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Abstract. This paper investigates the role of deep convec-

tion and overshooting convective clouds in stratosphere–

troposphere dynamical coupling in the tropics during two

large major stratospheric sudden warming events in January

2009 and January 2010. During both events, convective ac-

tivity and precipitation increased in the equatorial Southern

Hemisphere as a result of a strengthening of the Brewer–

Dobson circulation induced by enhanced stratospheric plane-

tary wave activity. Correlation coefficients between variables

related to the convective activity and the vertical velocity

were calculated to identify the processes connecting strato-

spheric variability to the troposphere. Convective overshoot-

ing clouds showed a direct relationship to lower stratospheric

upwelling at around 70–50 hPa. As the tropospheric circu-

lation change lags behind that of the stratosphere, outgoing

longwave radiation shows almost no simultaneous correla-

tion with the stratospheric upwelling. This result suggests

that the stratospheric circulation change first penetrates into

the troposphere through the modulation of deep convective

activity.

1 Introduction

Weather forecasting in tropical regions is challenging due to

the unstable nature of the atmosphere there and its sensitiv-

ity to various extratropical disturbances. The impact of the

extratropical circulation on the tropics, such as the lateral

propagation of tropospheric Rossby waves, has been stud-

ied previously (e.g. Kiladis and Weickmann, 1992; Funatsu

and Waugh, 2008). The influence from above (i.e. from the

stratosphere) is generally neglected, but under certain cir-

cumstances, such as during a sudden stratospheric warming

(SSW) event, stratospheric meridional circulation change can

modify convective activity as will be shown later.

Early satellite measurements showed that enhanced pole-

ward eddy heat fluxes in the extratropical stratosphere induce

tropical cooling through changes in the mean meridional cir-

culation (Fritz and Soules, 1970; Plumb and Eluszkiewicz,

1999; Randel et al., 2002). It is generally believed that such

changes in the stratosphere do not affect the troposphere, due

to the difference in air density between the two. Indeed, trop-

ical temperature change induced by the intraseasonal mean

meridional circulation is apparent only in the layer around

70 hPa and above (Ueyama et al., 2013).

However, this does not imply that the stratospheric merid-

ional circulation has no impact on the atmosphere below

the 70 hPa level. A possible impact of stratospheric merid-

ional circulation on cumulus heating has been suggested by

Thuburn and Craig (2000) in a simplified general circulation

model experiment. Stratospheric upwelling effects on trop-

ical convection is also confirmed by a more realistic gen-

eral circulation model forecast study (Kodera et al., 2011a).

These models make use of cumulus parameterization to ac-

count for the effect of convection into large-scale circulation.

Therefore, model sensitivity should be dependent on the pa-

rameterization used.
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Stratospheric effect on tropical convection is also found in

non-hydrostatic models that treat the convection explicitly.

Although it is not fully understood yet how stability near the

tropopause influences anvil cloud-top height, Chae and Sher-

wood (2010) showed with observational data and a regional

non-hydrostatic model experiment that the variation of static

stability near the tropopause due to a change in the strato-

spheric upwelling, influences cloud height even if the cloud

height peaks only near 12 km (or 200 hPa). Using a global

non-hydrostatic model simulation, Eguchi et al. (2015) also

found that increased tropical upwelling due to a SSW event

reduces the static stability in the upper tropical tropopause

layer (TTL), which leads to an increase of deep convective

activity in the troposphere.

Temperature response to stratospheric upwelling becomes

unclear in the region lower than the tropopause because

clouds form in response to adiabatic cooling associated with

upwelling. Stratospheric temperature decreases, but minimal

temperature changes occur in the TTL, resulting in a decrease

in static stability in the upper TTL (Li and Thompson, 2013).

In the regions where deep convective clouds are frequent,

stratospheric influence further penetrates deeper in the tro-

posphere (Eguchi and Kodera, 2010; Kodera et al., 2011b).

Once the distribution of convective clouds is modified, this

effect can be amplified within the troposphere through a feed-

back involving water vapour transport (Eguchi and Kodera,

2007).

In a previous study composite analysis of the tropical tro-

pospheric impact of SSW events were made for the winters

from 1979 to 2001 (Kodera, 2006). Even though significant

responses were found in the tropical troposphere, a problem

of the composite analysis is that, by averaging many differ-

ent events to extract a common feature, detailed structures

often become obscure. Therefore, case studies are made in

the present paper on two exceptionally large events focusing

on the role of overshooting and deep convective clouds in

stratosphere–troposphere dynamical coupling in the tropics.

The selected two largest SSW events of January 2009 and

January 2010 (Harada et al., 2010; Ayarzagüena et al., 2011)

have a large impact on the tropical upwelling in the lower

stratosphere as will be shown later. These SSWs are not only

large but also localized in time unlike other SSWs. Large

and simple structure of the temporal variation of the forcing

(eddy heat flux) and the response (stratospheric zonal wind)

of 2009 and 2010 SSWs permit us to investigate a detailed

feature of the circulation change. It should also be noted that

not all major SSW events necessarily have such large tropi-

cal impacts, as this depends on the latitude of the associated

planetary wave breaking (Taguchi, 2011).

2 Data

Meteorological reanalysis data from the European Centre for

Medium-Range Forecasts (ECMWF) ERA interim (Dee et

al., 2011) were used to analyse air temperature and winds

including vertical velocity. Cloud data in the TTL, from

the Level 2 Cloud Layer Product (Version3-01), were ob-

tained by Cloud-Aerosol LIdar with Orthogonal Polariza-

tion (CALIOP) aboard the CALIPSO satellite (Winker et al.,

2007). Outgoing longwave radiation (OLR) data provided by

NOAA (e.g. Arkin and Ardanuy, 1989) is widely used to

analyse convective activity in the tropics. In this study, in ad-

dition to the OLR data with a 2.5◦× 2.5◦ lat–lon resolution,

we used the Microwave Humidity Sensor (MHS) channels 3

to 5 to detect deep convection and convective overshoots be-

cause of the scattering by icy particles in precipitating clouds

so cold that they cause a depression in the brightness temper-

atures. MHS data are obtained from NOAA18 and MetOp-A.

The equatorial crossing time for these platforms is approxi-

mately 14:00 local time (LT) for NOAA18, and 21:30 LT for

MetOp-A. In the present work, the original data were regrid-

ded to a regular grid with resolution of 0.25 lat× 0.25 lon.

The figures show DC and COV occurrences resampled to a

grid of 2.25× 2.25 for plotting purposes.

To capture deep, precipitating clouds we used the diag-

nostics developed for the tropics by Hong et al. (2005),

which is based on the brightness temperature differ-

ences (1T ) measured by three channels of the MHS

between (i) 183.3± 1 and 183.3± 7 GHz (1T 17); (ii)

183.3± 1 and 183.3± 3 GHz (1T 13); and (iii) 183.3± 3

and 183.3± 7 GHz (1T 37). Deep convective cloud (DC)

and convective overshooting (COV) were discriminated ac-

cording to the following criteria, in which COV refers to

clouds able to penetrate into the tropopause region (Hong

et al., 2005; Funatsu et al., 2012): deep convective cloud:

1T 17≥ 0, 1T 13≥ 0, and 1T 37≥ 0 K; convective over-

shooting: 1T 17≥1T 13≥1T 37>0 K.

Although these high frequencies are generally not sensi-

tive to cirrus and anvil cirrus clouds, they will probably have

difficulty distinguishing some strong anvil clouds from deep

convective clouds. But fortunately, these strong anvil clouds

are generally tightly connected with deep convective cloud

systems (Hong et al., 2008).

The Tropical Rainfall Measuring Mission (TRMM) daily-

integrated precipitation (TRMM 3B42 v7) was used to study

surface precipitation (Huffman et al., 2007).

3 Results

An enhanced Brewer–Dobson (BD) circulation during a

stratospheric warming event creates strong downwelling in

the polar region and upwelling in the tropical stratosphere,

and thus a warming and cooling tendency in these respective

regions. Figure 1a and b show the evolution of eddy heat flux

at 100 hPa averaged over the extratropical Northern Hemi-

sphere (NH; 45–75◦ N), and the latitude–time section of the

zonal mean pressure coordinate vertical velocity at 50 hPa

from 01 January to 11 February (the left and right panels are
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Figure 1. (a) Time series of the eddy heat flux at 100 hPa aver-

aged over 45–75◦ N (K m s−1). (b) Zonal mean pressure coordinate

vertical velocity at 50 hPa (Pa s−1). (c) Number of convective over-

shootings per day at each latitude. (d) Zonal mean OLR (W m−2).

Variables are displayed from 1 January to 11 February. Left- and

right-hand panels are for 2009 and 2010, respectively. Vertical ve-

locity and OLR data are smoothed by a 3-day running mean.

for 2009 and 2010, respectively). In both years, stratospheric

upwelling in the tropics at the 50 hPa level strengthens fol-

lowing the increase in wave activity at around 16 January

2009 and around 20 January 2010 (indicated by the solid ver-

tical lines in the figure). In the tropics, an increase in COV is

synchronous with the stratospheric upwelling (Fig. 1c). The

convective activity represented by the OLR also increases in

the Southern Hemisphere (SH), which can also be charac-

terized as a southward shift of the active convective region

(Fig. 1d). A delay in the response of the OLR in the SH is

also noted. The difference in the characteristics in the tempo-

ral variation in COV and OLR relative to the vertical velocity

at 50 hPa becomes also apparent in the vertical structure of

the correlation coefficient in the following.

To study the relationship between tropospheric convec-

tive activity and the vertical velocity at different pressure

levels, correlation coefficients were calculated between vari-

ables representing a convective activity (COV, DC, and OLR)
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Figure 2. (a) Correlation coefficient between the pressure coordi-

nate vertical velocity (ω) at each pressure level and the daily convec-

tive overshooting occurrence frequency (COV) averaged over the

tropics. (b) As for panel (a) but for deep convection (DC). (c) As

for (a) but for the correlation coefficient with −OLR. (d) Same as

in panel (a) except for COV and temperature at each level. (e) Same

as in panel (d) except for COV and vertical temperature gradient at

each level. (f) Same as in panel (e) except for −OLR and vertical

temperature gradient. Variables were first averaged over 25◦ S to

25◦ N, and then the correlation was calculated over 31 days centred

at the onset day (16 January in 2009 and 20 January in 2010). Solid

and dashed lines indicate 2009 and 2010, respectively.

and the pressure vertical velocity (ω) at each level (Fig. 2).

These correlation coefficients are simply being used to iden-

tify the relation between dynamical variables in two rather

short-duration events. Variables were first averaged over the

tropics (25◦ S to 25◦ N), and then correlations were calcu-

lated for the 31-day period centred on the onset day (16 Jan-

uary for 2009 and 20 January for 2010). For convenience of

comparison, the sign of the OLR was reversed (−OLR). In

both winters, COV shows the highest correlation, with ω in

the lower stratosphere around 70–50 hPa. DC is also corre-

lated with the stratospheric upwelling, but less so. The OLR

shows little relationship with the stratospheric circulation, al-

though it is correlated with vertical velocity in the upper tro-

posphere.

Here, we check the physical consistency among the vari-

ables by comparing the correlation coefficients among them.

It is reasonable to expect that stratospheric vertical velocity

should have the strongest relationship with the occurrence of

COV (i.e. convection penetrating to the stratosphere) and the

weakest relationship with OLR, which is sensitive to lower

clouds as well as deep convection. Therefore, the following

inequalities among the correlation coefficient, r , between the

lower stratospheric pressure vertical velocity, ω, should be

expected:

www.atmos-chem-phys.net/15/6767/2015/ Atmos. Chem. Phys., 15, 6767–6774, 2015



6770 K. Kodera et al.: The role of convective overshooting clouds

rω,COV<0, |rω,COV|>|rω,DC|,

|rω,DC|>|rω,−OLR|, (1)

where rω,COV, rω,DC, and rω,-OLR are the correlation coeffi-

cients between ω and COV, DC, and −OLR, respectively.

This relationship is satisfied in the correlation analysis pre-

sented in Fig. 2. This result supports our working hypothesis

that lower stratospheric vertical velocity variation is coupled

with the tropical convective activity.

The present study can also be compared with a regres-

sion study of the BD circulation index by Li and Thomp-

son (2013); enhanced BD circulation increases clouds oc-

currence above the tropical tropopause, in association with

a decrease of stratospheric temperature and the static sta-

bility around the tropopause. The structure of the tropical

temperature and stability change associated with the COV

is consistent with a variation associated with a strengthen-

ing of the BD circulation. Formation of the clouds above

the tropopause is also consistent with the correlation of COV

with upwelling above 100 hPa.

Figure 3 depicts a development of downward coupling in

the equatorial summer tropics, averaged between 20◦ S and

the Equator. The temperature tendency (Fig. 3a) shows a

rapid decrease in the stratosphere following the increase in

the eddy heat flux in Fig. 2a, but no clear temperature signal

is observed in the troposphere, which agrees with the results

of a previous study (Ueyama et al., 2013). Figure 3b shows

the altitude–time section of measured cloud frequency (opti-

cal thickness < 4) by CALIOP. Horizontal dashed lines indi-

cate approximate height corresponding to 100 hPa pressure

level (solid lines in Fig. 3a and c). Prior to the SSWs, thin

clouds are formed near 16.6 km (or 100 hPa) around a cold

point tropopause. When cooling events start, clouds form at

all levels from the upper to the lower TTL, indicating a de-

velopment of convective activity. Pressure vertical velocity

is shown as a departure from the period mean normalized

by a daily standard deviation at each level to visualize the

large range of variation (Fig. 3c). Although vertical veloc-

ity varies in a similar manner to temperature tendency in the

stratosphere, an increase in the upwelling also occurs in the

troposphere following the stratospheric change. This tropo-

spheric upwelling is associated with an increase in surface

precipitation (Fig. 3d).

This result shows that the temperature tendency is a good

proxy for vertical velocity in the stratosphere. However, dy-

namical cooling tends to be compensated by diabatic heating

due to cloud formation lower than the tropopause as illus-

trated in Fig. 3; consequently, the temperature tendency is no

longer a good indicator of the vertical velocity below 70 hPa.

Figure 4 shows the evolution of the geographical distri-

bution of OLR and COV before (i) and after (ii) the onset

of the event. The influence of the El Niño–Southern Oscilla-

tion (ENSO) is evident in the OLR during period (i). In Jan-
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Figure 3. (a) Similar to Fig. 1 except for the pressure–time section

of the zonal mean temperature tendency averaged over the SH trop-

ics (20◦ S to the Equator) (K day−1). (b) As for panel (a) except

for the geographical altitude–time section of cloud frequency mea-

sured by CALIOP (%). (c) As for panel (a) except for the pressure

coordinate vertical velocity anomalies normalized by the standard

deviation of daily variability. (d) Time series of the daily TRMM

surface precipitation averaged over SH tropics (mm day−1). Hori-

zontal solid lines in panels (a) and (c) and dashed lines in panel (b)

indicate 100 hPa pressure level.

uary 2009, which is a cold phase of ENSO, a well-developed

region of low OLR is located over the Maritime Continent,

while in January 2010, a warm phase of ENSO, it is located

over the western Pacific according to the change in the equa-

torial Pacific sea surface temperature (SST). The velocity po-

tential at 925 hPa (contour lines) in period (i) indicates that

these convective activities are maintained by a large-scale

low-level convergence. After the onset of the stratospheric

event during period (ii), the low-OLR centre over the Mar-

itime Continent or western Pacific is weakened, and multiple

convective-active regions develop in the SH along 15◦ S. This

active convective zone includes tropical cyclones and storms

(names are indicated below the panel) over warm ocean sec-

tors near Madagascar, north of Australia, and in the south-

western Pacific.

The occurrence of COV is high over the African and South

American continents, but no particular enhancement is seen

around the Maritime Continent–western Pacific region in pe-

riod (i). This indicates the weaker dependency of COV on

low-level convergence. Although the occurrence of COV in-

creases after the onset in period (ii), no substantial change

is seen in the spatial structure except that the COV distribu-

tion takes a more zonal form. The distribution of the regions

with low OLR becomes increasingly similar to that of COV

Atmos. Chem. Phys., 15, 6767–6774, 2015 www.atmos-chem-phys.net/15/6767/2015/
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during period (ii). This indicates that the COV-related deep

convective activity becomes important after the onset of the

stratospheric event.

4 Summary and discussion

The results of our analysis of changes in tropical circulation

associated with large SSWs during January 2009 and January

2010 can be summarized as follows.

Enhanced stratospheric wave activity produced a cooling

in the tropical stratosphere through a strengthening of the BD

circulation. This influence penetrated downward into the tro-

posphere through a change in the cloud formation. Among

the variables representing different convective activity, COV

shows the highest correlation with the lower stratospheric

vertical velocity. This result is reasonable because the COV

clouds penetrate above the tropopause and interact directly

with the stratospheric circulation. The reason for low cor-

relation of the OLR with stratospheric upwelling originates

from the fact that the tropospheric variation lags by about a

week (Fig. 1).

The results obtained from the present two SSW events are

consistent with the earlier results from an independent com-

posite analysis of the NH winters for the period of 1979 to

2001. Figure 5a shows the results of the above-mentioned

composite analysis. Twelve SSW events of which maximum

deceleration of the polar night jet (average 50–70◦ N) at

10 hPa exceeds 2 m s−1 day−1 with a smoothed data are se-

lected (see detail in Kodera, 2006). The key day is defined

as the day of the largest deceleration. Student t values corre-

sponding to a 95 % significance level for one- and two-sided

tests are 1.8 and 2.2, respectively. Following a deceleration

of the polar night jet, statistically significant increase in the

upwelling occurs in the tropical stratosphere around day 2,

and in the tropospheric equatorial SH around day 4 to 11.

Two SSW events in the present study are juxtaposed be-

low in Fig. 5b. The top panel shows the zonal-mean zonal

wind tendency of winters 2009 and 2010 similar to the top

panel of Fig. 5a. The tropical vertical pressure velocity in the

SH (20◦ S–Eq) is presented in a similar way to the composite

analysis by choosing the day of the maximum deceleration

as the time origin. We can see that the upwelling in the trop-

ical SH increases in the upper troposphere around day 4 to

day 11 similarly to the composite mean (rectangles in Fig. 5).

Therefore the relationship that we have identified here in two

particularly strong SSWs between the SSW and the enhance-

ment of tropical convection is consistent with that previously

identified from the composite analysis.

To get an insight into a possible mechanism of connection

between the stratospheric and tropospheric variability, we

also calculated correlations between the temperature or verti-

cal temperature gradient (or static stability) at each level and

COV or −OLR (Fig. 2 bottom). COV shows a stronger rela-

tionship around the tropopause with vertical temperature gra-

www.atmos-chem-phys.net/15/6767/2015/ Atmos. Chem. Phys., 15, 6767–6774, 2015
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Figure 5. (a) Composite analysis of 12 SSWs during boreal winters

from 1979 to 2001 (see Kodera, 2006, for detail): low-pass-filtered

zonal-mean zonal wind tendency at 10 hPa averaged over 50–70◦ N

of 12 events (top). Student t values of composited vertical pressure

velocity averaged over 30◦ S–30◦ N in the stratosphere (middle) and

those of 10◦ S–Equator in the troposphere. (b) Zonal-mean zonal

wind tendency in winters 2009 and 2010 similar to top panel in (a).

Normalized tropical vertical pressure velocity averaged over 20◦ S–

Equator in January 2009 (middle) and January 2010 (bottom). Ver-

tical lines indicate key date (see text). Rectangles indicate a period

of enhanced tropospheric upwelling in panel (a).

dient (Fig. 2e) than temperature itself (Fig. 2d). This means

that COV is sensitive to the stability around the tropopause

region (100 hPa), while OLR is related with the static sta-

bility in the upper troposphere (Fig. 2f). This result indicates

that COV increases due to a decrease of static stability around

the tropopause induced by a cooling in the lower stratosphere

associated with the SSW, consistent with the results of Kuang

and Bretherton (2004) and Chae and Sherwood (2010). Our

previous numerical experiment also shows that, when local

3-day mean

150 200 250 300 [W/m2]

Longitude
60E 18030E 120E90E 150E 150W

2008/ 2009

1 Jan

16 Dec

1 Feb

16 Feb

16 Jan

2009/ 2010

1 Jan

20 Dec

1 Feb

20 Jan

20 Feb

Equatorial OLR (5S-5N) 

Longitude
60E 18030E 120E90E 150E 150W

Figure 6. Time–longitude sections of 3-day running mean equa-

torial (5◦ S–5◦ N) OLR over the Indian Ocean–central Pacific sec-

tor (30◦ E–150◦W) during boreal winter for (left) 2008/2009 and

(right) 2009/2010. The figure displays a 2-month period centred on

the onset day of the tropical stratospheric upwelling events (16 Jan-

uary 2009 and 20 January 2010) indicated by horizontal solid lines.

cooling occurs near the tropopause, upwelling enhances, ac-

companying a warming in the lower TTL and the upper tro-

posphere (see Fig. 4 of Kodera et al., 2011a). A global non-

hydrostatic model study (Eguchi et al., 2015) also confirmed

the relationship suggested in the present result. Therefore,

we consider that, although the cooling effect by stratospheric

upwelling is limited in the stratosphere, its effect can further

penetrate below through changes in COV and deep convec-

tive activity.

Changes were also noted in the spatial distribution of the

convective activity following the stratospheric event (Fig. 4).

When stratospheric upwelling was suppressed before the on-

set of the event (period i), convection tended to cluster around

the equatorial Maritime Continent or western Pacific region

depending on the phase of ENSO. When the stratospheric

upwelling increased (period ii), convection expanded over a

wide range of longitudes in the tropical summer hemisphere.

In other words, tropical circulation changed from a more

Walker-like (east–west) configuration to more of a Hadley

(north–south) type.

The Madden–Julian Oscillation (MJO) (Madden and Ju-

lian, 1994) has a significant influence on tropical convec-

tive activity. It is reported that the occurrence of the SSW

is related with the phase of the MJO (Garfinkel et al., 2012;

Liu et al., 2014). One would ask whether or not the present

phenomenon is associated with the MJO. The features of the

MJO in January 2009 and 2010 differed significantly as can

be seen in Fig. 6. A convective centre remained stationary

over the Maritime Continent prior to the onset of the 2009

stratospheric event, after which an eastward propagation was

initiated from the Indian Ocean. In contrast, an eastward-

propagating convective centre became almost stationary over

the western Pacific after the onset in January 2010. In spite of

the differences in the MJO in January 2009 and 2010, circu-

lation changes related to the stratospheric events showed sim-

Atmos. Chem. Phys., 15, 6767–6774, 2015 www.atmos-chem-phys.net/15/6767/2015/
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ilar features during both winters, suggesting that the present

phenomenon is independent of the MJO.

The certainty of the dynamical connections identified here

is of course limited by the small number and the relatively

short duration of the events. Further certainty will come from

future modelling studies and observational studies of a larger

set of events.
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