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Addressing high dimensionality in reliability analysis using low-rank
tensor approximations

K. Konakli & B. Sudret
Chair of Risk, Safety and Uncertainty Quantification
ETH Zürich, Switzerland

ABSTRACT: Evaluation of tail probabilities in reliability analysis faces challenges in cases when complex
models with high-dimensional random input are considered. To address such problems, we herein propose the
use of surrogate models developed with low-rank tensor approximations. In this approach, the response quantity
of interest is expressed as a sum of a few rank-one tensors. We first describe a non-intrusive method for building
low-rank approximations using a greedy algorithm, which relies on the solution of minimization problems of
only small size. In the sequel, we demonstrate the efficiency of meta-models built in this way in reliability
applications involving the deflections of structural systems under static loads and the temperature in stationary
heat conduction with spatially varying diffusion coefficient. Furthermore, we show that the proposed approach
outperforms the popular meta-modeling technique of polynomial chaos expansions.

1 INTRODUCTION

It is nowadays common engineering practice to in-
vestigate the behavior of a system of interest through
computer simulation. Because uncertainty is ubiqui-
tous in engineering problems, the analysis of the re-
sponse of a computational model must consider a
range of values for the input parameters. In this con-
text, reliability analysis aims at evaluating the prob-
ability of a response quantity exceeding a prescribed
limit, the so-called failure probability.

When events with small failure probabilities are of
interest, reliability analysis with the classical Monte
Carlo simulation approach becomes unaffordable for
complex computational models due to the large num-
ber of runs required. To address this issue, several
methods have been proposed to date, each possess-
ing its own advantages and limitations (see e.g. Morio
et al. (2014)). Unfortunately, many of those methods
prove inefficient in problems with high-dimensional
input.

The focus herein is on reliability analysis by means
of surrogate models, also known as meta-models. The
latter possess similar statistical properties with the
models they substitute, but have simple functional
forms, thus enabling analysis of complex systems
with random input. We investigate a newly emerged
class of meta-models, called Low-Rank Approxima-
tions (LRA), which represent the random response as
a sum of a few rank-one tensors (e.g. Nouy (2010),
Chevreuil et al. (2013), Doostan et al. (2013)). Be-

cause the number of unknown coefficients in LRA
grows only linearly with the number of input parame-
ters, the approach can be particularly effective in han-
dling problems with high dimensionality.

In this paper, after a brief review of non-intrusive
meta-modeling and respective error estimation tech-
niques, we describe a method for developing LRA by
building upon existing greedy approaches. We next
examine reliability applications in which the number
of available model evaluations for creating a meta-
model is small with respect to the input dimension.
In these applications, we demonstrate the superiority
of LRA in comparison to the popular meta-modeling
technique of polynomial chaos expansions (Xiu and
Karniadakis (2002), Blatman and Sudret (2011)).

2 NON-INTRUSIVE META-MODELING AND
ERROR ESTIMATION

We consider a computational model,M, represented
by the map

X ∈ DX ⊂ RM 7−→ Y =M(X) ∈ R, (1)

where X denotes the M -dimensional random input
vector with support DX and Y is a scalar response
quantity of interest. In a general case, the above map
does not have a closed analytical form and may in-
volve a computationally expensive process.

A meta-model, M̂(X), is an analytical func-
tion that mimics the behavior of M(X). In non-



intrusive approaches, the meta-model is developed
using a set of realizations of the input vector, E =
{χ(1), . . . ,χ(N)}, called Experimental Design (ED),
and the corresponding evaluations of the original
model, Y = {M(χ(1)), . . . ,M(χ(N))}. Thus, non-
intrusive meta-modeling treats the original model as
a black box.

In the following, we describe measures of accuracy
of the meta-model response, Ŷ = M̂(X). To this end,
we introduce the discrete L2 semi-norm of a function
x ∈ DX 7−→ a(x) ∈ R, given by

‖ a ‖X=

(
1

n

n∑
i=1

a2(xi)

)1/2

, (2)

where X = {x1, . . . ,xn} ⊂ DX denotes a set of re-
alizations of the input vector.

The generalization error, ErrG, represents the
mean-square error of the difference Y − Ŷ and can
be estimated by

ÊrrG =
∥∥∥M−M̂∥∥∥2

Xval

, (3)

where Xval = {x1, . . . ,xnval} is a sufficiently large set
of realizations of the input vector, called validation
set. The estimate of the relative generalization error,
êrrG, is obtained by normalizing ÊrrG with the em-
pirical variance of Yval = {M(x1), . . . ,M(xnval)}.
However, a validation set is usually not available
in typical meta-modeling applications, where a large
number of model evaluations is unaffordable. A dif-
ferent estimate that relies solely on the ED, E =

{χ(1), . . . ,χ(N)}, is the empirical error, ÊrrE , given
by

ÊrrE =
∥∥∥M−M̂∥∥∥2

E
. (4)

The relative empirical error, êrrE , is obtained by
normalizing ÊrrE with the empirical variance of
Y = {M(χ(1)), . . . ,M(χ(N))}. Unfortunately, êrrE
tends to underestimate the actual generalization error,
which might be severe in cases of overfitting.

A good compromise between accuracy and compu-
tational cost in error evaluation is offered by Cross-
Validation (CV) techniques, which use the informa-
tion contained in the ED. In k-fold CV, (i) the ED
is randomly partitioned into k sets of approximately
equal size, (ii) for i = 1, . . . , k, a meta-model is built
considering all but the i-th partition and the excluded
set is used to evaluate the respective generalization
error, (iii) the generalization error of the meta-model
built with the full ED is estimated as the average of
the errors of the k meta-models in (ii).

3 LOW-RANK TENSOR APPROXIMATIONS

3.1 Formulation using polynomial bases

We consider the map in Eq. (1) assuming that the
components ofX = {X1, . . . ,XM} are independent,
with the marginal Probability Density Function (PDF)
of Xi denoted by fXi

. A meta-model of Y =M(X)
belonging to the class of LRA has the form

Ŷ =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l (Xi)

)
, (5)

where v(i)l denotes a univariate function ofXi, bl is the
normalizing coefficient of the rank-1 function in the
parenthesis and R is a small number of rank-1 terms.
By expanding v

(i)
l (Xi) onto a polynomial basis that

is orthonormal with respect to fXi
, Eq. (5) takes the

form

Ŷ =
R∑
l=1

bl

(
M∏
i=1

(
pi∑
k=0

z
(i)
k,l P

(i)
k (Xi)

))
, (6)

where P (i)
k is the k-th degree univariate polynomial in

the i-th input variable of maximum degree pi and z(i)k,l
is the coefficient of P (i)

k in the l-th rank-1 term. We
underline that the number of unknown coefficients in
Eq. (6) grows only linearly with the input dimension,
M .

For standard distributions, the associated family of
orthonormal polynomials is well known. For instance,
a uniform variable with support [−1,1] is associated
with the family of Legendre polynomials, whereas a
standard normal variable is associated with the family
of Hermite polynomials. Other cases can be treated
through an isoprobabilistic transformation of X to
a basic random vector. Cases with mutually depen-
dent input variables can also be treated through an
isoprobabilistic transformation to a vector of indepen-
dent standard variables.

Note that although LRA with polynomial bases are
examined in the present work, alternative basis func-
tions may be considered in a general case.

3.2 Construction with greedy approaches

LRA can be efficiently built with greedy approaches,
where the rank of the approximation is progressively
increased and the polynomial coefficients in each
dimension are sequentially updated. In this paper,
we adopt the skeleton of the algorithm described in
Chevreuil et al. (2013) and propose appropriate stop-
ping criteria in the sequential updating of the polyno-
mial coefficients.

Let Ŷr denote the rank-r approximation of Y =
M(X), i.e.

Ŷr =
r∑
l=1

blwl(X), (7)



with

wl(X) =
M∏
i=1

(
pi∑
k=0

z
(i)
k,l P

(i)
k (Xi)

)
. (8)

The adopted algorithm comprises a sequence of pairs
of a correction step and an updating step, so that the
r-th correction step yields the rank-1 term wr and
the r-th updating step yields the set of coefficients
b1, . . . , br. Details are given in the sequel.

Correction step: LetRr−1 denote the residual after
the completion of the (r− 1)-th iteration, i.e.

Rr−1 = Y − Ŷr−1, (9)

withR0 = Y . Based on the available experimental de-
sign, E , the rank-1 tensor wr is obtained as the solu-
tion of

wr = arg min
ω∈W
‖Rr−1 − ω‖2E , (10)

where W represents the space of rank-1 tensors. By
employing an alternated minimization algorithm, the
minimization problem in Eq. (10) is substituted by a
series of smaller minimization problems, each involv-
ing the coefficients along one dimension only, i.e.

z(j)r = arg min
ζ∈Rpj

∥∥∥∥∥Rr−1 −C(j) ·

(
pj∑
k=0

ζk P
(j)
k

)∥∥∥∥∥
2

E

,

(11)

with

C(j) =

(∏
i 6=j

pi∑
k=0

z
(i)
k,r P

(i)
k

)
, (12)

for j = 1, . . . ,M . Because Eq. (11) involves only
pj + 1 unknowns (typically pj < 20), it can be eas-
ily solved using the Ordinary Least Squares (OLS)
method.

The correction step is initiated by assigning arbi-
trary values to the unknowns and may involve several
iterations over the set of dimensions. Our proposed
stopping criterion combines the number of iterations,
Ir, with the decrease in the relative empirical error in
two successive iterations, ∆êrrr. In the latter, the rel-
ative empirical error, êrrr, is obtained by normalizing

Êrrr = ‖Rr−1 −wr‖2E (13)

with the empirical variance of Y =
{M(χ(1)), . . . ,M(χ(N))}, representing the set
of model evaluations at the ED. Accordingly, the r-th
correction step is terminated if either Ir reaches a
maximum allowable value, Imax, or ∆êrrr becomes
smaller than a prescribed threshold, ∆êrrmin.

Updating step: In the r-th updating step, the coeffi-
cients b= {b1, . . . , br} are determined as the solution
of

b = argmin
β∈Rr

∥∥∥∥∥M−
r∑
l=1

βlwl

∥∥∥∥∥
2

E

. (14)

In the above minimization problem, br is determined
for the first time, whereas {b1, . . . , br−1} are updated
from their previous values. Because Eq. (14) involves
only r unknowns (recall that small ranks are relevant
in LRA), it can be easily solved with OLS.

Note that the progressive adding of rank-1 terms
results in a set of LRA of rank {1, . . . , r} at the r-th
step. In the present work, we select the optimal rank
R ∈ {1, . . . , rmax} by using error measures based on
3-fold CV as proposed by Chevreuil et al. (2013) (see
Section 2 for details on k-fold CV).

3.3 Comparison to polynomial chaos expansions

A popular approach for developing meta-models with
polynomial bases is the use of Polynomial Chaos Ex-
pansions (PCE), described next. As in Section 3.1, we
assume that the components of X are independent
and treat the case of dependent input with an appro-
priate isoprobabilistic transformation.

Let fX denote the PDF ofX , i.e.

fX(X) =
M∏
i=1

fXi
(Xi). (15)

Then, a PCE meta-model of Y =M(X) in Eq. (1)
has the form (Xiu and Karniadakis (2002), Soize and
Ghanem (2004))

Ŷ =
∑
α∈A

yαΨα(X), (16)

where Ψα are multivariate polynomials that are or-
thonormal with respect to fX , A is a finite subset of
NM and yα are the corresponding polynomial coeffi-
cients. Because of Eq. (15), the multivariate polyno-
mial bases in Eq. (16) can be obtained by tensoriza-
tion of univariate polynomials that are orthonormal
with respect to the marginals fXi

, i.e.

Ψα(X) =
M∏
i=1

P (i)
αi

(Xi), (17)

where α = {α1, . . . , αM} and P
(i)
αi is a univariate

polynomial of degree αi in the i-th input variable be-
longing to an appropriate family (see Section 3.1).

Different truncation schemes may be employed to
determine the set of multi-indices {α ∈ A}. When
the maximum degree of P (i)

αi is set to pi, i.e. A =
{α ∈ NM : αi ≤ pi, i = 1, . . . ,M}, the expansion



in Eq. (16) relies on the same polynomial functions
used in Eq. (6). For this case, let us compare the
number of unknowns in LRA and PCE when pi = p,
i = 1, . . . ,M . These numbers are given by (p+ 1)M

in PCE and (p+ 1) ·M ·R in LRA, disregarding re-
dundant parameters. Accordingly, for a typical en-
gineering problem with M = 10, considering low-
order polynomials with p = 3 and an example low
rank R = 10, the aforementioned equations yield
1,048,576 PCE coefficients versus a mere 400 un-
knowns in LRA.

A more efficient truncation scheme is the hyper-
bolic scheme (Blatman and Sudret 2010) defined by
A = {α ∈ NM : ‖α‖q ≤ p}, with

‖α‖q =

(
M∑
i=1

αi
q

)1/q

, 0 < q < 1. (18)

When q = 1, multivariate polynomials of maximum
total degree p are retained in the expansion. Smaller
values of q impose limitations to the number of terms
that include interactions between two or more input
variables.

When the coefficients y = {yα,α ∈ A} are deter-
mined with a regression approach, one needs to solve
the minimization problem

y = arg min
υ∈RcardA

∥∥∥∥∥M−∑
α∈A

υαΨα

∥∥∥∥∥
2

E

. (19)

Even by employing a hyperbolic truncation scheme,
the number of unknowns in Eq. (19) can be very large
in high-dimensional problems, requiring ED of un-
affordable size. Note that contrary to LRA, where a
greedy construction allows computation of the poly-
nomial coefficients in each direction separately, the
entire set of PCE coefficients is determined from a
single minimization problem. To improve efficiency
in the latter, one may substitute Eq. (19) with a re-
spective regularized problem. By penalizing the L1

norm of y, the Least Angle Regression (LAR) method
(Efron et al. 2004) disregards insignificant terms from
the set of predictors, thus yielding sparse PCE. A
variation proposed by Blatman and Sudret (2011) un-
der the name hybrid LAR consists in using the LAR
method to determine the best set of predictors and
then, computing the PCE coefficients with OLS.

4 EXAMPLE APPLICATIONS

4.1 Beam deflection

In the first example, we investigate the reliability of
a simply supported beam under a concentrated load
at the mid-span with respect to the mid-span deflec-
tion. The model input,X , comprises M = 5 indepen-
dent variables: the width and height of the rectangu-
lar cross section, respectively denoted by b and h; the

length, L; the Young’s modulus, E; and the load, P .
The distributions of the input variables are listed in
Table 1. The mid-span deflection is obtained through
basic structural mechanics as u = PL3/4Ebh3. The
probability of failure is defined by Pf = P(u ≥ ulim),
where ulim denotes a maximum allowable deflection.
Due to the problem setup (u is a product of lognormal
random variables), Pf can be computed analytically.

Table 1: Simply-supported beam: Distributions of input random
variables.

Variable Distribution mean CoV
b (m) Lognormal 0.15 0.05
h (m) Lognormal 0.3 0.05
L (m) Lognormal 5 0.01
E (MPa) Lognormal 30,000 0.15
P (KN) Lognormal 10 0.20

We obtain failure probability estimates, P̂f , for dif-
ferent deflection thresholds using a Monte Carlo Sim-
ulation (MCS) approach, in which the actual model
u(X) is replaced by a meta-model û(X). In addition
to LRA, we consider meta-models built with PCE and
assess their comparative accuracy. We use two ED, of
sizes N = 30 and N = 50, both obtained with Sobol
pseudo-random sequences. In the LRA approach, we
use a common polynomial degree p1 = . . . = p5 = p,
selected with 3-fold CV. After preliminary investiga-
tions, we set Imax = 50 and ∆êrrmin = 10−8 (see
Konakli and Sudret (2015)). In the PCE approach,
we determine the candidate basis using a hyperbolic
truncation scheme and develop sparse expansions by
computing the coefficients with hybrid LAR. Optimal
values of {p, q} are selected by means of the leave-
one-out error (see Blatman and Sudret (2011) for de-
tails). The software UQLab (Marelli and Sudret 2014)
is used for building the PCE meta-models.

For ulim ∈ [4,9] mm, Figure 1 compares the relia-
bility indices, β̂ = Φ−1(P̂f ), obtained with the LRA
and PCE meta-models to the corresponding reference
reliability index, β = Φ−1(Pf ), representing the ana-
lytical solution. For N = 30, the estimates obtained
with LRA are fairly close to β, especially for the
smaller deflection thresholds, whereas the estimates
obtained with PCE are overall highly inaccurate (note
that no failure points are sampled for ulim = 9 mm).
For N = 50, the LRA-based estimates of β are excel-
lent in the entire range examined, whereas the PCE-
based estimates remain poor for ulim > 6 mm. To gain
further insight, in Figure 2, we compare the analyti-
cal PDF of the response, fU , to the respective Kernel
Density Estimates (KDE), f̂U , obtained with the LRA
and PCE meta-models for the two ED. By using a
log-scale in the vertical axes, we clearly demonstrate
the superiority of LRA in estimating the tails of the
response distribution. The remarkably good perfor-
mance of LRA herein can be explained by the rank-1
structure of the considered response function.
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Figure 1: Reliability indices for beam deflection.

4.2 Truss deflection

In this example, we consider the reliability of the truss
shown in Figure 3, with respect to the mid-span de-
flection, u. The model input, X , comprises M = 10
independent variables: the vertical loads, P1, . . . , P6;
the cross-sectional area and Young’s modulus of the
horizontal bars, A1 and E1, respectively; and the
cross-sectional area and Young’s modulus of the ver-
tical bars, A2 and E2, respectively. The distributions
of the input variables are listed in Table 2. The de-
flection, u, is computed with a finite-element analysis
code.

Table 2: Truss structure: Distributions of input random variables.
Variable Distribution mean CoV
A1 (m) Lognormal 0.002 0.10
A2 (m) Lognormal 0.001 0.10

E1,E2 (N/m2) Lognormal 2.1e11 0.10
P1, . . . , P6 (N) Gumbel 5e4 0.15

As in the previous example, we use LRA meta-
models to obtain MCS estimates of the reliability in-
dices for different deflection thresholds. We consider
again a common polynomial degree p1 = . . . = p10 =
p, selected with 3-fold CV. After preliminary investi-
gations, we set Imax = 50 and ∆êrrmin = 10−5 (Kon-
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Figure 2: Probability density function of beam deflection.
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Figure 3: Truss structure.

akli and Sudret 2015). The reliability indices obtained
with LRA using an ED of size N = 50 are compared
to respective values obtained with (i) the Second-
Order Reliability Method (SORM) and (ii) Impor-
tance Sampling (see e.g. Morio et al. (2014) for a de-
scription of these methods). In the IS approach, we
utilize the results of a previous analysis with the First-
Order Reliability Method (FORM) and sequentially
add samples of size NIS = 100 until the coefficient of
variation of the estimated failure probability becomes
smaller than 0.10. The SORM- and IS-based failure
probabilities are computed with the software UQLab
(Marelli & Sudret 2014).

Figure 4 compares the reliability indices obtained
with the different approaches for ulim ∈ [10,15] cm.
We observe that the LRA-based estimates of Pf are
very close to the SORM and IS results. To high-
light the efficiency of the LRA approach, in Table 3,



we list the number of model evaluations required by
SORM and IS to compute the failure probability for
each threshold. The given number for IS includes the
model evaluations required to obtain the FORM esti-
mate. Note that with the LRA approach, we estimate
P̂f values similar to those obtained with SORM and
IS, while relying on a much smaller number of model
evaluations. We underline that once the LRA meta-
model is built, the failure probability for any threshold
can be estimated without any additional model eval-
uations, whereas a new set of model evaluations for
each threshold is required by the FORM, SORM and
IS techniques.
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Figure 4: Reliability indices for truss deflection.

Table 3: Number of model evaluations in computing the SORM
and IS estimates of the truss failure probability.

ulim(m) SORM IS
0.10 387 475
0.11 365 553
0.12 372 560
0.13 367 755
0.14 379 867
0.15 391 979

4.3 Heat conduction with spatially varying
diffusion coefficient

We consider a two-dimensional stationary heat-
conduction problem defined on the square domain
D = (−0.5,0.5) × (−0.5,0.5) shown in Figure 5,
where the temperature field T (z), z ∈D, is described
by the partial differential equation

−∇(κ(z)∇T (z)) = 500IA(z), (20)

with boundary conditions T = 0 on the top bound-
ary and ∇T · n = 0 on the left, right and bottom
boundaries, where n denotes the vector normal to the
boundary. In Eq. (20), A = (0.2,0.3)× (0.2,0.3) is a
square domain within D (see Figure 5) and IA is the

indicator function equal to 1 if z ∈ A and 0 other-
wise. The diffusion coefficient, κ(z), is a lognormal
random field defined as

κ(z) = exp[aκ + bκ g(z)], (21)

where g(z) denotes a standard Gaussian random field
with autocorrelation function

ρ(z,z′) = exp (−‖z − z′‖2/`2). (22)

In Eq. (21), the parameters aκ and bκ are such that
the mean and standard deviation of κ are µκ = 1 and
σκ = 0.3, respectively, while in Eq. (22), ` = 0.2.

Using the Expansion Optimal Linear Estimation
(EOLE) method (Li and Der Kiureghian 1993), the
random field g(z) is approximated by

ĝ(z) =
M∑
i=1

ξi√
li
φT
iCzζ. (23)

In the above equation, {ξ1, . . . , ξM} are indepen-
dent standard normal variables; Czζ is a vector with
elements C(k)

zζ = ρ(z,ζk), where {ζ1, . . . ,ζn} are
the points of an appropriately defined grid in D;
and (li,φi) are the eigenvalues and eigenvectors of
the correlation matrix Cζζ with elements C(k,l)

ζζ =
ρ(ζk,ζl), where k, l = 1, . . . , n. We select M = 53
in order to satisfy the condition

M∑
i=1

li/
n∑
i=1

li ≥ 0.99. (24)

The response quantity of interest in the following
reliability analysis is the average temperature in the
square domainB = (−0.3,−0.2)× (−0.3,−0.2) (see
Figure 5), denoted by T̃ . For a given realization of
{ξ1, . . . , ξM}, the “exact” model response is obtained
with an in-house finite-element analysis code devel-
oped in Matlab environment. The employed finite-
element discretization with triangular Delaunay ele-
ments is shown in Figure 5. Figure 6 shows an exam-
ple realization of the temperature field over the entire
domain.

As before, we assess the comparative accuracy of
LRA and PCE in estimating failure probabilities with
MCS. We build the meta-models as described in Sec-
tion 4.1, using two ED of sizesN = 200 andN = 500.
After preliminary investigations, we set Imax = 50
and ∆êrrmin = 10−6 in the LRA algorithm. Refer-
ence values of the reliability indices are obtained with
MCS based on evaluations of the “exact” model at an
input sample consisting of 104 points. Note that for
the high input dimension of this problem, the FORM
and SORM approaches are ineffective.

For varying thresholds of T̃ , T̃lim ∈ [1.2,1.7] oC,
Figure 7 compares the reliability indices obtained



Figure 5: Domain and finite element mesh in heat-conduction
problem.

Figure 6: Example realization of temperature field in heat-
conduction problem.

with the LRA and PCE meta-models to their respec-
tive reference values. The figure demonstrates that
for each of the considered ED, the LRA-based esti-
mates are superior to the PCE-based ones. An ED of
sizeN = 200 proves sufficient to obtain fair estimates
of the reference reliability indices with the LRA ap-
proach, whereas the same ED proves inadequate for
estimating the higher reliability indices with the PCE
approach. For N = 500, the PCE-based estimates be-
come acceptable, whereas the LRA-based estimates
become excellent over the entire range of considered
thresholds. To gain insight, in Figure 8, we compare
the KDE-based PDF of T̃ using the LRA and PCE
meta-models for each ED to the KDE-based PDF ob-
tained with the same set of model evaluations used to
compute the reference reliability indices. The use of
a logarithmic scale in the vertical axes highlights the
superiority of the LRA approach in approximating the
tails of the response distributions, particularly for the
smaller ED.

5 CONCLUSIONS

For models with high-dimensional input, commonly
used methods of reliability analysis may be ineffec-
tive. As a remedy, we herein propose the use of meta-
models developed with Low-Rank Approximations
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Figure 7: Reliability indices for temperature in heat-conduction
problem.

(LRA). Following the description of an algorithm for
building LRA non-intrusively, we demonstrate the ef-
ficiency of the approach in reliability applications,
where models with different dimensionality are con-
sidered. The applications involve the deflections of a
beam and a truss, both subjected to static loads, and
the temperature in heat conduction with the diffusion
coefficient described by a random field. In the same
applications, we show that LRA outperform the popu-
lar meta-modeling technique of polynomial chaos ex-
pansions for cases when the size of the experimental
design is small with respect to the input dimension.
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