François Bolley 
email: francois.bolley@upmc.fr
  
Ivan Gentil 
email: gentil@math.univ-lyon1.fr
  
Arnaud Guillin 
email: guillin@math.univ-bpclermont.fr
  
Kazumasa Kuwada 
email: kuwada@math.titech.ac.jp
  
Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition
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The curvature-dimension condition is a generalization of the Bochner inequality to weighted Riemannian manifolds and general metric measure spaces. It is now known to be equivalent to evolution variational inequalities for the heat semigroup, and quadratic Wasserstein distance contraction properties at different times. On the other hand, in a compact Riemannian manifold, it implies a same-time Wasserstein contraction property for this semigroup. In this work we generalize the latter result to metric measure spaces and more importantly prove the converse: contraction inequalities are equivalent to curvature-dimension conditions. Links with functional inequalities are also investigated.

Introduction

The von Renesse-Sturm theorem (see [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF]) ensures that a Wasserstein distance contraction property between solutions to the heat equation on a Riemannian manifold is equivalent to a lower curvature condition. This result is one of the first equivalence results relating the Wasserstein distance and a curvature condition. Recent works have been devoted to a more precise curvaturedimension condition instead of a sole curvature condition. In this work, and in a fairly general framework, we derive new dimensional contraction properties under a curvature-dimension condition and we show that they are all equivalent to it.

Let ∆ be the Laplace-Beltrami operator on a smooth Riemannian manifold (M, G) and let (P t f ) t 0 be the solution to the heat equation ∂ t u = ∆u with f as the initial condition. Many of the coming notions and results have been considered in a more general setting, but for simplicity in the introduction we focus on this case. The Bochner identity states that

1 2 ∆|∇f | 2 -∇f • ∇∆f = |∇∇f | 2 + Ric(∇f, ∇f )
where Ric is the Ricci curvature of (M, G). The manifold associated with its Laplacian is said to satisfy the CD(R, m) curvature-dimension condition if its Ricci curvature is uniformly bounded from below by R ∈ R and its dimension is smaller than m ∈ (0, +∞]. In this case

1 2 ∆|∇f | 2 -∇f • ∇∆f 1 m (∆f ) 2 + R|∇f | 2 (1) 
by the Cauchy-Schwarz inequality. The CD(R, m) condition and (1) are the starting point of many comparison theorems, functional and geometrical inequalities, bounds on the heat kernel, etc. (see e.g. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF][START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF][START_REF] Villani | Optimal transport, Old and new[END_REF][START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF]).

In this work we focus on the link between the curvature-dimension condition and Wasserstein distance contraction properties of the heat semigroup. The von Renesse-Sturm theorem [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF] states that: the CD(R, ∞) condition holds if and only if

W 2 2 (P t f dx, P t gdx) ≤ e -2Rt W 2 2 (f dx, gdx) (2) 
for all t 0 and probability densities f, g with respect to the Riemannian measure dx. Here W 2 is the Wasserstein distance with quadratic cost.

There are many proofs of this result as well as extensions to more general evolutions and spaces, see for instance [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Bakry | On Harnack inequalities and optimal transportation[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF][START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF][START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF][START_REF] Otto | Eulerian calculus for the contraction in the Wasserstein distance[END_REF][START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF][START_REF] Wang | Equivalent semigroup properties for the curvature-dimension condition[END_REF]. Following the seminal papers [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Sturm | On the geometry of metric measure spaces. I and II[END_REF], attention has been drawn to taking the dimension of the manifold into account.

A first way of including the dimension is to use two different times s and t in the inequality [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. It is proved in [START_REF] Bakry | On Harnack inequalities and optimal transportation[END_REF][START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF] that the CD(0, m) condition implies

W 2 2 (P s f dx, P t gdx) ≤ W 2 2 (f dx, gdx) + 2m( √ t - √ s) 2 (3) 
for all s, t 0 and all probability densities f, g. A non zero lower bound on the curvature and the equivalence have been further considered in [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF][START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF]:

• In [START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF], the fourth author proved that the CD(R, m) condition holds if and only if W 2 2 (P t f dx, P s gdx) ≤ A(s, t, R, m)W 2 2 (f dx, gdx) + B(s, t, m, R)

for all s, t 0 and all probability densities f, g, and for appropriate positive functions A, B.

• In [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF], the authors proved that the CD(R, m) condition holds if and only if

s R m 1 2 W 2 (P t f dx, P s gdx) 2 ≤ e -R(t+s) s R m 1 2 W 2 (f dx, gdx) 2 + m R (1 -e -R(s+t) ) ( √ t - √ s) 2 2(t + s) (5) 
for all s, t 0 and all probability densities f, g. Here s r (x) = sin( √ rx)/ √ r if r > 0, s r (x) = sinh( |r|x)/ |r| if r < 0 and s 0 (x) = x, hence recovering (3) when R = 0. Both inequalities (4) and ( 5) are extensions of ( 2) and (3), taking the dimension into account.

Contraction properties with the same time have been derived in [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] for the Euclidean heat equation in R m , and then extended by the third author in [START_REF] Gentil | Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold[END_REF] to a compact Riemannian manifold. Let Ent dx (h) = h log h dx be the entropy of a probability density h. Then the CD(R, m) condition implies W 2 2 (P t f dx, P t gdx) ≤ e -2Rt W 2 2 (f dx, gdx) -2 m t 0 e -2R(t-u) (Ent dx (P u g) -Ent dx (P u f )) 2 du for all t 0 and all f , g probability densities. This bound has also been proved in [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] for the Markov transportation distance instead of the W 2 distance. This distance differs from W 2 and has actually been tailored to Markov semigroups and the Bakry-Émery Γ 2 calculus. Dimensional contraction properties for a Wasserstein distance defined with an adapted cost have also been derived in [START_REF] Wang | Equivalent semigroup properties for the curvature-dimension condition[END_REF].

In this paper we derive diverse same time contraction inequalities under a general CD(R, m) curvature-dimension condition, and in fact prove that they are all equivalent to this condition. The results and the proof will be given in the two settings of a smooth Riemannian manifold and of a more general metric measure space, more precisely in the setting introduced in [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF] of a Riemannian energy measure space.

The paper is organized as follows. In Section 1, we state and explain the context of our main result, Theorem 1. In Section 2, we prove the easier implications, leaving the main issue aside: from the weakest contraction to the curvature-dimension condition. Some arguments in this section require a detailed formulation given in Section 5 below : thus they are only outlined there and complemented in Section 5.2. In Section 3, we present the strategy of our proof, motivated by the elementary gradient flow approach in Euclidean space. The result is proved on a Riemannian manifold in Section 4, and on a Riemannian energy measure space in Section 5. The general strategy is the same in both settings, and it could seem redundant to give both proofs. However the proof in the Riemannian setting is rather simpler, presents the most important steps of the argument and thus gives a way to get it in a more general space. We believe that it is an opportunity to emphasize, in our example, the main issues arising in transferring a proof in the Riemannian setting to the abstract measure space setting. Indeed, there, regularity is no more available "for free", and our proof will crucially use a whole panel of powerful tools developed by L. Ambrosio, N. Gigli, G. Savaré, K.-T. Sturm and coauthors to overcome this difficulty, in particular localization and mollification by semigroup. The last section gives a new and simple derivation of a classical entropy-energy inequality, as well as dimensional HWI inequalities: for this we start from our contraction inequalities instead of the curvature-dimension condition, as in earlier works.

Main result

Our main theorem states that, in a quite general framework, a curvature-dimension condition is equivalent to same time Wasserstein distance contraction inequalities. Let (X, d) be a Polish metric space, P(X) be the set of Borel probability measures on X and P 2 (X) be the set of all µ ∈ P(X) such that d(x 0 , x) 2 dµ(x) < ∞ for some x 0 ∈ X. The (quadratic) Wasserstein distance between ν 1 and ν 2 in P 2 (X) is defined by

W 2 (ν 1 , ν 2 ) = inf π d(x, y) 2 dπ(x, y)
where the infimum runs over all probability measures π on X × X with marginals ν 1 and ν 2 .

A fundamental tool is the Kantorovich dual representation : for ν 1 , ν 2 ∈ P 2 (X),

W 2 2 (ν 1 , ν 2 ) 2 = sup ψ Qψ dν 1 -ψ dν 2 . (6) 
Here the supremum runs over all bounded Lipschitz functions ψ (in this case Theorem 5.10 in [START_REF] Villani | Optimal transport, Old and new[END_REF] can be extended to Lipschitz instead of continuous functions, see [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF]Rmk. 3.6]) and Qψ is the inf-convolution of ψ, defined on X by

Qψ(x) = inf y∈X ψ(y) + d(x, y) 2 2 .
The Wasserstein space (P 2 (X), W 2 ) is described in the reference books [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and [START_REF] Villani | Optimal transport, Old and new[END_REF]. We shall define the entropy Ent µ (f ) of a probability density with respect to a (finite or not) measure µ by Ent

µ (f ) = f log f dµ if f | log f | ∈ L 1 (µ) and ∞ otherwise.
Our result will be stated in the two settings of a Riemannian Markov triple (M, µ, Γ) (RM T in short), and a Riemannian energy measure space (X, τ, µ, E) (REM in short). These settings will be described in detail in Sections 4 and 5 respectively. A REM space is a particular metric measure space, developed in [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]. A RM T is a smooth Riemannian manifold equipped with a weighted Laplacian (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]) and is a particular example of REM space.

Even if a RM T is a REM space we prefer to state and prove our result in both settings since the argument is a little simpler in the Riemannian case. We also believe that it emphasizes the main difficulties when generalizing a result from a smooth setting to an abstract metric measure space. In both spaces, (P t ) t 0 denotes the associated Markov semigroup. It is defined through the weighted Laplacian in the RM T case, and through the Dirichlet form in the REM case.

The CD(R, m) curvature-dimension condition is defined using the Bochner inequality (1) in a Riemannian manifold and in a weak form in a metric measure space (see Definitions 4 and 7).

Recall finally that for r ∈ R the map s r is defined on R by

s r (x) =    sin( √ r x)/ √ r if r > 0 sinh( |r| x)/ |r| if r < 0 x if r = 0.
Theorem 1 (Equivalence between contractions and CD(R, m) condition) Consider a RM T or REM space as in Sections 4 and 5, with (finite or not) reference measure µ and associated semigroup (P t ) t 0 . Let R ∈ R and m > 0. Then the following properties are equivalent:

(i) the CD(R, m) (or weak CD(R, m) in a REM space) curvature-dimension condition holds;
(ii) for any t 0 and any probability densities f, g with respect to µ,

s R m 1 2 W 2 (P t f µ, P t gµ) 2 ≤ e -2Rt s R m 1 2 W 2 (f µ, gµ) 2 -2m t 0 e -2R(t-u) sinh 2 Ent µ (P u f ) -Ent µ (P u g) 2m du; (7) 
(iii) for any t 0 and any probability densities f, g with respect to µ,

W 2 2 (P t f µ, P t gµ) ≤ e -2Rt W 2 2 (f µ, gµ)- 2 m t 0 e -2R(t-u) (Ent µ (P u f ) -Ent µ (P u g)) 2 du. (8) 
See Theorems 6 and 8 for a more precise framework of Theorem 1.

A bound with the same additional term as in (ii) has also been derived in [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] for some specific instances of symmetric Fokker-Planck equations in R m , for which the generator only satisfies a CD(R, ∞) condition. Combined with a deficit in the Talagrand inequality, it has led to refined convergence estimates on the solutions.

Next section presents the easiest part of the proof of Theorem 1. More precisely, (i) ⇒ (ii) and an outline of (ii) ⇒ (iii), including the key Proposition 2. The full proof of (ii) ⇒ (iii) requires some knowledge on the spaces and will be finished in Section 5.2. Sections 2 to 5 (but Section 5.2) are dedicated to the more difficult (iii) ⇒ (i), in both RM T and REM spaces.

Proof of Theorem 1: first implications

Proof of (i) ⇒ (ii)

In [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF] M. Erbar, K.-T. Sturm and the fourth author of this paper have proved an Evolutional variational inequality (EVI in short) in the REM spaces. Let f, g be probability densities with respect to µ and let U m = exp(-Ent µ (•) /m). Then, under the weak CD(R, m) condition,

d dt s R m 1 2 W 2 (P t f µ, gµ) 2 + R s R m 1 2 W 2 (P t f µ, gµ) 2 ≤ m 2 1 - U m (g) U m (P t f ) . ( 9 
)
But it is classical, see e.g. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], how to deduce a contraction property in W 2 distance between solutions (P t f ) t 0 and (P t g) t 0 from an EVI: one applies the EVI to the curve (P t f ) t 0 and P s g for a given s, and then (with the time variable s) to the curve (P s g) s 0 and P t f for a given t; then one adds both inequalities, takes t = s and integrate in time. Then one obtains (ii). To sum up, it turns out that the EVI (9) not only leads to the property (5), as observed in [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF], but also to the same-time contraction property (ii).

Outline of the proof of (ii) ⇒ (iii)

We first observe that sinh 2 (x)

x 2 for any x, so ii) implies the same bound with sinh 2 (x) replaced by x 2 in the integral. Then the implication (ii) ⇒ (iii) is essentially a consequence of the following result, which we prove in the general context of a geodesic space.

Proposition 2 Let (Y, d Y ) be a geodesic metric space, U : Y → (-∞, ∞] and ϕ t : Y → Y (t ≥ 0) a one-parameter family of maps. Suppose that t → ϕ t (y) is continuous for all y ∈ Y and U (ϕ t (y)) ∈ R for all t > 0 and y ∈ Y. Suppose also that for y 0 , y 1 ∈ Y and t > 0,

s R m 1 2 d Y (ϕ t (y 0 ), ϕ t (y 1 )) 2 ≤ e -2Rt s R m 1 2 d Y (y 0 , y 1 ) 2 - 1 2m t 0 e -2R(t-u) (U (ϕ u (y 0 )) -U (ϕ u (y 1 ))) 2 du. ( 10 
)
Then

d Y (ϕ t (y 0 ), ϕ t (y 1 )) 2 ≤ e -2Rt d Y (y 0 , y 1 ) 2 - 2 m t 0 e -2R(t-u) (U (ϕ u (y 0 )) -U (ϕ u (y 1 ))) 2 du.
Proof. We adapt the argument of [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF]Prop. 2.22]. Let (y s ) s∈[0,1] be a geodesic from y 0 to y 1 in Y , and let t > 0 be fixed. For any n and

1 ≤ i ≤ n, let x n i = d Y (ϕ t (y (i-1)/n ), ϕ t (y i/n )). Then d Y (ϕ t (y 0 ), ϕ t (y 1 )) 2 ≤ n i=1 x n i 2 ≤ n n i=1 (x n i ) 2
for any n. In particular

d Y (ϕ t (y 0 ), ϕ t (y 1 )) 2 ≤ lim sup n→∞ n n i=1 (x n i ) 2 .
Now, by neglecting the second term in the right-hand side of [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] and by geodesic property,

s R m x n i 2 ≤ e -Rt s R m 1 2 d Y (y (i-1)/n , y i/n ) = e -Rt s R m 1 2n d Y (y 0 , y 1 ) .
It follows, as in [13, (2.32)], that there exists a constant c such that x n i ≤ c/n for large n and any

1 ≤ i ≤ n. Moreover s R m (x) 2 = x 2 -Rx 4 /(3m) + O(x 6 ) as x tends to 0, so that lim sup n→∞ n n i=1 (x n i ) 2 = 4 lim sup n→∞ n n i=1 s R m (x n i /2) 2 . ( 11 
)
As a consequence

d Y (ϕ t (y 0 ), ϕ t (y 1 )) 2 ≤ 4 lim sup n→∞ n n i=1 s R m 1 2 d Y (ϕ t (y (i-1)/n ), ϕ t (y i/n )) 2 ≤ 4 lim sup n→∞ n n i=1 e -2Rt s R m 1 2 d Y (y (i-1)/n , y i/n ) 2 - 1 2m t 0 e -2R(t-u) n n i=1 U (ϕ u (y (i-1)/n )) -U (ϕ u (y i/n )) 2 du
by assumption [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF].

Then the conclusion follows from this estimate by using [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] with d Y (y (i-1)/n , y i/n ) in place of x n i in the first term, and the Cauchy-Schwarz inequality in the second term.

Let us return to our case. As stated before, we give an outline and leave the rigorous argument to Section 5.2. We apply Proposition 2 for (Y, d Y ) = (P 2 (X), W 2 ). Under (ii), we can extend the action of the semigroup P t to probability measures. Then, ϕ t = P t fulfills all the assumptions of Proposition 2 with U = Ent µ . This ensures that (ii) implies (iii).

To sum up, (i) implies (ii), and (ii) implies (iii) (with the aid of an additional argument in Section 5.2). Thus, it remains to prove that, conversely, (iii) implies (i).

Strategy of the converse proof

The proof of (iii) ⇒ (i) will be given in the two cases of a RM T (in Section 4) and a REM space (in Section 5). In this section we present its strategy, in a formal way.

Example of a gradient flow in R d

Let us first present the easiest case of a smooth gradient flow in R d . There we shall see that the equivalence between the contraction inequality (8) and the CD(R, m) curvature-dimension condition is natural. It gives a way to understand the general case.

Let F : R d → R be a C 2 smooth function, and let (X t ) t 0 be a gradient flow for the function F , that is, a solution to the differential equation

dX t dt = -∇F (X t ). (12) 
Following [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF], the function F satisfies a CD(R, m) curvature-dimension condition for R ∈ R and m > 0 if for any x, h ∈ R d , the map [0, 1] ∋ s → ϕ(s) = F (x + sh) satisfies the convexity inequality

ϕ ′′ (s) R||h|| 2 + 1 m (ϕ ′ (s)) 2 . ( 13 
)
Here || • || is the Euclidean norm in R d . Since the path (x + sh) s∈[0,1] is a geodesic between x and x + h, this means that F satisfies a (R, m)-convexity condition along geodesics. Let now (X t ) t 0 and (Y t ) t 0 be two solutions to [START_REF] Burago | A course in metric geometry[END_REF] with initial conditions X 0 and Y 0 respectively. The function

Λ(t) = ||X t -Y t || 2 satisfies Λ ′ (u) = -2 1 0 ϕ ′′ u (s)ds where ϕ u (s) = F (X u + s(Y u -X u )).
If now the function F satisfies the above CD(R, m) condition ( 13), then

Λ ′ (u) ≤ -2R||X u -Y u || 2 - 2 m 1 0 (ϕ ′ u (s)) 2 du ≤ -2RΛ(u) - 2 m (ϕ u (1) -ϕ u (0)) 2 .
Integrating over the interval [0, t], we get

||X t -Y t || 2 ≤ e -2Rt ||X 0 -Y 0 || 2 - 2 m t 0 e -2R(t-u) (F (X u ) -F (Y u )) 2 du. (14) 
Conversely, let us assume that the gradient flow driven by F satisfies the property ( 14) for any t 0 and any initial conditions X 0 and Y 0 . Then F satisfies the CD(R, m) condition (13). For, taking the time derivative of (14

) at t = 0 implies -(X 0 -Y 0 ) • (∇F (X 0 ) -∇F (Y 0 )) ≤ -R||X 0 -Y 0 || 2 - 1 m (F (X 0 ) -F (Y 0 )) 2 .
Let then x, h in R d and s ∈ [0, 1] be fixed. A Taylor expansion for Y 0 = x + (s + ε)h tending to X 0 = x + sh (along a geodesic), so for ε → 0, implies back the CD(R, m) condition ( 13).

Let us observe that inequality ( 14) is exactly (8) when replacing R d with the space of probability densities, the Euclidean norm with the Wasserstein distance, F with the entropy, (X t ) t 0 with the semigroup (P t ) t 0 and the CD(R, m) condition ( 13) with the corresponding Bakry-Émery condition, which is equivalent to the (R, m)-convexity of the entropy (see [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF]). Of course, this computation is natural since the considered evolution is the gradient flow of the entropy with respect to the Wasserstein distance, see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF].

We now want to mimic the above proof for a smooth gradient flow on R d to the setting of a general semigroup on (P 2 (X), W 2 ). As here in the smooth case, we shall see in the coming section that geodesics play a fundamental role.

How to adapt the gradient flow proof to the general case?

The most natural method to prove that a contraction inequality in Wasserstein distance, as in (2), implies a curvature condition is to use close Dirac measures as initial data (see e.g. [START_REF] Bakry | On Harnack inequalities and optimal transportation[END_REF]). In our case, this can not be performed since the entropy of a Dirac measure is infinite. There seems to be hope since we consider the entropy of the heat kernel in positive time, when it becomes finite. However, it does not work again if we are on a homogeneous space. For instance, on R d , the entropy of the heat kernel p t (x, •) does not depend on x and the dimensional corrective terms in Theorem 1 vanish if we consider two Dirac measures as initial data.

To solve this issue we shall consider as initial data a probability density g (with respect to µ) and a perturbation of it, both in sufficiently wide classes of functions. The perturbation will be built by means of a geodesic in the Wasserstein space (P 2 (X), W 2 ). More precisely, given such a g, we are looking for a path (g s ) s 0 of probability densities whose Taylor expansion for small s is a geodesic in P 2 (X) with a direction given by a function f . We explain the idea on a RM T .

For that, consider the generator L g = L + Γ(log g, •) (see [START_REF] Gigli | Heat flow on Alexandrov spaces[END_REF] for the definition of Γ) with associated semigroup (P g t ) t 0 . Given a direction function f , there are two ways of defining the path (g s ) s 0 , both admitting the same Taylor expansion for small s:

• One can first consider the path g s = g(1 -sL g f ) for small s and a smooth and compactly supported function f . The function g s is a smooth, bounded and compactly supported perturbation of g. This path will be used on a RM T since such functions are adapted to the Riemannian setting.

• One can also consider the path gs = g(1+f -P g s f ), again for s small and "nice" f ∈ L ∞ (µ). The path (g s ) has the same Taylor expansion as (g s ) since f -P g s f = -sL g f + o(s). This path will be used on REM spaces. Indeed, regularity of functions (such as g s above) is clearly a difficult issue in the setting of metric measure spaces, and L ∞ (µ) functions are much more adapted to them. By using the semigroup (P g s ) s≥0 instead of the generator L g , we can apply the maximum principle which preserves (essential) boundedness of functions.

Remark 3 Let us see, formally and in the Euclidean space R d , why the probability measure g s dx has the same first-order Taylor expansion as the geodesic in the Wasserstein space. Let ν 0 be a probability measure in R d being absolutely continuous with respect to the Lebesgue measure, ψ : R d → R be a convex map, and

ν s = ((1 -s)Id + s∇ψ) # ν 0 for s ∈ [0, 1]. The path (ν s ) s∈[0,1] is a geodesic path between ν 0 and ν 1 in the Wasserstein space, that is for any s, t ∈ [0, 1], W 2 (ν s , ν t ) = |t -s| W 2 (ν 0 , ν 1 ).
Moreover, for any test function H : R d → R, and by a formal Taylor expansion when s goes to 0,

Hdν s = H((1 -s)x + s∇ψ(x))dν 0 (x) = [H(x) + s∇H(x) • (∇ψ(x) -x) + o(s)]dν 0 (x).
Assume now that dν 0 = gdx for a function g. Then, by integration by parts as in (18) below,

Hdν s = Hdν 0 -s H L g (f ) dν 0 + o(s) = H g s dx + o(s) where f (x) = ψ(x) -|x| 2 /2.
In conclusion, the path (g s ) s 0 appears as a (smooth) first-order Taylor expansion of the W 2 -geodesic path (ν s ) s 0 .

The Riemannian Markov triple context

In this section we prove the implication (iii) ⇒ (i) of Theorem 1 in the context of a Riemannian manifold, in the form of Theorem 6 below.

Framework and results

Let (M, G) be a connected complete C ∞ -Riemannian manifold. Let V be a C ∞ function on M and consider the Markov semigroup (P t ) t 0 with generator L = ∆ -∇V • ∇, where ∆ is the Laplace-Beltrami operator. Let also dµ = e -V dx where dx is the Riemannian measure and Γ be the carré du champ operator, defined by

Γ(f, g) = 1 2 (L(f g) -f Lg -gLf ) (15) 
for any smooth f, g. We let

Γ(f ) = Γ(f, f ) = |∇f | 2
where |∇f | stands for the length of ∇f with respect to the Riemannian metric G.

Then (M, µ, Γ) is a full Markov triple in a Riemannian manifold, as in [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Chap. 3], and in this work we call it a Riemannian Markov triple (RM T ).

The measure µ is reversible with respect to the semigroup, that is, for any t 0, P t is a self-adjoint operator in L 2 (µ). Moreover the integration by parts formula

f Lg dµ = -Γ(f, g)dµ
holds for all f, g in the set C ∞ c (M) of infinitely differentiable and compactly supported functions on M. The generator L satisfies the diffusion property, that is, for any smooth functions ϕ, f, g,

L(ϕ(f )) = ϕ ′ (f )Lf + ϕ ′′ (f )Γ(f ), or equivalently Γ(ϕ(f ), g) = ϕ ′ (f )Γ(f, g). (16) 
In other words, the carré du champ operator is a derivation operator for each component.

The map (x, t) → P t f (x) is simply the solution to the parabolic equation ∂ t u = Lu with f as the initial condition.

Definition 4 (CD(R, m) condition) Let R ∈ R and m ∈ (0, ∞]. We say that the RM T (M, µ, Γ) satisfies a CD(R, m) curvature-dimension condition if Γ 2 (f ) RΓ(f ) + 1 m (Lf ) 2
for any smooth function f, say in C ∞ c (M), where

Γ 2 (f ) = 1 2 (LΓ(f ) -2Γ(f, Lf )). (17) 
Let us notice that m can be different from the dimension of the manifold M. The CD(R, m) curvature-dimension condition is called the Bakry-Émery or Γ 2 condition and has been introduced in [START_REF] Bakry | Diffusions hypercontractives[END_REF] (see also the recent [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]). 

Ric + Hess(V ) R G + 1 m -d ∇V ⊗ ∇V,
where Ric is the Ricci tensor of (M, G), see for instance [8, Sec. C6] (when m = d then we need V = 0).

In a RM T , the following result gives the implication (iii) ⇒ (i) in Theorem 1 :

Theorem 6 Let (M, µ, Γ) be a Riemannian Markov triple and (P t ) t 0 its associated Markov semigroup. Let R ∈ R and m > 0. If the inequality (8) holds for any t 0 and any smooth functions f, g on M with f µ, gµ in P 2 (M), then the CD(R, m) condition of Definition 4 holds.

Proof of Theorem 6

It is based on the approximation of geodesics introduced in Section 3.2 (see Remark 3), properties of the Hopf-Lax solution of the Hamilton-Jacobi equation, and an adapted class of test functions.

Let f be in C ∞ c (M). Let also g be a smooth and positive function on M such that gµ ∈ P 2 (M),

g | log g| dµ < ∞ and Γ(g) g dµ < ∞.
Let us define the generator L g by

L g h = Lh + Γ(log g, h)
on smooth functions h. Since g > 0, then L g is well defined on the set C ∞ c (M) and

L g h ∈ C ∞ c (M) for any h ∈ C ∞ c (M).
Moreover, the generator L g satisfies an integration by parts formula with respect to the probability measure gµ : for h, k ∈ C ∞ c (M) (one of them can be with non compact support)

h L g k gdµ = -Γ(h, k) gdµ. (18) 
For any s 0, let us define

g s = g(1 -sL g f ). The function L g f is in C ∞ c (M)
, so bounded, and we can let N = ||L g f || ∞ . We shall frequently use the bounds (1 -sN )g ≤ g s ≤ (1 + sN )g. In particular g s > 0 for s < 1/N. Moreover g s dµ = 1. Hence, for s small enough, which we now assume, g s µ is in P 2 (M) with a smooth and positive density. The proof of Theorem 6 consists in applying (8) with g s instead of f, dividing by 2s 2 and letting s go to 0. For this we shall estimate the three terms in the inequality.

A key tool is the Hopf-Lax semigroup defined on bounded Lipschitz functions ψ by

Q s ψ(x) := inf y∈M ψ(y) + d(x, y) 2 2s , s > 0, x ∈ M. ( 19 
)
The map x → Q s ψ(x) is Lipschitz for every s 0, and the map (s, x) → Q s ψ(x) satisfies the Hamilton-Jacobi equation

∂ s Q s ψ + 1 2 |∇Q s ψ| 2 = 0, lim s→0 Q s ψ = ψ
in a sense given in [START_REF] Villani | Optimal transport, Old and new[END_REF]Thms. 22.46 and 30.30] for instance. We observe that sQ s (ψ) = Q 1 (sψ) = Q(sψ), so for s > 0 the Kantorovich duality ( 6) can be written as

W 2 2 (ν 1 , ν 2 ) 2s 2 = 1 s sup ψ Q s ψ dν 1 -ψ dν 2 . ( 20 
)
Estimate on the term on the left-hand side of [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Letting ψ = f in (20), we obtain

W 2 2 (P t g s µ, P t gµ) 2s 2 Q s f P t g s -f P t g s dµ. ( 21 
)
Since f is Lipschitz, almost everywhere in M we have

lim s→0 Q s f P t g s -f P t g s = - 1 2 Γ(f )P t g -f P t (gL g f )
by (vii') in [START_REF] Villani | Optimal transport, Old and new[END_REF]Thm. 30.30]. But, by the definition of Q s f and since f is bounded,

Q s f (x) = inf y∈B(x, √ 4s f ∞ ) f (y) + d(x, y) 2 2s .
Thus, for the Lipschitz seminorm

• Lip , 0 Q s f (x) -f (x) s inf y∈B(x, √ 4s f ∞)\{x} f (y) -f (x) d(x, y) d(x, y) s + d(x, y) 2 2s 2 - 1 2 sup y∈B(x, √ 4s f ∞ )\{x} f (y) -f (x) d(x, y) 2 - 1 2 f 2 Lip (22) 
(see also [26, page 585]). Moreover ||Q s f || ∞ ≤ ||f || ∞ , so, adding and subtracting Q s f P t g,

Q s f P t g s -f P t g s ≤ ||Q s f || ∞ |P t (gL g f )| + P t g f -Q s f s ≤ ||f || ∞ ||L g f || ∞ + ||f || 2 Lip 2 P t g.
The right-hand side is in L 1 (µ), so by the Lebesgue dominated convergence theorem

lim inf s→0 W 2 2 (P t g s µ, P t gµ) 2s 2 - 1 2 Γ(f )P t g -f P t (gL g f ) dµ.
Now, by reversibility of the measure µ and the integration by parts formula [START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF],

f P t (gL g f )dµ = P t f L g (f ) gdµ = -Γ(f, P t f ) gdµ.
Thus we obtain our first estimate:

lim inf s→0 W 2 2 (P t g s µ, P t gµ) 2s 2 - 1 2 P t (Γ(f ))gdµ + Γ(f, P t f )gdµ. ( 23 
)
Estimate on the first term on the right-hand side. According to [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF] we need an upper bound on the quantities Q s (ψ)g s dµ-ψgdµ, independent of the bounded Lipschitz function ψ.

First of all, for 0 < t < s,

d dt Q t ψ g t dµ = - 1 2 Γ(Q t ψ)(1 -tL g f ) -Q t ψL g f gdµ. (24) 
This is justified by item (vii) in [START_REF] Villani | Optimal transport, Old and new[END_REF]Thms. 22.46 and 30.30] and the properties that gµ ∈ P(M), L g f is bounded, ||Q t ψ|| ∞ ≤ ||ψ|| ∞ and ||Q t ψ|| Lip ≤ ||ψ|| Lip for any t. Now the integration by parts formula [START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF] gives

-Q t ψ L g f gdµ = Γ(Q t ψ, f )gdµ. Recall that L g f is bounded and that we have let N = ||L g f || ∞ . For t < s < 1/N we obtain d dt Q t ψ g t dµ ≤ - 1 2 Γ(Q t ψ)(1 -sN ) + Γ(Q t ψ, f ) gdµ = - 1 -sN 2 Γ Q t ψ - 1 1 -sN f + 1 2(1 -sN ) Γ(f ) gdµ ≤ 1 2(1 -sN ) Γ(f )gdµ.
Integrating over the set t ∈ [0, s] :

Q s ψ g s dµ -ψgdµ ≤ s 2(1 -sN ) Γ(f )gdµ.
Finally the Kantorovich duality [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF] gives our second estimate:

lim sup s→0 W 2 2 (g s µ, gµ) 2s 2 ≤ 1 2 Γ(f )gdµ. ( 25 
)
Estimate on the second term on the right-hand side. Let u > 0 and let us compute the limit of 1 s (Ent µ (P u g s ) -Ent µ (P u g)) when s goes to 0. First, for any s > 0,

d ds P u (g s ) log P u (g s ) = -(1 + log P u g s ) P u gL g f .
Then, for 0 < s < 1/N ,

|(1 + log P u g s )P u (gL g f )| ≤ N P u g (1 + log(1 + N ) + | log P u (g)|).
Forgetting the dimensional corrective term in [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], by the von Renesse-Sturm theorem [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF] the RM T satisfies a CD(R, ∞) condition. In particular, and since Γ(g)/g dµ < ∞, one can use a local logarithmic Sobolev inequality [8, Thm. 5.5.2] to deduce P u g | log P u g| dµ < ∞.

In particular the right-hand side in the last inequality is in L 1 (µ). Then, by the Lebesgue convergence theorem and [START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF],

lim s→0 Ent µ (P u g s ) -Ent µ (P u g) s = -(1 + log P u g)P u gL g f dµ = -P u (log P u g)L g f gdµ = Γ(P u (log P u g), f )gdµ.
By the Fatou lemma we obtain the third estimate :

lim sup s→0 - 1 m t 0 e -2R(t-u) Ent µ (P u g s ) -Ent µ (P u g) s 2 du ≤ - 1 m t 0 e -2R(t-u) Γ(P u (log P u g), f )gdµ
Conclusion. Dividing the inequality (8) by 2s 2 , letting s go to 0 and using the three estimates ( 23), ( 25) and ( 26) we get

- 1 2 P t Γ(f ) gdµ + Γ(f, P t f )gdµ ≤ e -2Rt 2 Γ(f )gdµ - 1 m t 0 e -2R(t-u) Γ(P u (log P u g), f )gdµ 2 du.
This inequality is an equality when t = 0, and since f ∈ C ∞ c (M), its derivative at t = 0 implies

- 1 2 LΓ(f ) gdµ + Γ(f, Lf )gdµ ≤ -R Γ(f )gdµ - 1 m Γ(log g, f )gdµ 2 .
Since Γ(log g, f )gdµ = Γ(g, f )dµ = -gLf dµ and by definition of the Γ 2 operator we get

Γ 2 (f )gdµ R Γ(f ) gdµ + 1 m Lf gdµ 2 (27) 
for any f ∈ C ∞ c (M) and any positive smooth probability density g with Ent µ (g), Γ(g)/g < ∞.

Inequality ( 27) appears as a weak form of the CD(R, m) condition. Again from the CD(R, ∞) condition, it is a consequence of Wang's Harnack inequality (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Thm. 5.6.1] and [START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF]) that there exist α 0 > 0 and o ∈ M such that

exp(-α 0 d(o, x) 2 ) dµ(x) < ∞. (28) 
Then, in [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF] we can replace g by a sequence (g p ) p converging to the Dirac measure δ x at x ∈ M; we get

Γ 2 (f ) RΓ(f ) + 1 m (Lf ) 2
at any x ∈ M and for any function f ∈ C ∞ c (M). This is the CD(R, m) condition as in Definition 4, and this finishes the proof of Theorem 6.

The Riemannian energy measure space context

In this section we prove the implication (iii) ⇒ (i) of Theorem 1 in the context of a Riemannian energy measure (REM ) space, a particular case of metric measure spaces, see Theorem 8 below. The proof goes along the same overall strategy as in the manifold case of Section 4.2. However, to overcome the lack of differentiability, it will require several tools and results from optimal transport and heat distributions on metric measure spaces.

The framework and the main Theorem 8 are stated in Section 5.1. As an intermezzo, in Section 5.2 we complement the proof of (ii) ⇒ (iii) in Theorem 1. The path (g s ) s 0 is constructed in Section 5.3, the three key estimates are given in Section 5.4, finally the main proof is given in Section 5.5.

Framework and results

As a natural framework, we will state our result on a Riemannian energy measure space, as introduced in [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]. Let (X, τ ) be a Polish topological space and µ a locally finite Borel measure with a full support. Let (E, D(E)) be a strongly local symmetric Dirichlet form on L 2 (µ). Let finally (P t ) t 0 be its associated semigroup and L its generator, with domain D(L) ⊂ L 2 (µ). As for a Markov triple, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], and since P t is symmetric and sub-Markovian, we can extend P t to a semigroup of contractions on L p (µ) for p ∈ [1, ∞]. We also let E(f ) := E(f, f ) and

f 2 E := f 2 L 2 (µ) + E(f ) for f ∈ D(E).
We assume that (X, τ, µ, E) is a Riemannian energy measure space in the sense of [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Def. 3.16], denoted REM in this work. A basic example of a REM space is a Riemannian Markov triple as in Section 4. In this case, (E, D(E)) is canonically defined by completion of (f, f ) → |∇f | 2 dµ. RCD spaces introduced in [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF][START_REF] Ambrosio | Metric measure spaces with Riemannian Ricci curvature bounded from below[END_REF] are another important class of REM spaces. In this case, E/2 is given by the L 2 -Cheeger energy functional.

To make this presentation concise, we prefer to state the crucial properties of a REM space instead of its precise definition. Indeed the definition consists in several notions, which will be used only indirectly through these properties:

• The intrinsic distance d E associated with (E, D(E)), in the sense of [6, Sec. 

Ch(f ) := inf lim inf n→∞ 1 2 |∇f n | 2 dµ ; f n ∈ Lip b (X), f n → f in L 2 (µ) .
As a result, (E, D(E)) admits a carré du champ, i.e. there is a symmetric bilinear map Γ :

D(E) × D(E) → L 1 (µ) such that E(f, g) = Γ(f, g) dµ.
As on smooth spaces, L and Γ satisfy the diffusion property [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. The coincidence of E/2 and the Cheeger energy makes many connections between d and Γ. For instance,

D(E) ∩ Lip b (X) is dense in D(E) with respect to • E . In addition, Γ(f ) ≤ |∇f | 2 µ-a.e. ( 29 
)
for any Lipschitz f ∈ D(E). See [6, Thm. 3.12] and [6, Thm. 3.14] for all these facts.

Note that D(E) ∩ L ∞ (µ) is an algebra and Γ satisfies the Leibniz rule:

Γ(f g, h) = f Γ(g, h) + gΓ(f, h) for f, g ∈ D(E) ∩ L ∞ (µ) and h ∈ D(E).
We state further assumptions for our main theorem. Fix a reference point o ∈ X.

Regularity assumption

(Reg1) There is α 0 > 0 such that (28) holds.

(Reg2) (X, τ ) is locally compact.

Assumption (Reg1) is equivalent to the condition (MD.exp) in [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF] (see e.g. the comments after Equation (3.13) in [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]). This integrability condition yields the conservativity of P t , i.e. [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Thm. 3.14]). This is equivalent to P t 1 = 1 µ-a.e, that is, the semigroup is Markovian (instead of sub-Markovian). In fact ( 28) is a nearly optimal condition to ensure that the semigroup is conservative (see [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Rmk. 4 In this framework, we should be careful when defining the operator Γ 2 in (17) since Γ(f ) may not belong to D(L) even for a sufficiently nice f . To avoid such a technical difficulty, and following [6, Def. 2.4], we employ a weak form of the CD(R, m) condition :

P t f dµ = f dµ for f ∈ L 1 (µ) (see
Definition 7 (Weak CD(R, m) condition) Let R ∈ R and m > 0. We say that the REM space (X, τ, µ, E) satisfies a weak CD(R, m) condition if, for all f ∈ D(L) with Lf ∈ D(E) and all g ∈ D(L) ∩ L ∞ (µ) with g 0 and Lg ∈ L ∞ (µ), 1 2 Γ(f )Lg dµ -Γ(f, Lf )g dµ R Γ(f )g dµ + 1 m (Lf ) 2 g dµ. (30) 
Now we are ready to state our main theorem in this framework.

Theorem 8 Let (X, τ, µ, E) be a Riemannian energy measure space satisfying the above regularity assumptions (Reg1) and (Reg2). Let R ∈ R and m > 0.

If inequality (8) holds for any t 0 and probability densities f, g ∈ L 1 (µ) with f µ, gµ ∈ P 2 (X), then the weak CD(R, m) condition of Definition 7 holds. In particular, the conditions (ii) and (iii) in Theorem 1 are equivalent to the weak CD(R, m) condition.

Note that (8) yields a W 2 -contraction

W 2 2 (P t f dµ, P t gdµ) ≤ e -2Rt W 2 2 (f dµ, gdµ) (31) 
by neglecting the term involving m. Then, by [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Cor. 3.18], (31) implies a CD(R, ∞) condition in the sense of (30). This fact is very helpful for further discussion in the sequel since it ensures regularity of the space in many respects. As a regularization property of P t , we have

P t f ∈ Lip b (X) for f ∈ L 2 (µ) ∩ L ∞ (µ), t > 0 (32) 
(see [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Thm. 3.17]; More precisely, P t f has a version which belongs to Lip b (X)). In addition, (X, d, µ) becomes an RCD(R, ∞) space (see [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Thm. 4.17]). Then, for a probability density f with respect to µ, ((P t f )µ) t 0 is a gradient flow of Ent µ in the sense of the R-evolution variational inequality [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]Thm. 6.1]. As a consequence, we obtain the following properties:

• We can extend the action of P t to ν ∈ P 2 (X) in the sense that P t ν is a solution to the R-evolution variational inequality and that P t ν = (P t f )µ if ν = f µ. In particular, (P t ν) t 0 becomes a continuous curve in (P 2 (X), W 2 ), see [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]Thm. 6.1]. In addition, ν → P t ν is a continuous map from (P 2 (X), W 2 ) to itself, see [1, Eq. (7.2)].

• P t ν ≪ µ for ν ∈ P 2 (X) and t > 0, and its density ρ t satisfies Ent µ (ρ t ) ∈ R. This property is included in the definition of the R-evolution variational inequality, see e.g. [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]Def. 2.5].

Recall that, under [START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF], Ent µ (ρ) is well-defined and Ent µ (ρ) ∈ (-∞, ∞] for ρ : X → [0, ∞] with ρµ ∈ P 2 (X), see e.g. [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Sec. 7].

• There is a positive symmetric measurable function p t (x, y) such that P t coincides with the integral operator associated with p t , see [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]Thm. 7.1].

• For any bounded measurable h and ν ∈ P 2 (X), we have

h dP t ν = P t h dν, (33) 
see [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Prop. 3.2]. By the monotone convergence theorem, we can extend this identity to those h which are bounded only from below (or above).

• For any f ∈ D(L) and h ∈ D(E) we have the integration by parts formula

Γ(h, f ) dµ = -h Lf dµ. ( 34 
)

Proof of (ii) ⇒ (iii) in Theorem 1

As announced, before entering the proof of Theorem 8, we first complete the proof of (ii) ⇒ (iii) in Theorem 1 with the aid of preparations in Section 5.1. We first check that ( 7) yields (31). As we did in Section 5.1, by using (8) instead of ( 7), we get

s R m 1 2 W 2 (P t f µ, P t gµ) 2 ≤ e -2Rt s R m 1 2 W 2 (f µ, gµ) 2 (35)
by neglecting the term involving m. From this inequality, we can extend P t to a map from P 2 (X) to itself, in a canonical way. Moreover, in (35) we can replace f µ and gµ with any ν 0 , ν 1 ∈ P 2 (X) respectively. Then we obtain (31) by a similar argument as in Proposition 2. Thus, as discussed in Section 5.1, (X, d, µ) is an RCD(R, ∞) space and all properties at the end of Section 5.1 become available. We remark that the extension of P t given on the basis of (35) coincides with the one given by the RCD(R, ∞) property.

In Section 2, we already pointed out that we only need to show that P t fulfills all the assumptions for ϕ t in Proposition 2 with (Y, d Y ) = (P 2 (X), W 2 ) and U = Ent µ . Here we are extending the definition of Ent µ so that, for ν ∈ P 2 (X), Ent µ (ν) = Ent µ (dν/dµ) if ν ≪ µ and Ent µ (ν) = ∞ otherwise. By taking observations at the beginning of this section into account, it suffices to prove that [START_REF] Bakry | Diffusions hypercontractives[END_REF] 

implies s R m 1 2 W 2 (P t ν 0 , P t ν 1 ) 2 ≤ e -2Rt s R m 1 2 W 2 (ν 0 , ν 1 ) 2 - 1 2m t 0 e -2R(t-u) (Ent µ (P u ν 0 ) -Ent µ (P u ν 1 )) 2 du
for ν 0 , ν 1 ∈ P 2 (X) and t > 0. But this is true since P δ ν 0 , P δ ν 1 ≪ µ for any δ ∈ (0, t), so that

s R m 1 2 W 2 (P t ν 0 , P t ν 1 ) 2 ≤ e -2R(t-δ) s R m 1 2 W 2 (P δ ν 0 , P δ ν 1 ) 2 - 1 2m
t δ e -2R(t-u) (Ent µ (P u ν 0 ) -Ent µ (P u ν 1 )) 2 du by ( 7) and the bound sinh 2 (x) x 2 ; moreover P δ ν i → ν i in W 2 as δ ↓ 0 for i = 0, 1: this gives the assertion. Hence the proof of (ii) ⇒ (iii) in Theorem 1 is completed and thus it is sufficient to show the main assertion of Theorem 8 to complete the proof of our equivalence result.

Construction of the path (g s ) s 0

In this section, we build the path gs mentioned in Section 3.2, under [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Recall that (X, d, µ) is now an RCD(R, ∞) space as remarked at the end of Section 5.1. For x ∈ X and r > 0, we denote the open ball of radius r centered at x by B r (x).

For this we first define g(= g0 ). We take g in a more tractable (but large enough) class than the full class of Definition 7. Fix α > α 0 with α 0 as in [START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF], λ ∈ (0, 1) and g 0 : X → R Lipschitz with compact support. Let us define g as follows:

g := 1 Z (1 -λ)g 0 + λ exp(-αd(x, o) 2 ) ( 36 
)
where Z > 0 is a normalizing constant such that gµ ∈ P(X). Note that (28) yields gµ ∈ P 2 (X). We fix g until the end of the proof of Proposition 15 below. We can define the L 2 -Cheeger energy functional E g /2 associated with d and the probability measure gµ.

Let D(E g ) be the set of f ∈ L 2 (gµ) with E g (f ) < ∞. Recall that D(E g ) is complete with respect to • Eg .
To define the path (g s ) s 0 we need the corresponding generator L g , and for this we show the following auxiliary lemma.

Lemma 9

In the above notation, D(E) ⊂ D(E g ) and

E g (f ) = Γ(f )g dµ (37) 
for f ∈ D(E). In addition, (E g , D(E g )) is bilinear.

We do not know whether (37) is valid for any f ∈ D(E g ). Thus we have to be careful when we apply the integration by parts formula (18) for L g .

Proof. The former assertion follows from [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Lem. 4.11]. For the latter assertion, take f, f ∈ D(E g ). For each n ∈ N, take also

χ n ∈ Lip b (X) with 0 ≤ χ n ≤ 1, χ| Bn(o) ≡ 1 and χ| B n+1 (o) c ≡ 0.
Since, for each n ∈ N, g is bounded away from 0 on B n (o), we have f n := f χ n ∈ D(E) by the locality of the Cheeger energy, see [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Prop. 4.8 (b)] and [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Lem. 4.11]. Moreover, (f n ) n∈N forms a Cauchy sequence with respect to • Eg and hence f nf Eg → 0. By the same argument, we have fnf Eg → 0 for fn := f χ n . By (37), and recalling that Γ is symmetric bilinear, we have

E g (f n + fn ) + E g (f n -fn ) = 2 E g (f n ) + E g ( fn ) .
Therefore the conclusion holds by letting n → ∞.

By Lemma 9, (E g , D(E g )) is a closed bilinear form on L 2 (gµ). Hence there are an associated L 2 -semigroup P g t of symmetric linear contraction and its generator L g . By [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Prop. 4.8 (b)], E g is sub-Markovian. Thus P g t satisfies the maximum principle, i.e. P g t f ≤ c if f ≤ c for f ∈ L 2 (gµ) and c ∈ R. In addition, Lip b (X) ∩ D(E g ) is dense in D(E g ) with respect to • Eg . Note that we can define P g t and L g without bilinearity of E g (see [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Sec. 4] and references therein). However, then they can be nonlinear and the integration by parts formula (18) may not hold.

Lemma 10 In the above notation, (i) g ∈ D(E) ∩ L ∞ (µ) and log g ∈ D(E g ).

(ii) D(L) ⊂ D(L g ).

Proof. (i) The first claim follows from ( 29) and [START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF]. For the second one, note that

E g (log g) ≤ |∇ log g| 2 g dµ.
It is the integrated form of ( 29) for E g instead of E. Then the claim follows from [START_REF] Wang | Functional Inequalities, Markov Processes, and Spectral Theory[END_REF].

(ii) Let f ∈ D(L) and h ∈ D(E g ). Take h n ∈ Lip b (X)∩D(E g ) for n ∈ N such that h n -h Eg → 0.
By a truncation argument used in the proof of Lemma 9, we may assume that each h n is supported on a bounded set, without loss of generality. Then h n ∈ D(E) ∩ L ∞ (µ) and hence h n g ∈ D(E). Thus the Leibniz rule, the assertion (i), ( 34) and ( 29) imply

Γ(h n , f )g dµ = Γ(h n g, f ) dµ -h n Γ(g, f ) dµ ≤ h n (Lf )g dµ + h n Γ(log g, f )g dµ ≤ h n L 2 (gµ) g ∞ Lf L 2 (µ) + |∇g| 2 g ∞ E(f ) 1/2 .
The definition of g yields |∇g| 2 /g ∞ < ∞. Thus there is C > 0 independent of h and n such that

|E g (h n , f )| ≤ C h n L 2 (gµ) .
Here we used Lemma 9. By letting n → ∞, we can replace h n with h in this inequality. Hence f ∈ D(L g ) since h is arbitrary in D(E g ).

We can now define the path

(g s ) s 0 . Let f ∈ D(L) ∩ Lip b (X) with f ∞ ≤ 1/4.
We fix f until the end of the following section, and observe that f ∈ L 2 (gµ). Then we let

gs := g(1 + f -P g s f ). (38) 
By the L ∞ -bound on f and the maximum principle for P g s , we have

1 2 g ≤ gs ≤ 2g. (39) 
In what follows, we may assume without loss of generality that L g f is not identically 0. For, by (34) and Lemma 10,

Lf g dµ = -Γ(f, g) dµ = -Γ(f, log g)g dµ = L g f log g g dµ. (40) 
Thus, if L g f is identically 0, then Lf g dµ = 0; hence (44) below holds in this specific case (without the next section) since the CD(R, ∞) condition holds on our RCD(R, ∞) space.

Three key estimates

The proof of Theorem 8 is based on (44) in Proposition 15 below. In turn, this bound is based on the three key estimates in Lemmas 11, 12 and 14, which in the manifold case of Section 4.2 correspond to ( 23), ( 25) and [START_REF] Villani | Optimal transport, Old and new[END_REF]. The proofs are a bit different since we use gs instead of g s . The Hopf-Lax semigroup (Q s ) s 0 given by ( 19) will again play a crucial role. Required properties for Q s in this framework are given in [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Sec. 3] or [START_REF] Ambrosio | Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF]Sec. 3] for instance.

We begin with the first estimate, corresponding to [START_REF] Otto | Eulerian calculus for the contraction in the Wasserstein distance[END_REF]:

Lemma 11 (First estimate) lim inf s→0 W 2 2 (P t gs µ, P t gµ) 2s 2 - 1 2 P t (|∇f | 2 )g dµ + Γ(f, P t f )g dµ.
Proof. It suffices to prove an lower bound on the right-hand side of [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF]. By a rearrangement,

Q s f P t gs -f P t g s dµ = Q s f -f s P t (g s -g) dµ+ Q s f -f s P t g dµ+ f P t (g s -g) s dµ. (41) 
Since gµ ∈ P(X), the Cauchy-Schwarz inequality yields s -1 (g sg) → -g L g f in L 1 (µ). Thus the last term in (41) converges tof P t (gL g f ) dµ. By Lemma 9, and as in Section 4.2, this quantity is equal to the second term on the right-hand side of the assertion. Moreover, by the general bound [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], the first term on the right-hand side of (41) goes to 0. Finally, by [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and the Lebesgue dominated convergence theorem we conclude on the second term as in the Riemannian case of Section 4.2. More precisely, we have

lim inf s→0 Q s f (x) -f (x) s P t g(x) µ(dx) - 1 2 lim sup s→0 sup y∈B(x, √ 4s f ∞)\{x} f (y) -f (x) d(x, y) 2 P t g(x)µ(dx) = - 1 2 |∇f | 2 P t g dµ.
Thus the assertion holds.

Next lemma deals with the second estimate and corresponds to [START_REF] Sturm | On the geometry of metric measure spaces. I and II[END_REF].

Lemma 12 (Second estimate)

lim sup s→0 W 2 2 (g s µ, gµ) 2s 2 ≤ 1 2(1 -2 f ∞ ) Γ(f )g dµ.
Proof. Again, by the dual form [START_REF] Lisini | Characterization of absolutely continuous curves in Wasserstein spaces[END_REF], we need to bound Q s ψ gs dµψgdµ uniformly from above on the bounded Lipschitz functions ψ. We can assume that ψ is moreover supported on a bounded set. Then the function (s 1 , s 2 ) → Q s 1 (ψ)g s 2 dµ satisfies the assumption of [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Lem. 4.3.4] since we have (39) and Q s 1 ψ ∞ ≤ ψ ∞ . Thus, instead of (24), we obtain

d ds Q s (ψ)g s dµ ≤ d ds Q s (ψ)g s 0 dµ s 0 =s + d ds Q s 0 (ψ)g s dµ s 0 =s = - 1 2 |∇Q s ψ| 2 (1 + f -P g s f ) -Q s ψ L g P g s f g dµ
for a.e. s > 0. Here the equality follows from [START_REF] Ambrosio | Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[END_REF]Thm. 3.6], the properties Q s ψ Lip < ∞, Q s ψ ∞ < ∞ and the Lebesgue dominated convergence theorem. Note that Q s ψ ∈ D(E g ) since Q s ψ is Lipschitz with a bounded support. Thus, by virtue of Lemma 9 and (29),

-Q s ψ (L g P g s f )g dµ = E g (Q s ψ, P g s f ) ≤ E g (Q s ψ)E g (P g s f ) ≤ |∇Q s ψ| 2 g dµ E g (P g s f ).
By combining this estimate with the last one, we obtain

d ds Q s (ψ)g s dµ ≤ 1 2(1 -2 f ∞ ) E g (P g s f ) ≤ 1 2(1 -2 f ∞ ) E g (f ) = 1 2(1 -2 f ∞ ) Γ(f )g dµ.
Here the second inequality follows from the spectral decomposition for quadratic forms and the equality follows from Lemma 9 again since f ∈ D(L) ⊂ D(E). Thus the conclusion follows by integrating this estimate, as in the proof of [START_REF] Sturm | On the geometry of metric measure spaces. I and II[END_REF].

For the third estimate, we still require some preparation. We call C 2 (X) the set of continuous functions ψ on X for which there exists C > 0 such that |ψ(x)| ≤ C(1 + d(o, x) 2 ). For ψ ∈ C 2 (X) and ν ∈ P 2 (X), we have ψ ∈ L 1 (ν). By assumption on g, ψ ∈ L p (gµ) for any ψ ∈ C 2 (X) and p ∈ [1, ∞). The following lemma ensures integrability properties required in the proof of Lemma 14 below.

Lemma 13

(i) Let J := {ψ ∈ L 2 (gµ) | ψgµ ∈ P(X)}. Then ψgµ ∈ P 2 (X) for any ψ ∈ J. Moreover, for J 0 ⊂ J with sup ψ∈J 0 ψ L 2 (gµ) < ∞, we have

sup ψ∈J 0 d(o, x) 2 ψg dµ < ∞.
(ii) log P u g ∈ C 2 (X) for u 0.

Proof. (i) Using Assumption (Reg1) and (36), this follows from

d(o, x) 2 ψ(x)g(x) µ(dx) ≤ d(o, x) 4 g(x) µ(dx) 1/2 ψ 2 g dµ 1/2 < ∞.
(ii) By (36) this is obvious for u = 0 and hence we consider the case u > 0. First of all, log P u g is continuous on X since P u g > 0. Moreover, since (X, d, µ) is an RCD(R, ∞) space, we have the log-Harnack inequality

P u (log g)(o) - Rd(x, o) 2 2(e 2Ru -1)
≤ log P u g(x) ≤ log g ∞ (see [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Lem. 4.6] or [START_REF] Li | Dimension-free Harnack inequalities on RCD (K, ∞) spaces[END_REF]Prop. 4.1]). Moreover log g ∈ C 2 (X) and P u δ o ∈ P 2 (X) by the properties after (32), so we have log g dP u δ o = P u (log g)(o) ∈ R. Thus log P u g ∈ C 2 (X).

We recall characterizations of convergence in W 2 for later use. Let ν n ∈ P 2 (X), n ∈ N and ν ∈ P 2 (X). Then W 2 (ν n , ν) → 0 is equivalent to either of the following (see e.g. [START_REF] Villani | Optimal transport, Old and new[END_REF]Thm. 6.9]):

• ν n → ν weakly and sup n∈N d(o, x) 2 ν n (dx) < ∞,
• lim n→∞ ψ dν n = ψ dν for any ψ ∈ C 2 (X).

We now turn to the third estimate. in order to complete the proof. Here the well-definedness of the right-hand side is included in the assertion. Since r → r + is 1-Lipschitz, s -1 (P g s f -f ) + = (s -1 (P g s f -f )) + converges to (L g f ) + in L 2 (gµ) and hence in L 1 (gµ). By [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Thm. 4.16 (d)], L g f g dµ = 0. Hence (L g f ) + L 1 (gµ) > 0 since L g f is not identically 0 (as assumed at the end of Section 5.3). Thus (P g s f -f ) + L 1 (gµ) > 0 for sufficiently small s > 0. Let us now define ν f s , ν f 0 ∈ P(X) as follows:

ν f s := (P g s f -f ) + (P g s f -f ) + L 1 (gµ) gµ, ν f 0 := (L g f ) + (L g f ) + L 1 (gµ)
gµ.

Then ν f s → ν f 0 weakly in P(X) as s → 0. Moreover, ν f s ∈ P 2 (X) for s 0 by (i) in Lemma 13 since f, P g s f, L g f ∈ L 2 (gµ), and W 2 (ν f s , ν f 0 ) → 0 as s → 0, again by (i) in Lemma 13 applied with J 0 = { (P g s ff ) + -1

L 1 (gµ) (P g s ff ) + , s > 0}, and the remark after it. Then, likewise, P u ν f s ∈ P 2 (X) for u, s 0 and lim

s→0 W 2 (P u ν f s , P u ν f 0 ) = 0 (43) 
by (31). By Lemma 13 again, log P u g ∈ C 2 (X) and in particular log P u g ∈ L 1 (P u ν f 0 ). Hence, by (43) and the remark after Lemma 13, we obtain

lim s→0 1 s P u (g(P g s f -f ) + ) log P u g dµ = lim s→0 (P g s f -f ) + L 1 (gµ) s log P u g dP u ν f s = (L g f ) + L 1 (gµ) log P u g dP u ν f 0 = P u (g(L g f ) + ) log P u g dµ ∈ R.
We can apply the same argument to (P g s f -f ) -instead of (P g s f -f ) + to show the corresponding assertion. In particular, the integral in the right-hand side of (42) is well-defined and these two claims yield (42).

Conclusion of the proof of Theorem 8

Let g be as in the last section, that is, given by (36). To proceed, we recall the notion of semigroup mollification introduced in [6, Sec.

2.1]. Let κ ∈ C ∞ c ((0, ∞)) with κ 0 and ∞ 0 κ(r) dr = 1. For ε > 0 and f ∈ L p (µ) with p ∈ [1, ∞], we define h ε f by h ε f := 1 ε ∞ 0 P r f κ r ε dr. It is immediate that h ε f -f E → 0 as ε → 0 for f ∈ D(E). Moreover, for f ∈ L 2 (µ) ∩ L ∞ (µ), h ε f, L(h ε f ) ∈ D(L) ∩ Lip b (X).
Here the latter one comes from the following representation:

Lh ε f = - 1 ε 2 ∞ 0 P r f κ ′ r ε dr.
Proposition 15 Following the same assumptions as in Theorem 8, let f = h ε f 0 for some ε > 0 and f 0 ∈ L2 (µ) ∩ L ∞ (µ). Then Γ(f ) ∈ D(E), and for g as above [START_REF] Ambrosio | Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]Thm. 3.17].

1 2 Γ(Γ(f ), g) dµ + Γ(f, Lf )g dµ ≤ -R Γ(f )g dµ - 1 m Lf g dµ 2 . ( 44 
) Proof. By assumption, f ∈ D(L) ∩ Lip b (X). Moreover, Γ(f ) = |∇f | 2 µ-a.e. by
Let η > 0 be so small that η f ∞ ≤ 1/4. By applying Lemma 11, Lemma 12 and Lemma 14 to ηf instead of f in (8),

- η 2 2 P t Γ(f ) g dµ + η 2 Γ(f, P t f )g dµ ≤ e -2Rt η 2 2(1 -2η f ∞ ) Γ(f )g dµ - η 2 m t 0 e -2R(t-u) P u ((L g f )g) log P u g dµ 2 du.
By dividing this inequality by η 2 and letting η → 0,

- 1 2 P t Γ(f ) g dµ + Γ(f, P t f )g dµ ≤ e -2Rt 2 Γ(f )g dµ - 1 m t 0 e -2R(t-u) P u ((L g f )g) log P u g dµ 6 

Links with functional inequalities

A new proof of the entropy-energy inequality

We now consider the case where R > 0 and µ is a probability measure. It is classical that the CD(R, m) condition implies the entropy-energy inequality

Ent µ (f ) ≤ m 2 log 1 + 1 mR I(f ) (48) 
for any function f such that f dµ = 1. Here I(f ) = Γ(f )/f dµ is the Fisher information of f . This inequality is given in [8, Thm. 6.8.1] for instance, and also in [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF]Cor. 3.28] via the (R, m)-convexity of Ent µ . Inequality (48) improves upon the standard non dimensional logarithmic Sobolev inequality Ent µ (f ) ≤ I(f )/2R, a consequence of the CD(R, ∞) condition. It leads for example to a sharp bound on the instantaneous creation of the entropy of the heat semigroup in P 2 (X), namely

Ent µ (P t f ) ≤ m 2 log 1 1 -e -2Rt
for all f and t > 0. For similar bounds, see also [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF]Prop. 2.17] for a gradient flow argument starting from the (R, m)-convexity of Ent µ , and [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF]Prop. 3.1] for Fokker-Planck equations on R m with R-convex potentials.

The two approaches of [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] and [START_REF] Erbar | On the equivalence of the entropic curvaturedimension condition and Bochner's inequality on metric measure spaces[END_REF] are rather involved, and we now give a formal (and below rigorous) and direct way of recovering (48) from the contraction inequality (8) in Theorem 1 (which is equivalent to the CD(R, m) condition). The key point is the (formal) identity

lim sup δ↓0 W 2 2 (P δ+t f µ, P t f µ) δ 2 = I(P t f ) (49) 
(see e.g. [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]Equation (26)]) and the classical identity d du Ent µ (P u f ) = -I(P u f ). Indeed, from inequality (8) and the Fatou Lemma, for any 0 ≤ s < t,

I(P t f ) = lim sup δ↓0 W 2 2 (P t+δ f µ, P t f µ) δ 2 ≤ e -2R(t-s) lim sup δ↓0 W 2 2 (P s+δ f µ, P s f µ) δ 2 - 2 m t s e -2R(t-u) lim inf δ↓0 Ent µ (P u+δ f ) -Ent µ (P u f ) δ 2 du = e -2R(t-s) I(P s f ) - 2 m t s e -2R(t-u) I(P u f ) 2 du.
This yields the differential inequality

d dt I(P t f ) ≤ -2R I(P t f ) - 2 m I(P t f ) 2
and then

I(P t f ) ≤ mRI(f ) e 2Rt (I(f ) + mR) -I(f ) (50) 
by integration on [0, t]. The entropy-energy inequality (48) follows by further integrating (50) on [0, +∞) and using lim t→∞ Ent µ (P t f ) = 0.

Before making this argument rigorous we give a formal argument to (49) at t = 0, alternative to [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. For simplicity, assume that µ = dx is the Riemannian measure and (P t ) t 0 is the heat semigroup associated with the Laplace-Beltrami operator L = ∆. Let f be a probability density with respect to dx. First

∂ s P sδ f + ∇ • (w s P sδ f ) = 0,
where w s = -δ∇ log P sδ f . Then one can check that at the first order in δ, the couple (P sδ f, w s ) s∈[0,1] is optimal between P δ f µ and f µ in the Benamou-Brenier formulation (see [START_REF] Villani | Optimal transport, Old and new[END_REF]Chap. 7]). Hence

W 2 2 (P δ f µ, f µ) δ 2 = 1 0 |∇ log P sδ f | 2 P sδ f dµds + o(1) → I(f ), δ → 0.
Theorem 17 In a REM space as in Section 5, the contraction inequality (8) implies the entropyenergy inequality (48).

Proof. Let f be a probability density with f µ ∈ P 2 (X) and I(f ) < ∞, as we can assume.

Recall that (X, d, µ) is a RCD(R, ∞) space under our assumption [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Thus, by [3, Thm. 9.3 (i) and Thm. 8.5 (i)],

d du Ent µ (P u f ) = I(P u f ) = lim sup δ↓0 W 2 2 (P u+δ f µ, P u f µ) δ 2 (51) for a.e. u ∈ (0, +∞). In particular, (49) holds almost everywhere and, proceeding as above, I(P t f ) ≤ e -2R(t-s) I(P s f ) -2 m t s e -2R(t-u) I(P u f ) 2 du (52) for any t > s > 0 where (51) is valid.

We now prove that (52) holds for all t > s 0. For this, set ψ(t) := e 2Rt I(P t f ). Then ψ is non-increasing on [0, ∞) by a standard argument: Indeed, by CD(R, ∞) with the selfimprovement argument in [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF], we have Γ(P t f ) ≤ e -Rt P t ( Γ(f )) for all t 0. It yields Γ(P t f ) P t f ≤ e -2R(t-s) P t-s ( Γ(P s f ))

2 P t-s (P s f ) ≤ e -2R(t-s) P t-s Γ(P s f ) P s f .

Thus the claim follows by integrating this inequality by µ. Moreover t → I(P t f ) is lower semicontinuous (see e.g. [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]Lem. 4.10]). Thus ψ is lower semi-continuous and non-increasing on [0, ∞), so also right-continuous . This implies that (52) holds for t > s 0.

Let now δ > 0. By dividing (52) by e -2Rt (ψ(t) + δ)(ψ(s) + δ), for t > s > 0, 2 m(ψ(s) + δ)(ψ(t) + δ) for any t ∈ [0, ∞). For the proof of the claim, we let J be the subset of t ∈ [0, ∞) satisfying (54) and prove J = [0, ∞). First, 0 ∈ J obviously holds and hence J = ∅. Second, if t ∈ J and t ′ ∈ (t, ∞) with t ′t sufficiently small, then t ′ ∈ J. Indeed, by the right continuity of ψ, we have ψ(u) + δ (1δ)(ψ(t) + δ) for any u > t being sufficiently close to t. We take t ′ > t so that this holds for all u ∈ (t, t ′ ). Thus (54) for this t, (53) and ψ being non-increasing yield and hence t ′ ∈ J. Third, J is closed under increasing sequences. That is, for any bounded increasing sequence (t n ) n∈N in J, then lim n→∞ t n ∈ J. This property follows from the fact that ψ is lower semi-continuous. Now these three properties imply J = [0, ∞) and hence the claim holds.

Finally we obtain (50) for all t 0 by taking δ ↓ 0 and rearranging terms in (54). But

Ent µ (f ) -Ent µ (P t f ) = t 0 I(P s f )ds (55) for all t by [3, Thms. 9.3 (i) and 8.5 (i)] again. Hence integrating (50) in t concludes the proof.

A dimensional HWI type inequality

For R being 0 or negative, no logarithmic Sobolev inequality for µ holds in general, and following [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] it can be replaced by a HWI interpolation inequality with an additional W 2 term : this is inequality giving an upper bound on the entropy H in terms of the distance W 2 and the Fisher information I. As above, let us see how to derive a dimensional form of this inequality from the contraction property [START_REF] Bakry | Diffusions hypercontractives[END_REF] in Theorem 1.

In a REM space as in Section 5, with a reference measure µ in P 2 (X), assume the contraction property [START_REF] Bakry | Diffusions hypercontractives[END_REF] with R = 0. Let f, g such that f µ, gµ ∈ P 2 (X), I(f ) < ∞ and gµ has bounded support. Recall first that (X, d, µ) is a RCD(0, ∞) space under our assumption [START_REF] Bakry | Diffusions hypercontractives[END_REF]. In particular I(P t f ) ≤ I(f ) for all t 0. Then [START_REF] Ambrosio | Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure[END_REF]Thm. 6.3] If now g converges to 1 in such a way that gµ converges to µ in the W 2 distance, then using the triangular inequality W 2 (P s f µ, gµ) -W 2 (P s f µ, µ) ≤ W 2 (gµ, µ) for any 0 ≤ s ≤ t one can pass to the limit above, leading to

1 2 W 2
2 (P t f µ, µ) - Finally s → W 2 (P s f µ, µ) and s → Ent µ (P s f ) are continuous on [0, t], so one can let t go to 0 and obtain

1 2 W 2 2 (f µ, µ) -
sinh 2 Ent µ (f ) 2m ≤ 1 4m W 2 (f µ, µ) I(f ). (56) 
A corresponding bound can also be derived for any R, in which the s R/m function appears.

Here is a possible application of (56): in the above notation and assumptions (with R = 0), there exists a positive numerical constant C such that Ent µ (P t f ) ≤ m 2 max C, log W 2 2 (f µ, µ) mt , t > 0 for all f with f µ ∈ P 2 . This bound is a consequence of (55), (56) with P t f instead of f , the bounds W 2 (P t f µ, µ) ≤ W 2 (f µ, µ) and sinh 4 (x) e 4x /32 for x large enough. For short time, this gives a regularization bound of the entropy as m/2 log(1/t), which is exactly the behaviour observed above for R > 0, and also for the heat kernel on R m ; it also improves on the corresponding bound m log(1/t) in [13, Prop. 2.17, (ii)].

Example 5

 5 On a d-dimensional Riemannian manifold (M, G) • the operator L = ∆ satisfies a CD(R, m) condition if m d and the Ricci curvature of the manifold is bounded from below by R; • more generally, the operator L = ∆ -∇V • ∇ satisfies a CD(R, m) condition if m d and

  3.3], becomes a distance function, further denoted d. It is compatible with the topology τ and the space (X, d) is complete [6, Def. 3.6] and length metric [6, Thm. 3.10]. We let Lip b (X) denote the set of bounded Lipschitz functions on X (with respect to d). Let |∇f | : X → R be the local Lipschitz constant of a Lipschitz function f on X: |∇f |(x) := lim sup y→x |f (y)f (x)| d(x, y) • • E/2 coincides with the L 2 -Cheeger energy associated with d, defined for f ∈ L 2 (µ) by

t 0 W 2 (4m t 0 sinh 2

 0202 P s f µ, µ) I(f ) ds. Now by[START_REF] Bakry | Diffusions hypercontractives[END_REF] the left-hand side is bounded from above by -Ent µ (P s f ) 2m ds.

  .21]). Thus it is not restrictive. Assumption (Reg2) implies that any closed bounded set in X is compact (see e.g. [12, Prop. 2.5.22]). Moreover, (X, d) is a geodesic space (see e.g. [12, Thm. 2.5.23]). As a result, (P 2 (X), W 2 ) is also a geodesic space (see e.g. [20, Cor. 1 and Prop. 1]).

  [Ent µ (P u gs ) -Ent µ (P u g)]2 du By (39) and since Ent µ (P u g) ∈ R, we have P u gs log P u g, P u g logP u g ∈ L 1 (µ). Moreover a 2 (a + b) 2 /(1 + δ)b 2 /δ for δ > 0 and 0 ≤ x log xx + 1 ≤ (x -1) 2for x 0, so (Ent µ (P u gs ) -Ent µ (P u g))2 1 1 + δ (P u gs -P u g) log P u g dµ

	Lemma 14 (Third estimate)			
	lim inf s→0	1 s 2	0	t	0 e -2R(t-u) t	e -2R(t-u)	P u gL g f log P u g dµ	2	du.
	Proof. By the Fatou lemma, it suffices to show
						lim inf s→0	s Ent µ (P u gs ) -Ent µ (P u g)	2	P u gL g f log P u g dµ	2
	for each u > 0. 2	-	1 δ	(P u gs -P u g) 2 P u g	dµ	2	.
	By the Cauchy-Schwarz inequality for P u ,		
	lim sup s→0	1 s	(P u gs -P u g) 2 P u g	dµ ≤ lim sup s→0	1 s	P u	(g s -g) 2 g	dµ = lim sup s→0	s	P g s f -f s	2	g dµ = 0.
	Since δ > 0 is arbitrary, it suffices to show		
						lim s→0	1 s		P u g(P g s f -f ) log P u g dµ = P u gL g f log P u g dµ	(42)

  and the Cauchy-Schwarz inequality yield (P t f µ, gµ) -W 2 (P t f µ, gµ) I(P t f ) for almost every t > 0. In particular

	1 2 2 1 d dt W 2 2 W 2 2 (P t f µ, gµ)-1 2 W 2 2 (f µ, gµ) -

t 0 W 2 (P s f µ, gµ) I(P s f ) ds -t 0 W 2 (P s f µ, gµ) I(f ) ds for all t 0.

du.[START_REF] Villani | Optimal transport, Old and new[END_REF] 

du. (45)
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By virtue of mollification by h ε , we have Lf ∈ D(E) and

Note that Γ(f ) ∈ D(E) (hence the left-hand side of (44) is well-defined). This fact follows from [START_REF] Savaré | Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces[END_REF]Lem. 3.2] with the aid of mollification by h ε . Then, by Lemma 16 below, we can differentiate (45) at t = 0 to obtain

Here we have used (40) also in the last equality. This is nothing but the desired inequality.

Lemma 16 For ψ ∈ L 2 (gµ), lim u→0 P u (ψg) log P u g dµ = ψg log g dµ.

Proof. We may assume ψ ≥ 0 and ψgµ ∈ P(X) without loss of generality. Then in particular ψgµ ∈ P 2 (X) by Lemma 13. First of all, P u (ψg)| log P u g| dµ < ∞ by a similar argument as in Lemma 13. Thus P u (ψg) log P u g dµ = ψgP u (log P u g) dµ ≤ ψg log P 2u g dµ by the Fubini theorem and the Jensen inequality for P u as integral operator. Now, for each x, lim u→0 W 2 (P u δ x , δ x ) = 0 by the remark after Theorem 8, and g is bounded and continuous, so

. Moreover log P 2u g ≤ log ||g|| ∞ and ψgµ is a probability measure, so by the Fatou lemma

For the opposite bound, again by the Jensen inequality for P u , P u (ψg) log P u g dµ P u (ψg)P u (log g) dµ = log gP 2u (ψg) dµ.

Moreover log g is in C 2 (X) and W 2 (P 2u (ψg)µ, ψgµ) → 0 as u → 0, again by the remark after Theorem 8. Hence, by the remark after Lemma 13, we obtain

Hence the conclusion follows from the combination of ( 46) and (47).

Now we are in turn to complete the proof of Theorem 8.

Proof of Theorem 8.

The last crucial step consists in transforming ( (Lf )g dµ) 2 into (Lf ) 2 g dµ which will be done by a localization procedure. Let f be as in Proposition 15. Remark first that, by letting λ → 0 in the definition (36), we obtain (44) for g 0 instead of the function g of (36). To put the square inside the integral in (44), we need to localize this inequality, and thus we employ a partition of unity. Let η > 0. Since Lf ∈ Lip b (X), we can take δ > 0 sufficiently small so that |Lf (x) -Lf (y)| < η for any x, y ∈ X with d(x, y) < 4δ. Since supp g 0 is compact, there is {x i } n i=1 ⊂ X such that supp g 0 ⊂ n i=1 B δ (x i ) (note that we require the regularity assumption (Reg2) only at this point). Let us define ψi (i = 1, . . . , n) by ψi (x) := 0 ∨ (2δd(x i , x)) and

Then

and n i=1 ψ i (x) = 1 for x ∈ supp g 0 . By applying (44) for ψ i g 0 / ψ i g 0 L 1 (µ) instead of g 0 , we have

By the choice of δ and {ψ i } n i=1 , with η < 1,

Let now g ∈ D(L) ∩ L ∞ (µ) with g 0 and Lg ∈ L ∞ (µ), as in Theorem 8. By virtue of mollification by h ε , ( 29) and (32), we have Γ(f ), Γ(f, Lf ), (Lf ) 2 ∈ L 1 (µ) ∩ L ∞ (µ). Thus we can replace g 0 in the last inequality with g 1 ∈ Lip b (X) ∩ D(E), by a standard truncation argument. Then we can replace g 1 with g since D

Finally, we remove the mollification h ε . Let f ∈ D(L) with Lf ∈ D(E) and f n := (-n)∨f ∧n. Then we have, from the integration by parts formula (34),

By virtue of mollification by h ε , h ε f nh ε f E → 0 and Lh ε f n -Lh ε f E → 0 as n → ∞. Thus we obtain (30) by letting n → ∞ and ε → 0 after it, with taking Lh ε f = h ε Lf into account.