the paper. As a second step, 
we apply the results of Ref. 1 to the effective two-level problem. The end result is an explicit 
formula for the transition probability between e, and ez given by a decreasing exponential 
exp( --y/e), with y depending on the energy levels ej( r) only, multiplied by a geometric 
prefactor. We also give an explicit formula for the geometrical prefactor in terms of the matrix 
elements of the initial Hamiltonian in the two-dimensional eigenspace Q( r)X An important 
feature of the expression yielding the geometric prefactor is that it depends on the embedding 
in the total Hilbert space of the two-dimensional space spanned by the eigenvectors of energies 
e,(r) and ez(r). 
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APPENDIX 

We derive in this appendix the explicit formula for Im &i given in proposition 3.1. We 
start by considering the existence of a suitable basis of Q(r)&“. 

Let vi and r12 belong to the range of Q(0). We define for r&i 
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QWh- CC% I Q(rh2Vh I Q(rh)hJ 
"(')= -h21 QWh2- (h I QWr12Mql 1 QU)q,))~d) . (Al) 

These vectors form an orthonormal basis of Q(r)A? for r close to 0 and they are analytic in r 
by assumptions I and V. It should be noticed that the basis {cp1(r),q2( r)} is time dependent 
because Q(r) is. Hence we have the representation (3.10) of H( r) in the subspace Q( r)R’ with 
the definitions (3.11). The expressions 

and 

h lH(r)Q(rh) 
h I Q(h) 

(q.N IHW~2W)= 
h IH(r)Q(r>~2W) 

l/7Ylzm 

(A21 

(A3) 

have analytic extensions in the complex plane, so that the same is true for their real or 
imaginary parts considered as real analytic functions on the real axis. Thus the magnetic field 
B(z) is analytic in z&. We introduce the vectors 

=ajW&> +P(r)q2(r), j= 12, (A4) 

which satisfy by construction 

H(r)Xj(r) =ej(r)Xj(r), j= 1,2. (A5) 

Moreover, their analytic continuations along cr, from the origin back to the origin, are given by 

xi(O) =X/t(O) (A6) 

since the components Bk(r) and the basis vectors qj(t) have analytic continuations in a 
neighborhood of the origin, even at z=z*. As in Ref. 1 we write the eigenvector ~j(r) satisfying 

($j(r) I +pH =o (A7) 

under the form 

t)j(t) GeXP{-Sj(t)}Xj(r), I= 1,2, 

with exp(iaj(O)}= Ilxj(O) 11. It then follows from Eq. (A6) that 

(A81 

Im e21 = Im 

We have by condition (A7) 

is,,(r) = (xi(r) M (r)) VrER 
I (Xj(r) IXj(r)) ' 
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Due to the time dependence of the basis vectors qj( t), we obtain for 65 (without expliciting the 
argument r, r&t) 

1 
‘6) = laj12+ lpl2 (ispJ+DF)+ laj12: l~lZClaj12(a*lPi)+ IP12(~21~;)f~~(~*l~;) 

+&j(V2 I Pi))* (All) 

The first term coincides with the previously computed one in Ref. 1. Using the self-adjointness 
of Q(r) for r&t, we check that the functions 

(qj(r> 1 q;(r)) raft 

have analytic continuations close to the origin, even at z=z*, which we denote by 

(ajl Pi) tz>* 

Multiplying Es. (All) by ($+4)/l 6+&A using the result of the appendix 
and Eq. (A9) we obtain 

(A121 

(A13) 

in Ref. 1 

(.414) 

cl 

Im e21 = Im J- 
4(4B;--~zB;) 

dz+Re 
JC 

(B3- @(B:+B:) 

* 2 ,b(B:+@ ) (91 Id 0 2~p(&+~) 

(B3+ &>(Bf-t-& (~21a;)+(~+B:)(Bl+iB2) 
- L/p@+@) 2\Ip(B:+B;) (PI I Pi) 

(&+@)(B,--i&l 

+ 2Jp(#+B2,) bzld> dz 
1 

for a loop a containing no zero of ( B: -!- B:). This proves the proposition. 

Let us finally consider the vectors 

where W(r) is defined by 

@j(t) = W(r)qj, j= 1,2, (A15) 

iW’(r)=i[Q’(r),Q(r)] W(r), W(O)=1 (‘416) 

and qj form an orthonormal basis of Q(O)%‘. Since W(z)Q(O) =Q(z) W(z) [see Eq. (3.18)] 
and Q(Z) is analytic in C!, these vectors form an orthonormal basis of Q(r)A?, &If%, which is 
analytic in R. We compute for real r 

(@j(r) IQ;(t>)=(@j(t) 1 [Q’(r>,Q(r)lWr)) 

=(@j(r) IQ(r)[e,(r>,Q(r)]Q(r)~k(r)) 

~0 ‘dj,k= 1,2. (A17) 

Hence the factor Im e2i has the same expression in terms of the matrix elements of H( r) in the 
basis {@, (r),Q2(r)}, as in the two-level case. 
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