N
N

N

HAL

open science

Hypocoercivity for a linearized multi-species Boltzmann
system

Esther Daus, Ansgar Juengel, Clément Mouhot, Nicola Zamponi

» To cite this version:

Esther Daus, Ansgar Juengel, Clément Mouhot, Nicola Zamponi. Hypocoercivity for a linearized
multi-species Boltzmann system. 2015. hal-01220673v1

HAL Id: hal-01220673
https://hal.science/hal-01220673v1

Preprint submitted on 26 Oct 2015 (v1), last revised 12 Nov 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01220673v1
https://hal.archives-ouvertes.fr

HYPOCOERCIVITY FOR A LINEARIZED MULTI-SPECIES
BOLTZMANN SYSTEM

ESTHER S. DAUS, ANSGAR JUNGEL, CLEMENT MOUHOT, AND NICOLA ZAMPONI

ABSTRACT. A new coercivity estimate on the spectral gap of the linearized Boltzmann
collision operator for multiple species is proved. The assumptions on the collision kernels
include hard and Maxwellian potentials under Grad’s angular cut-off condition. Two
proofs are given: a non-constructive one, based on the decomposition of the collision
operator into a compact and a coercive part, and a constructive one, which exploits the
“cross-effects” coming from collisions between different species and which yields explicit
constants. Furthermore, the essential spectra of the linearized collision operator and
the linearized Boltzmann operator are calculated. Based on the spectral-gap estimate,
the exponential convergence towards global equilibrium with explicit rate is shown for
solutions to the linearized multi-species Boltzmann system on the torus. The convergence
is achieved by the interplay between the dissipative collision operator and the conservative
transport operator and is proved by using the hypocoercivity method of Mouhot and
Neumann.

1. INTRODUCTION

This paper is concerned with the proof of (explicit) spectral-gap estimates of the lin-
earized Boltzmann operator for gas mixtures in the case of hard and Maxwellian potentials
as well as the exponential decay of solutions to a multi-species Boltzmann system. Spectral-
gap estimates and the large-time behavior of the mono-species Boltzmann equations were
intensively studied in the literature, but are unknown for multi-species systems. First, we
review the literature for the mono-species case.

The study of the linearized collision operator, in the spatially homogeneous and hard-
potential case, goes back to Hilbert [I7]. For this operator, Carleman [7] proved the
existence of a spectral gap. The results were extended by Grad [13] for hard potentials
with cut-off. Baranger and Mouhot [2] derived constructive estimates in the hard-sphere
case. For Maxwell molecules, Fourier transform methods were employed in [31] to achieve
explicit spectral properties. A spectral-gap estimate for the linearized Boltzmann operator,
consisting of the sum of the linearized collision operator and the transport operator, was
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first shown by Ukai [2§]. Improved estimates (in smaller spaces of Sobolev type), still for
hard potentials, were established in [23]. In [24], spectral-gap estimates for moderately
soft potentials (without angular cut-off) were proved, improving and extending previous
results by Pao [25]. Hypoelliptic estimates for the linearized operator without cut-off can
be found in [I] and references therein. A spectral analysis with relaxed tail decay and
regularity conditions on the solutions was performed recently in an abstract framework
[15]. Dolbeault et al. [T0] derived exponential decay rates in weighted L? spaces, which
improves previous Sobolev estimates. For further references, we refer to [24], Section 1.5].

Spectral properties of the linearized Boltzmann operator were already investigated by
Grad [I4]. Based on these results, Schechter [26] located the essential spectrum of the
classical collision operator in L?. The spectrum of the Boltzmann operator for hard spheres
was also analyzed in LP for p # 2; see [19]. We refer to the recent work [11] for further
results in LP for 1 < p < oo and more references. A detailed analysis of the resolvent
and spectrum of the linearized Boltzmann operator can be found in [29, Section 2.2]. A
complete analysis for the essential and discrete spectra for the linearized collision operator
with hard potentials was performed in [22].

All these results are valid for the linearized mono-species collision operator. Our aim is
to extend the spectral-gap analysis to the case of the linearized multi-species Boltzmann
system modeling an ideal gas mixture. This is achieved by generalizing the coercivity
method of [23], including quantitative estimates on the spectral gap for the multi-species
collision operator. A crucial step of our analysis is the observation that the multi-species
version of the H-theorem implies conservation of mass for each species but conservation of
momentum and energy only for the sum of all species. As a consequence, we need to study
carefully the “cross-effects” of the collisions, i.e., how collisions between different species act
on distribution functions which are elements of the nullspace of the mono-species collision
operator. The crucial step is to relate these “cross-effects” to the differences of momentum
and energy. Before stating the main results, we introduce the kinetic setting.

1.1. The Boltzmann equation. The evolution of a dilute ideal gas composed of n > 2
different species of chemically non-interacting mono-atomic particles (see [9] for chemically
reacting gases) with the same particle mass can be modeled by the following system of
Boltzmann equations, stated on the three-dimensional torus T?,

(1) atE+UVxE:Q2(F)a t>0> E(I,U,O):FLZ’(I’,U), (ZL’,'U) GT?’ X]Rga

where 1 < i < n. The vector F' = (F},..., F,) is the distribution function of the system,
with F; describing the ith species. The variables are the position x € T3, the velocity
v € R3 and the time ¢ > 0. The right-hand side of the kinetic equation in () is the ith
component of the nonlinear collision operator, defined by

Qi(F) = ZQij(EaFj)a 1<i<n,
=1
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where ();; models interactions between particles of the same (i = j) or of different species
(@ #J),
Qij(F’ia FJ)(U) = / Bij(|U — ’U*|, COS 19)(}7’2/}7’]/* — FZ’F;)CZ’U*dO',
R3xS2
with the abbreviations F] = F;(v'), F;* = F;(v*), F/* = F;(v"*), the three-dimensional unit
sphere S?, and
v4o* v — ¥ v4+ov* v — v
2 v = o, V= -
2) 2 + 2 ’ 2 2
are the pre-collisional velocities depending on the post-collisional velocities (v,v*). These
expressions follow from the fact that we assume the collisions to be elastic, i.e., the mo-
mentum and kinetic energy are conserved on the microscopic level:

1 1 1 1
(3) v/—i—v’* :U—l—U*, §‘U/‘2+§‘U/*|2: §‘U|2—|—§‘U*‘2.

The collision kernels B;; are nonnegative functions of the modulus |v — v*| and the cosine
of the deviation angle ¥ € [0, 7|, defined by cos? = o - (v — v*)/|v — v*|.

Although we will analyze a linearized version of ();, let us recall the main properties of
the nonlinear operator @);. Using the techniques from [8, pp. 36-42], it is not difficult to
see that @ := (@1, ...,Q,) conserves the mass of each species but only total momentum
and energy, i.e.

> Qi(Fi, Fy)(v)dv =0

ij=1
if and only if (v) € span{e™,... e™ v1, 051,031, |v|?1}, where e is the ith unit
vector in R™ and 1 = (1,...,1) € R™. It is shown in [9] that @ satisfies a multi-species
version of the H-theorem which implies that any local equilibrium, i.e. any function F

being the maximum of the Boltzmann entropy, has the form of a local Maxwellian M,. =
(Mloc,b R Mloc,n) with

o - Ploc,i (za t) |U - uloc(xa t)|2
Fi(@,v,8) = Mioes(w,v,1) = (27010 (, 1))3/2 Y <_ 2010¢(, 1) ’

where, introducing the total local density p. = Z?:l Ploc,is

1
Ploc,i = / F;'dl), Uloc =
R3 Ploc

are the (local) masses of the species, the total momentum and total energy, respectively.
On the other hand, the global equilibrium, which is the unique stationary solution F' to
@), is given by M = (M, ..., M,) with

. _ 2
Fi(z,v) = M(v) = &exp <_M) ’

n n

1
Fwdv, 9100 = / F;|U - u|2dv
Z; /RS 3p10c ZZ:; R3

(2700 )32 20..
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where now, setting poc = > i Pociis

1 1
Poo,i = / Fdzdv, v, =— Foodrdv, 04
T3 xR3

= — Filv — u|*dxdv
Poo JT3xR3 3P0 JT3xR3

do not depend on (z,t). By translating and scaling the coordinate system, we may assume
that u,, = 0 and 6., = 1 such that the global equilibrium becomes

Pooyi  _|y2 .
(4) M;(v) = (27r)3/26 W21 <<,
1.2. Linearized Boltzmann collision operator. We assume that the distribution func-

tion Fj is close to the global equilibrium such that we can write F; = M, + Mil/ 2 fi for some
small perturbation f;, where M; is given by (). Then, dropping the small nonlinear
remaining term, f; satisfies the linearized equation

(5) atfz‘l'vvxfz:[/z(f)a t>0a fi(ZL’,U,O):fIJ(l’,U), (ZL’,’U) ETg X]Rga

for 1 < i < n, where f = (f1,..., fn) and the ith component of the linearized collision
operator L = (Ly,...,L,) is given by

Li(f) = ZLij(fiafj)a 1<i<n,
=1

with
Lij(fir £5) = M (Qu (M, M2 1) + Qi (M £, )
(6) = / By M} Mj (W4 1§ — by = h)dv*do,  hy:= M, .
R3xS?

Here, we have used MZ/*MJ’ = MM, for any i, j, which follows from (@)). Notice that we
have chosen the linearization considered in, e.g., [23, 29]. Another linearization is given by
F, = M; + Mg; (see, e.g., [21]), namely Li;(f;, f;) = M; ' (Qy(M;, M;gi) + Qij(Migi, M;)).

The linearized Boltzmann system satisfies an H-theorem with the linearized entropy

H(f)= % Z?:l f]R3 fizdva

_% = —; o szz(f)dU = —(f’ L(f))L% > (),

where (-, )2 is the scalar product on L? := L*(R* R"). We will prove in Lemma [ that
(f,L(f))rz = 0 if and only if M2 £ lies in span{e® .. ™ v;1, 0,1, 051, [v[*1}, which
is the null space N'(L) of the linear operator L. The main aim of this paper is to show
that, under suitable assumptions on the collision kernels, there exists a constant A > 0,
which can be computed explicitly, such that for all suitable functions f, —(f, L(f))rz >
M| f=IT"(f)||3,, where IT" is the projection onto V(L) and H is a subset of L? (see Theorem
for the precise statement). This spectral-gap estimate, together with hypocoercivity
techniques, allows us to conclude that exponential decay of the solutions f(¢) towards the
global equilibrium holds (see Theorem ).



HYPOCOERCIVITY FOR A BOLTZMANN SYSTEM 5

1.3. Assumptions on the collision kernels. We impose the following assumptions on
the collision kernels B;; arising in ().

(A1) The collision kernels satisfy
Bij(lv —v*|,cos?) = Bj;(Jv —v*|,cosd) for 1 <i,j <n.

(A2) The collision kernels decompose in the kinetic part ®;; > 0 and the angular part
b;j > 0 according to

Bij(lv —v*[, cosd) = @4(Jv — v*|)bij(cos V), 1<i,5 <n.

(A3) For the kinetic part, there exist constants Cy, Cy > 0, v € [0,1], and ¢ € (0, 1) such
that for all 1 <4,5 <mn and r > 0,

Cl?ﬂ’y S q)”(’f’) S CQ(T + 7"_6).

(A4) For the angular part, there exist constants C3, Cy > 0 such that for all 1 <i,j <n
and v € [0, 7],

0 < bij(cosv)) < Cs|sind||cosd|, bj;(cos)) < Cy.

Furthermore,

Cb = llgiignngl,iggf;SZ /S2 min {bii(al . 0'3), bii(UQ : Ug)}dO'g > 0.

(A5) For all 1 <i,j < n, by is even in [—1,1] and the mapping v — ®;(|v|) on R® is
locally integrable on R* and bounded as |v]| — cc.

(A6) There exists > 0 such that for all 1 <i4,j <n, s >0, and o € [—1, 1], we have
Bij<8, O') < ﬁBZ’Z(S, O').

Following [23], since the functions b;; are integrable, we define

(7) (* := min / bi;j(cos 8) sin 8dd > 0.
1,<ii<n fg

Let us discuss these assumptions. The first hypothesis (A1) means that the collisions
are micro-reversible. Assumption (A2) is satisfied, for instance, for collision kernels de-
rived from interaction potentials behaving like inverse-power laws. The lower bound in
hypothesis (A3) includes power-law functions ®;;(r) = 7 with v > 0 (hard potential)
and v = 0 (Maxwellian potential). The assumption v > 0 is crucial since the linearized
collision operator in the mono-species case for soft potentials (7 < 0) with angular cut-off
has no spectral gap [2]; however, degenerate spectral-gap estimates are possible [12, 20].
The upper bound in (A3) means that the kinetic part is of restricted growth for both small
and large values of |[v — v*|. In hypothesis (A4), the upper bound implies Grad’s cut-off
assumption. The positivity of C® in Assumption (A4) is used in the constructive proof
of the multi-species spectral-gap estimate (Theorem []) via the mono-species spectral-gap
estimate which depends on C?; see also the proofs of Theorem 1.1 in [2] and Theorem
6.1 in [20]. It is satisfied for the main physical case of a collision kernel satisfying Grad’s
cut-off, i.e. for hard spheres with B;;(|v — v*|,cosv) = |v — v*|. Conditions (A1)-(A4) are
also imposed in [2 20, 21] for the linearized mono-species Boltzmann operator.
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Assumption (A5) imposes technical conditions needed to verify the abstract hypotheses
in [23]. More precisely, the evenness of b;; is employed to show hypothesis (H2) (see section
) and the properties on ®;; are used to verify (BI)) in hypothesis (H1). The conditions on
@}, are satisfied for hard and Maxwellian power-law potentials ®;;(r) = r” with exponent
v € [0,1], for instance. Finally, condition (A6) states that the ratio of the off-diagonal and
diagonal collision kernels can be bounded uniformly from above by a constant g > 0. This
hypothesis will be needed for the explicit computation of the constants in Theorems [3 and
[ More precisely, (A6) allows us to employ the estimation of the mono-species part of the
collision operator using the computation of [20]; see Lemma [IT]

1.4. Notation and definitions. We introduce the spaces L2 = L*R%R"), L2 =
L(T? x R%:;R™), H! = H'(T? x R%R"), and

o {feL% : ||f||i=Z/ Puido < oo},
i—1 /R?

D {feLi Afl= Y [ gian < oo}.
i=1 /R

Here, 1; is the collision frequency, given by

(8)

() Vi(v):Z/ By(lv" — vl cos®)Midv*do, i=1,....n,

If the collision frequencies are bounded, H = L2. Generally, however, v; is unbounded and
so, H is a proper subset of L?. The norm on L? (and similarly for the other spaces) is
defined by

22=n 2dv for f=(f1,...,fn) € L2
Ity =3 [ v for g = (g e

We distinguish the following linear operators. We define the operator A = (Ay,...,A,) :
Domain(A) — L? by A;(f) = v;fi, where Domain(A) = {f € L? : Af € L2} =D. It
is closed, densely defined, selfadjoint and, by Lemma [7] below, coercive. The linearized
collision operator L : Domain(L) — L2, introduced in section [[2 can be written as
L = K — A, where K := L + A turns out to be a compact operator in L? [4]. Thus,
Domain(L) = Domain(A) = D and L is closed and densely defined. Furthermore, L
is nonpositive and selfadjoint on L?. We define the transport operator: T = v -V, :
Domain(T) — L2, where Domain(T) = {f € L2, : v- V. f € L2 }. Finally, we consider
the linearized Boltzmann operator B = L — T : Domain(B) — L? which is unbounded,
closed, and densely defined with Domain(B) = Domain(L) N Domain(7T’).

We denote by N (A) and R(A) the kernel and range of a linear operator A, respectively.
Its resolvent set is denoted by p(A) and its spectrum by o(A) = C\p(A). For a linear
unbounded operator A with o(A) C (—o0,0], we say that A has a spectral gap when the
distance between 0 and o(A)\{0} is positive. Finally, the essential spectrum of A is defined
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as the set of all complex numbers A € C such that A — Al is not Fredholm, where I is the
identity operator. We refer to section [3] for details regarding this definition.

1.5. Main results. In this subsection, we state the main results of the paper. The first
result is a geometric property of the essential spectrum of the linearized collision operator
L and the linearized Boltzmann operator B = L —T.

Theorem 1 (Essential spectrum of L and L —T'). Let the collision kernels B;; satisfy as-
sumptions (A1)-(A4) and set J = Ul R(v;) C vy, 00), where vy = min;_; _, SUp,cps Vi(v)
> 0 (see Lemmal7). Then

Oess(L) = —J, Oes(L—T)={A € C:R(\) € —J}.
Remark 2. We observe that if lim,|_,o, v;(v) = 0o for i = 1,...,n then
Oess(L) = (—00, =11, Oess(L—T)={A € C:R(\) < —1p}.

Indeed, under the assumption v;(v) — oo as |v| — oo, the continuity of v;, and the
Weierstrafl theorem show that J = [1g, 00). Thus, the essential spectrum of the linearized
multi-species collision operator is very similar to the mono-species operator, where v cor-
responds to the infimum in R? of the single collision frequency; see [21, Section 3] and [22]
Prop. 3.1]. O

The proof of Theorem [Ilis based on perturbation theory [18, Chap. IV] and is similar
to the proof for the mono-species collision operator [29] but requires some changes due to
the multi-species case. More precisely, we write L = K — A as described in section [L.4 It
turns out that K = L + A is compact on L? (see section [ for details). Weyl’s theorem
[16], Theorem S| states that the essential spectrum of L = K — A coincides with that of
—A. Thus it remains to show that o.s(A) = J. This is done by using Weyl’s singular
sequences, which allow for a sufficient and necessary condition for A € C being an element
of the essential spectrum of the selfadjoint operator A.

The proof of the second statement in Theorem [Ilis more involved since K is not compact
on wa and hence, Weyl’s theorem cannot be applied directly. The idea is to employ an
extended Weyl theorem, which states that the essential spectrum is conserved under a
relatively compact perturbation [I8, Section IV.5.6, Theorem 5.35]. Indeed, if K is relatively
compact with respect to A + 7" then oo (L —T) = 0ess(K — (A+T')) = —0ess(A+T'), and
it remains to compute the essential spectrum of A + T

The next theorem concerns an explicit spectral-gap estimate. It is the main result of the
paper.

Theorem 3 (Explicit spectral-gap estimate). Let the collision kernels B;; satisfy assump-
tions (A1)-(A4). Then there ezists a constant X > 0 such that

(10) — (F LUz = Af = LTI}, for all f €D,
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where ITF is the projection onto the null space N'(L). If additionally hypothesis (A6) holds,
the constant A can be computed explicitly:

B n_Db 40™C,
80y "16C, + Db |’

where C™, D®, and Cj, are defined in BY), @3), and @), respectively.

A n:min{l

Note that the constant C™ depends on the mono-species spectral-gap constant C® via
[B]) below. We present two proofs of this theorem. The first proof is non-constructive
and relies on an abstract functional theoretical argument, based on the decomposition
L = K — A and Weyl’s perturbation theorem. This abstract spectral-gap estimate is
proved in Lemma [I0l The second proof provides a constructive spectral-gap estimate,
generalizing the result in [2I] (also see [20, Theorem 6.1]) from the mono-species to the
multi-species case. For this, we split the operator L = L™ + L in the mono-species part
L™= (L7, ..., L'™) and the bi-species part L* = (Lt ... L?),

L) = Li(fi ), LAf) =D Lij(fir f)-
J#
The proof consist of four main steps.
Step 1: Coercivity of the mono-species operator L™. The bi-species part of L satisfies
—(f,L*(f))rz > 0 for all f € D. Furthermore, the results of [20, Theorem 6.1] show that
for the mono-species part,

(11) — (£, L™ ()2 = C™IIf = I™(f)]l3, for f € Domain(L™),

where the constant C™ > 0 can be computed explicitly and II™ is the projection onto
N(L™) (see Lemma [II]). Inequality (II) may be interpreted as a coercivity estimate for
L™ on N(L™)*. Tt is related to the “microscopic coercivity” in [I0, Section 1.3] for the
mono-species setting. Hence, we obtain the “naive” spectral-gap estimate

—(f,L(f))ez = C™|If = LI (f)3, for f€D.

This estimate is not sharp enough for the multi-species case since we need an inequality for
all f— IT*(f) € N(L)* and not only for f — IT™(f) € N(L™)* € N(L)*. By projecting
onto N (L™)+ only, we neglect the “cross-effects” coming from the bi-species part of the
collision operator. Thus, we need a better estimate for —(f, L(f))z2, which is achieved as
follows.

Step 2: Absorption of the orthogonal parts. The contribution f*+ := f — II"(f) in
—(f, L*(f))12 can be absorbed by the H norm of f* (see Lemma [2), giving for a certain
n >0,

—(f L())ez = (C™ = dn)llf 15, — g(ﬂm(f),Lb(Hm(f)))Lz-

Step 3: Coercivity of the bi-species operator L°. The projection II™(f) depends on the
velocities u; and energies e; of the ith species, and thus, the cross terms can be bounded
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by the differences of momentum and differences of energies,

(12) — (™), LA™ (F))ez = C Y (lws = wy + [es — e5),

ij=1
for some constant C' > 0. This is the key step of the proof. The inequality may be con-
sidered as a coercivity estimate for the bi-species operator. A key observation is that the
differences of momenta and energies converge to zero as f approaches the global equilib-
rium. Whereas (I]) acts on A/(L™)+, (I2) gives an estimate on the orthogonal complement
N(L™).

Step 4: Lower bound for the differences of momenta and energy. The last step consists in
estimating the differences |u; —u;| and |e; — e;| from below by the error made by projecting
onto N (L™)* instead of N'(L)*:

D (lws = wl? + [es — %) = C|If = ()15 = 201 f = 1T ()3
ij=1
Putting together the above inequalities, Theorem [ follows; we refer to section [ for details.

As a consequence of the spectral-gap estimate, we are able to prove the exponential
decay of the solution f(¢) to (B to the global equilibrium with an explicitly computable
decay rate.

Theorem 4 (Convergence to equilibrium). Let the collision kernels B;; satisfy assumptions
(A1)-(A5) and let f; € H . Then the linearized Boltzmann operator B = L—T generates

a strongly continuous semigroup e on H!  which satisfies

(13) [P (I —IIP)||g < Ce ™™, t>0,
for some constants C', 7 > 0. In particular, the solution f(t) = e f; to ([{) satisfies

(14) 1F(8) = Fuclli, < Ce™ s = frcllm,, =0,

where fo = IB(f7) is the global equilibrium of ([B). Moreover, under the additional
assumption (A6) and lower bound in (A4), the constants C' and T depend only on the

constants appearing in hypotheses (H1)-(HS3) in section[d and in particular on \ defined in
Theorem [3.

The idea of the proof is to employ the hypocoercivity of the linearized Boltzmann op-
erator L — T, using the interplay between the degenerate-dissipative properties of L and
the conservative properties of 7'. The aim is to find a functional G|[f]| which is equivalent
to the square of the norm of a Banach space (here, H;v),

killfIZ . < G < mall fly, for £ € HY,,
leading to
d

(15) EGVGHS—MVUW%M t>0,
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where k1, kg, k > 0 and f(t) = e’ f;. These two estimates yield exponential convergence
of f(t) in Hy,. Tt turns out that the obvious choice G[f] = cillfllzz, + cal Vafllrz, +
cs||Vy fllr2 , does not lead to a closed estimate. The key idea, inspired from [30] and
worked out in 23], is to add the “mixed term” c4(V.f, V, f)rz , to the definition of G[f].

Then
d

E(VxLﬁ Vv.f)L%YU = _Hv:cfH%%v + 2(v:cL(.f)a vv.f)L%yva

and the last term can be estimated in terms of expressions arising from the time derivative
of the other norms in G[f(¢)]. Thus, choosing ¢; > 0 in a suitable way, one may conclude
that (1)) holds.

In [23], the calculation of (IH) is reduced to the validity of certain abstract conditions
on the operators K and A (see section [Bl). These conditions state that A is coercive in a
certain sense, K has a regularizing effect, and L = K — A has a local spectral gap. The last
condition is proved in Theorem [3], while the other conditions follow from direct calculations,
since the operators K and A are given explicitly. As a consequence, the proof of Theorem
[ essentially consists in verifying the abstract conditions stated in [23]. In contrast to the
estimate of Theorem [3, where the multi-species character plays a role in the spectral-gap
estimate, there are no “cross-effects” here and the same modified functional G[f] as above,
including the mixed term, can be used. However, the decay rate 7 changes, since the
constant in hypothesis (H3) (see section [f) differs in the mono- and multi-species case and
7 depends also on that constant.

We note that the convergence result requires some regularity on the initial data, namely
fred ;ﬂ). In [10], exponential convergence was proved for solutions to scalar linear kinetic
equations in the whole space with a confining potential, where only L? regularity for the
initial data was needed. An alternative approach to study the linearized semigroup without
regularity assumptions was developed in [15], based on a high-order factorization argument
on the resolvents and semigroups. The extension of this approach to the multi-species case
is the subject of future work.

The paper is organized as follows. In section 2 some properties of the linearized collision
operator (@) are collected. Theorem [I] on the essential spectrum of L and L — T and the
abstract spectral-gap estimate in Theorem [B are proved in section Bl We present a second
proof of Theorem Bl in section F] by exploiting the conservation properties und leading to
explicit constants. Finally, Theorem []is shown in section

2. PROPERTIES OF THE KINETIC MODEL

We show some properties of the linearized collision operator ([G) and the collision fre-
quencies ([@). Let assumptions (A1)-(A4) hold. First we prove an H-theorem for ([d).

Lemma 5 (H-theorem for the linearized collision operator). It holds (f, L(f))zz <0 for
all f € D and (f, L(f))r2 = 0 if and only if f € N (L), where

N(L)={f€L]:Fa,...,0p, e € R, ueR’ V1 <i<n,
fi= M (i +u-v+ e},
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and M; is given by ().

The proof is similar to the mono-species case except that the elements of the null space
of L depend on the total mean velocity u and total energy e instead of the individual
velocities and energies. Therefore, we give a complete proof. We note that an H-theorem
for the nonlinear Boltzmann operator for a mixture of reactive gases was proved in [9].

Proof. By the change of variables (v, v*) — (v*,v) and (v, v*) — (v/,v"*) and the symmetry
of B;; (assumption (Al)), we can write for f € L2,

n

1 * * * *
(f, L(f))L% = _Z Z / BUMZMJ (h; + h; - hz - hj)2d1) d’UdO',
ij=1 R6xS2
where we recall that h; = Mi_l/zfi. This shows that (f, L(f)),2 < 0 for all f € D.
Moreover, (f, L(f))r2 = 0 if and only if

(16) h; + 1§ —h; —h; =0 forall (v,v") ER*xR? 1<i,j<n.

It is shown in [8, pp. 36-42] that (6] for ¢ = j implies that h; has the form h;(v) =
o+ u; v+ ei\v|2 for suitable constants o, e; € R and u; € R?. Inserting this expression
into (I6) leads to

(17) wi - (V' =) +uy - (07 = 07) + e[V = o) + g (0] = o fF) = 0
for 1 < 4,7 < n. We consider the particular type of collisions with v" = v*, v* = v, and
|v| = |v'|. For such collisions, o = (v* — v)/|v* — v|. Then the above equation becomes

(=) (' =) =0, 1<ij<n.

By rotating the velocities v, v" in all possible ways, we deduce that (u; —u;)-w = 0 for all
w € R? and thus, u; = u; for all 1 <4, j < n. We set u := uy. This fact, together with the
conservation of momentum v — v 4+ v — v* = 0, implies that ({IT) becomes

e[/ = ") + (" [* = [v"[) =0, 1<ij<n

Taking into account the conservation of energy [v'|? — |[v|> + [v/*|* — |v*|? = 0, we infer that
(e; — €;)(Jv'|* = |v]?) = 0 and consequently, e; = e; for all 1 < 4,57 < n. Set e := e;. We
have shown that (f.L(f));2 = 0 if and only if there exist ay,...,a,, e € R and u € R?

such that for 1 < <mn, f;j(v) = M-1/2(ozi +u - v+ e|v]?). These functions clearly belong to

)

N (L), which finishes the proof. O

The next result is concerned with the stationary solutions of ().

Lemma 6. The global equilibrium foo = (foor,-- -, foon) of (@), i.e. the unique stationary
solution, is given by

fooi(v) = M} (@ +u-v+epl?), 1<i<n,

7
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where o;, e € R and u € R?® are uniquely determined by the global conservation laws of
mass, momentum, and enerqy, i.e. by the equations

M (fooi = Jra)()dv =0, 1<i<n,
R3

for (v) = 1,01, v9,v3, [v]?, where fr; are the initial data.

Proof. First, we claim that N (B) = N(L)NN(T), where B=L—-T and T =v -V, are
considered on T3 x R3. The inclusion N'(L) "N (T) € N(B) being trivial, let f € N'(B).
Then

0=C0B( ez, = LU ez, — (T )z, = L0 ))rz,

Lemma [ shows that f € A(L). But this implies that T(f) = L(f) — B(f) = 0 and hence
f € N(T). This shows the claim. Let f,, be a stationary solution. Then f,, € N(B) and
by our claim, f € N(L)NN/(T). Since N(T) ={f € L2, : V,f =0} [0, Lemma B.2], f
does not depend on x. Because of f., € N (L), Lemma l shows the result. O

Finally, we prove that the collision frequencies (@) are strictly positive with bounded
derivative.

Lemma 7. The collision frequencies ([Q) satisfy
C1l°pos 3
(18) min inf v;(v) > vy 1= 27/222 L% (%L ) >0,
1<i<n veR3 NZS 2

where Cy > 0 is given by assumption (A3), (* > 0 is defined in (@), pso := Z?lej,oo
(see [ )), and I' is the Gamma function. Furthermore, if additionally (A5) holds, then
Vv € LE(R3), implying that |v;(v)| < C,(1 + |v|) for some C, > 0 and for all v € R3,
i=1,...,n

Proof. 1t follows from the definition of M; and (A2)-(A4) that

- v—*
1 . — E d.(lv — v\ M* g L7 *
e ) j=1 /RS (o =) ! /82 bi (O v — U*|) dodv

& C’ Do
> Clﬁbz v —v"|" M} dv* > =P / v — v*Te P 2qp.
—1 R3

)32

= / ‘U — /U*|ﬁ/e_|v*|2/2d’l]*
R3

is strictly positive since the transformation v* — —v* and the elementary inequality
lv—v*"+ v+ 0" > |(v—v")+ (v+0")]" =27|0*|7
for v € [0, 1] lead to
1

G(v) = _/ (lo = v*|" + [v 4+ o )e " FRPay* > 271 [ [u* e P 2a0* = 271G(0).
2 R3 R3

Observe that the function
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Actually, using spherical coordinates and the change of unknowns s = r2/2,

G(0) = 4r /OO P22 dy = 2092 /00 sOHD2e=3ds = 9049/ 24 (7—%) :
2
0 0

Inserting the above estimate on G(v) into (I9) shows (IS]).
It remains to prove that V,v; € L(R*). The decomposition of B;;, according to
assumption (A2), implies that

VZ'(U) = Z/ (I)ij(|v — ’U*DM;dU*/ bij(COSﬁ)dO'.
o1 R S2
The integral

Cij = /S2 bi;j(cos¥)do = 27?/0 b;;(cos ) sin ¥dv)

does not depend on v or v*. We conclude that

vi(v) = (2m) Y e /Rs ;v — v*)e” "2y,

J=1

Then we compute

[vi(v)] = (2m)~*?

- . VTV e
> ijpoos | Vois(lv—v*]) - —e dv
= RS v — v

(20) < @m)7 Y i, / (V@i (|o — o )le” 20",
R3

j=1
For given R > 0, we decompose
Vo ®ij ([0 = V@3 ([0]) X o< ry (V) + Vo @i ([0]) X {012 8y (0)-
Assumption (A5) means that there exists R > 0 such that
IVo@ii(| - DIxgr<my € Ly(R?) and [V, @y(] - DIxqzm € LY (RY).

Thus, the right-hand side of (20) is bounded since it can be written as the sum of two

terms, each of which is the convolution of an L' and an L* function. This shows that
Vv € L(R3). O

Remark 8. We observe that v; is generally not bounded since the kinetic part ®;;(r) may
grow like 7 as 7 — oo. It is possible to show that v; is bounded if ®;; is bounded. The
unboundedness of v; implies that the spaces L? and H are not isomorphic. O
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3. GEOMETRIC PROPERTIES OF THE SPECTRUM

In this section, we prove Theorem [Iland the spectral-gap estimate (I0) in Theorem [B] by
using functional analytical arguments.

First, we study the essential spectrum of L and L — T". There exist several definitions
of the essential spectrum of a linear operator. Given a linear, closed and densely defined
operator A : Domain(A) C X — X on a Banach space X, we define

Oess(A) = {A € C: A— Al is not Fredholm}.

We recall that a linear, closed, and densely defined operator A is Fredholm if its range R(A)
is closed and both its kernel and cokernel are finite-dimensional. For other definitions of
the essential spectrum, we refer to [16]. The essential spectrum is closed and conserved
under compact perturbations, i.e., the bounded operators A and B have the same essential
spectrum if A — B is compact (Weyl’s theorem; see [16, Theorem S].

If X is a Hilbert space and A is selfadjoint, it holds ce(A) C R and for given A € R,
we have \ € 0(A) if and only if A — Al is not closed or the kernel of A — AI is infinite
dimensional. (This follows from the fact that R(A — )+t = N(A — \I) for closed,
selfadjoint operators A [I8, Chap. V.3.1].) Moreover, Weyl’s criterion holds [27, Lemma
5.17]: X € 0es(A) if and only if A — Al admits a singular sequence, i.e. a sequence (fy) C
Domain(A) such that (i) ||fx||lx = 1 for all k£ € N; (ii) [[(A — M) f]|x — 0 as k — oo; and
(iii) (fx) has no convergent subsequences in X.

We decompose L as L = K — A, where K = (Ky,...,K,), A= (Ay,...,A,), and

n

Ki(f) = Z /RS . BijMil/zM;(h; + A — hj)dv*do,
j=1 JRxS?

(21) N(f)=wifi, 1<i<n,

and the collision frequencies v; are defined in (@)). We recall from Lemma [7]that they satisfy
vi(v) > 1y > 0 and |y(v)] < C,(1+ |v]) foralli =1,...,n and v € R3.

Proof of Theorem[d. Since K is compact on L? [4 Prop. 2], it follows that oes(L) =
Oess(—A\) = —0ess(A). Thus, we will first study the essential spectrum of A. The proof is
divided into several steps.

Step 1: J C 0es(N). Let X € J. Then there exists j € {1,...,n} and © € R3 such that
A = vj(0). We define the sequence (f) C D by

_ 2
fri(v) = (27mk)—3/4 exp <_ |U4 V| ) ifi =7, fri(v)=0 ifis#j
Ok
where o, = 1/k, k € N. Clearly, condition (i) for the singular sequence is satisfied.

Furthermore,

A =ADAIE = 3 [ (03(0) = NP it
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= (2moy,) 7% /R3(Vi(v) — 1;(0))? exp( i 2_0_?2) dv.

The limit of a sequence of Gaussians with variance tending to zero converges to the delta
distribution 3 (in the sense of distributions), which means that

D)
(27r0k)_3/2/ u(v) exp (— il ) dv — u(v) as k— oo
R3

for all functions u € C°(R3) with polynomial growth at infinity. Since |v;(v)| < C,(1+ |v|),
this condition is satisfied and we conclude that ||(A — AI) fi||z2 — 0 as k — oo, showing
that condition (ii) holds.

Let us assume by contradiction that condition (iii) does not hold. Then there exists a
subsequence (f,) of (fx) that converges in L? to some function f € L2. As a consequence,
|fe,|? = |f|* in L. as £ — oo. In particular, f € L?. However, the distributional limit
|fx,|*> = 05 and the uniqueness of the limit imply that &z = |f |2 € L}, which is absurd.
Thus, condition (iii) holds, and we infer that A € ge(A). Then, since ges(A) is closed,
J C Oess(N).

Step 2: 0ess(N) C J. Let A € R\ J. Then there exists a constant ¢ > 0 such that for all
veRandi=1,...,n, [1;(v) = A| > c. If (fy) C D with || fil|zz =1 for all k € N, we
have

(A = AD il = Z/ (0) = N2 fea(v) 2dv>c22 oo = >0

for all k£ € N. Thus, condition (ii) cannot hold which 1mphes that A\ € 0ess(A).

Steps 1 and 2 imply that oe(A) = J.

Step 3: {N € C: R(\) € J} C 0ess(A+T). Let A € C be such that R(\) € J. It
follows from Step 1 that R(A\) € oes(A). Since A is selfadjoint on the Hilbert space L2,
A —R(N)I is not closed or the kernel of A —R(\)/ is infinite dimensional. As the operator
A — R(N)I is closed, its kernel must be infinite dimensional. Therefore, there exists a
sequence (fi) C L2 such that A(f,) — R(N)fr = 0 and (fi, fe)r2 = Oge for k, £ € N. Let us
define ¢(z,v) = exp(iS(N\)z - v/|v|*) and gr = ¢f € L7 . Since |¢| = 1, we have
(22) (ks 90)r2, = (fi, fe)rz = Oke  for k, € € N.

Furthermore, ¢ € Domain(T") and T'(¢) = iS(A)¢ for v # 0, and thus,
(A+T = A)ge = ¢(A = RN fr + fu(T =1S(N) )¢ = 0,
which shows that g, € N (A + T — AXI) for k € N. This fact, together with relation ([22)),
implies that A (A + T — AI) is infinite dimensional. As a consequence, A + 7T — I is not
Fredholm and A\ € e (A —i—_T), which proves the claim.
Step 4: {IN € C:R(\) € J} C p(A+T). Clearly, this gives
Oes(N+T)Ca(A+T)C{AeC:R(\\) € J}.

Let A € C be such that R(\) € R\J. We show first that N(A + T — \) = {0}. We
assume by contradiction that there exists f € Domain(A + T) satisfying || f||zz, > 0 and
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(A+T—AI)f = 0. In particular, there is an index £ € {1,...,n} such that [os [ fidzdv >
0. Then, multiplying v, fo+7T(f;) = Af, by f, (the complex conjugate of f;) and integrating
in T2 x R?, we obtain

(23) / / I/g|fg|2dll§'d1)+/ / fgv-fogdxdv:)\/ | fol2dxdo.
s J3 s JT3 s JT3

By the divergence theorem, the real part of the second integral vanishes,

(24) 2R ﬁv - Vi fedzdy = /RS /T3 (?gv -Vaufe+ fov- foz) dxdv

Rr3 JT3
:/ / v - V| felPdzdv = 0.
R3 JT3

Then, taking the real part of (23), we infer that

fRS f,ﬂ.g I/g|fg‘2d$(7d1)

Jos Juys | fol?dadv

Consequently, infgs v, < R(A) < supgs vy and, thanks to the continuity of vy, R(A\) €
R(vy) C J, which is a contradiction. Thus, N(A+T — AI) = {0}. Similarly, we can show
that N((A+T — A)*) = N(A+T* — XI) = {0} as well.

The operator L — T is closed [29, Theorems 2.2.1 and 2.2.2]. Thus, the boundedness of
the compact operator K and the stability of closedness under bounded perturbations [I8]
Chap. I1I, Problem 5.6] imply that A+7 = K —(L—T) is closed (and also densely defined).
Hence, R(A+T — M)t = N((A+T — XI)*) = {0}, meaning that A +7T — \I is invertible.
If f € L7, is given, there exists u € Domain(A + T') such that (A + T — Al)u = f, which
translates into
(25) (v = ROy + (T — SOy = £, j=1,...,m
We point out that, since v; is continuous, R(v;) is an interval (or a point, in case that v,
is constant). This fact and the assumption R(\) ¢ J imply that either v; — R(\) > 0 in
R? or v; — R(A\) < 0 in R3. This means that the sign s; of v; — R()) is constant in R?, for
j=1,...,n. By multiplying 25) by s;u;, integrating over T? x R?, taking the real part,
and summing over j = 1,...,n, we find that

Z/ / lv; — ||ug\ dxdv = = Zs]/ /3 (ﬂjfj—i-uj?j)dxdv,

The (real part of the) second term in (25) vanishes after integration; see (24]). By as-
sumption, there exists ¢y > 0 such that |v; — R(\)| > ¢y in R? for all j = 1,...,n.
Then the Cauchy-Schwarz inequality shows that [luf|zz < M rz,- This means that
(A+T — X)~t is bounded, so A € p(A +T).

Steps 3 and 4 show that ges(A +7T) ={A € C: R(\) € J}.

Step 5: Oess(—N —T') = 0es(K — A —T). The operator K is compact on L? but not on
L2, so the claim does not follow from the original form of Weyl’s theorem. Instead we
will employ the fact that the essential spectrum is conserved under a relatively compact

R(\) =
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perturbation [18] Section IV.5.6, Theorem 5.35]. More precisely, we prove that K is rela-
tively compact with respect to A + T, i.e., B, := K(A +T — 2I)~! is compact on wa for
some z € C with #(z) € R\.J. (Notice that by Step 4, z € p(A + T).) Then

(26) Tess(K — A —T) = 0es(—A = T) = {A € C: R(N\) € —J}..

The second identity is a consequence of Steps 3 and 4.

To prove the compactness of B., we introduce the space W := (*(Z3; L?) of sequences
f = (fm) C L2 with the canonical norm ||fllw = (3,,czs ||fm||2L%)1/2. Clearly, W is
a Hilbert space with the scalar product (f,g)w = >_,.cz3(fm:gm)r2. Furthermore, we
introduce the Fourier mapping F : L2  (T® x R*) — W by

F(f)=(fm), [fm(v)= /Tg e~ 2 f (g v)dx  for m € Z3, v € R,

ThlS mapping is bounded, invertible, and has a bounded inverse. We wish to show that
B = FB,F~': W — W is compact. Then also B, = F'~ 1B F'is compact as a composition

of a compact and two bounded operators. This idea is due to Ukai; see e.g. [29, Section
2.2.1].

Since K and A do not depend on x, it holds that EZ = K(A+f—z)_1, where T = 2riv-m.

Let (f®) = (%) ¢ W be a bounded sequence in W, i.e., there exists ¢y > 0 such that
for all k € N,

(27) PPN = > 1112, < e

meZ3
As R(z) € R\J, there is a constant ¢, > 0 such that for all i = 1,...,n and v € R?,
|vi(v) 4 2miv - m — z| > ¢,. Thus,

y|(A+if—z)—1fgf>y|§%:Z }ul ) + 2miv - m — 2) 7 9 dw

<Y [ ra = I,
i=1

Summing these inequalities over m € Z3, we infer that
IA+T = 2)7 O < 2IFPIR < o,

Consequently, the sequence ¥ (A +T - 2)7L W) s bounded in W. In particular, for
any s € Z3, ||gt¥ 172 < ZmEZ3 ||g ||22 = [|lg®™||2, < coc?. Hence, for any s € Z3, the
sequence (g{*) L2 is bounded in L2. Since K : L? — L? is compact and Z3 is countable,
we may apply Cantor’s diagonal argument to find a subsequence (g*2)) of (¢'*)) such that
(K (%)) is convergent in L2 as £ — oo, for all m € Z3.
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We will show that (B.(f*?)) is a Cauchy sequence in W. To this end, let £, s, N € N.
We write

(28) B %) — Ba(fENE = K (0%)) — K (g%))2,

mezZ3

= > I = K@iz + 0 1K) = Kol

|m|<N |m|>N

where [m| = 377, |my] for all m € Z?. First, we consider the second sum on the right-hand
side. Denote by || - [|#(2) the norm in the space of linear bounded operators on L?. By
the definition of g#f), we obtain

(20) > IE(gh?) = K9z = D KA+ 2miv - m —2)7 (5 — f3)IIZ,

|m|>N |m|>N

<2 ) KA+ 2miv - m— 2) 7 e (S9N + I1£5

|m|>N

For the operator norm, we employ Prop. 2.2.6 in [29], which can be applied since R(z) €
R\ J:
| K (A + 27iv - m — Z)_1||?$(L12}) <ci(1+|m|)™™ forallm e Z?

for some suitable constant ¢; > 0 (depending on z) and a suitable exponent o € (0,1)
(actually, @ = 4/13). Let 0 < 8 < 2a/3. By Hoélder’s inequality and (27]), we estimate

. — 2 —a 2—
D IK A+ 2miv - m = 2) g 1P < )% > (14 [m) 1 £P)177

Im|>N |m|>N
5/2 B/2 1-8/2
<@l X el =) (X 1)

|m|>N |m|>N
B/2
< 0001( Z (1+ |m|)_2a/5) :
Im|>N

Inserting this estimate into (29), it follows that

B/2
sup Z ||K ke _ ( 7(55))”%% S 20061< Z (1 + |m|)—2o¢/5) )

l,seN
SN >N >N

The choice of § implies that 2a/8 > 3 and hence, the sum over |m| > N is finite. In
particular, >, n(1+ |m|)=22/8 — 0 as N — co. As a consequence, for given ¢ > 0, there
exists N. € N such that

sup D7 K () — K (gl < 5.

ZSEN m|>N-
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. : (k) \y iy T2 3 : _
Finally, since (K (gm"’)) is convergent in L: for all m € Z?, there is a number n = 7(¢) > 0
such that for all ¢, s > 7,
€

ST IR () — K (o) < 5

|m|<Ng

Thus, choosing N = N. in (28], we deduce that (B, (f®*))) is a Cauchy sequence in the
Hilbert space W and consequently, it is convergent. This shows that B, : W — W is a
compact operator and (26]) holds. This finishes the proof of Theorem [l O

Next, we show the spectral-gap estimate for the linearized collision operator L = K — A,
i.e. the first statement of Theorem [Bl Since K is compact on L2, it remains to prove that
A:DC L? — L2 is coercive.

Lemma 9. Let (A1)-(A4) hold. Then the embedding H — L? is continuous and A : D —
L2, defined in 20)), is a linear unbounded operator with the property

(30) (A )z = £l = Clfllz for feH

for some C' > 0. Moreover, A can be extended by density to a linear bounded operator
A:H — H', where H' is the dual of H with respect to the L? scalar product. In particular,
the mapping H — R, f+— (A(f), f) is continuous, where (-,-) denotes the duality pairing
between H' and H.

Proof. The strict positivity of ; in R? (see Lemma [7) implies that the embedding H < L2
is continuous. Then the definitions of A; and H show that for all f € #H, ([B0) holds. For
given f € H, the element A(f) = (fiv1,. .., fuVn) can be identified with the linear bounded
operator H — R, g — 7", [os gifividv and consequently, A(f) € H'. It is immediate to
see that ||A(f)|lx = || f|ln, so that A : H — H' is isometric and thus bounded. Moreover,
it follows that H — R, f +— (A(f), f), is continuous. O

The following result provides a spectral gap for general operators which decompose into
a compact and a coercive part.

Lemma 10. Let Hy and H be Hilbert spaces such that H — Hg continuously and let
L : H — H be a linear bounded operator such that L = K — A with linear bounded
operators A : H — H' and K : Ho — Hy. Furthermore,

(i) For all f € H, (L(f), f) <0 with equality holding if and only if f € N(L).

(ii) The operator K : Ho — Ho is compact.

(iii) There exists Cy > 0 such that for all f € H, (A(f), f) > CollfI3-
Then there exists a constant Cy > 0 such that

—(L(f), f) = Cillfll5, for all f € HAN(L)".

Proof. We argue by contradiction. Let (f,,) € HNN(L)* be a sequence such that || f,,|l% =
1 for n > 1 but (L(f,), fn) — 0 as n — oo. Since (f,) is bounded in the Hilbert space H,
there exists a subsequence, which is not relabeled, such that f,, — f weakly in H. Because
of the continuous embedding H < Hy, also f, — f weakly in Hy. Since f, € N(L)* and
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N(L)* is weakly closed by Mazur’s lemma, f € N'(L)*. As the operator K : Hy — H, is
compact, by hypothesis (ii), the weak convergence of (f,,) in Ho implies that K(f,,) — K(f)
strongly in Ho. Hence, (fn, K(fn))u, — (f, K(f))n,- Since A : H — H' is bounded, the
mapping J : H — R, f— (A(f), f), is continuous. The linearity of A and property (iii)
imply that J is also convex. Thus, J is weakly lower semicontinuous [5, Corollary 3.9].
Therefore,

_<L(.f)af> = <A(f)>.f> - (K(f)af)HO < hgglf (<A(.fn)>.fn> - (K(fn)afn)ﬂo) - O>

because (L(f,), fn) — 0 as n — oo by assumption. We infer from hypothesis (i) that
feN(L). But also f € N(L)*, so f = 0. Then, by hypothesis (iii),

0< CO - COanHg-t < <A(fn)afn> = (K(fn)afn)Ho - <L(fn)>fn> — O>

which is a contradiction. O

Let Ho = L2. By [4, Prop. 2|, assumption (ii) of Lemma [0 holds. Furthermore, Lemma
shows that (iii) holds true. Assumption (i) is a consequence of Lemma [l Thus

—~(L(f). /) =2 Cllf = H*())II, forall feDCH.

We conclude that (I0) holds since L(f) € L2 and (L(f), f) = (f, L(f))12 for f € D. This
proves the first statement in Theorem

4. EXPLICIT SPECTRAL GAP ESTIMATE

We present a second proof of the spectral-gap estimate (I0) with explicit constants. The
idea is to decompose the collision operator L into a mono-species and a multi-species part
and to exploit the fact that the conservation properties of L are different from those of the
mono-species part L™. Let assumptions (A1)-(A4) hold.

4.1. Decomposition. We decompose L = L™ + L where L™ = (L7,...,L™), L’ =
(Lb,..., L"), and

(31) LP(fi) = Li(fi ), LAf) =D Lij(fir f)-

J#
Denoting by II™ the orthogonal projection onto N'(L™) (with respect to the scalar product
in L?), we can decompose f according to

(32) F=gl4 gt where fli= I17(p), = f - g
Lemma [0 shows that
(33) feN(L) if and only if f; = Mil/z(ai +u-v+elv?) for oy, e €R, u € R3,

(34) feN(L™) if and only if f; = Mi1/2(ozi 4+ - v+ e5|v]?) for i, e; € R, u; € R?,
and f!l has clearly the form (34)).
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For later use, we define the following bilinear forms

n

(35) _(f> Lm(f))L% - i Z/ B;’;'Ai[hiPMiMi*dvdv*dO',
i=1 R6xS2
1 n
(36) _(f> Lb(f))L% = Z Z Z/R Bz’inj [hl, hj]2MiM;d'Ud’U*dO',

i=1 ji JROXS?
where h; = Mi_l/ 2 fi and
4.2. Spectral-gap estimate for L™. Our starting point is the fact that the mono-species
collision operator L™ has an explicitly computable spectral gap. A spectral-gap estimate
for the linearized collision operator with n = 1 was proved in [20, Theorem 6.1, Remark
1]:
1 2 * * )\m m 2
(37) n BiiAi[hi]* M; M} dvdv*do > (fi = 1I™( i) vidv,
R6 xS2 Poo,i JR3

where \,, = A\ (v, C1, C?) > 0, only depending on 7, C, and C° (see (A3)-(A4)), can be
computed explicitly,

vii(v) = / Bii(lv — v*|, cos ¥) M dv*do,
R3xS2

and i € {1,...,n} is fixed. This yields the following estimate for L™, where we recall that
the space H is defined in ().

Lemma 11. With L™ defined in (31l), we have
(£, L™ ()2 = C™IIf = I™())]3 for all f € Domain(L™),

where

)\m(fy,C'l, Cb)
38 cn=" -0 = 7
(38) Bpso

and X™ = \"™(v, Cy, C?) is given in ([B37).
Proof. We sum (B7) over i = 1,...,n and employ (B3]) to obtain

- Vij
(39) R OIPERD Sy RS O

i=1 /R 00yt
It remains to estimate v; in terms of v;, defined in ([@)). The definition of AM; implies that
M; = (poo.j/Pooi)M;. This fact, as well as definition (@) of v;, the lower bound (I§]), and
assumption (A6) give

n

poo,j * * = poo,j * * Bpoo
;= E B M dv'do < E —= [ B;M;dv'do = —v;;.
v /RS M dvtdo < 3 /RS vido v

j=1 Poo,i =1 Poo,i Poo,i
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We conclude that v;;/pac.i > vi/(Bps), and inserting this bound into ([39) yields the result.
U

Lemma () and the inequality —(f, L°(f))zy > 0 immediately show that
~(f, LUz = C™If = I™(f)]l3, forall f €D.

However, we need the projection onto N (L) instead of A/(L™)*, which is contained in
N (L)*. Therefore, we will exploit the part —(f, L(f))r2 to derive a sharper estimate.

4.3. Absorption of the orthogonal parts. We prove that the contribution f* (intro-
duced in [B2)) in the term —(f, L*(f))z2 = —(fIl + f+, L(f1 + f*)) 12 can be absorbed by
the H norm of f=+.

Lemma 12. Let n = min{1,C™/8}, where C™ > 0 is given in Lemmalll. Then, for all
feD,
~(f LDz = (€™ = 4n)llf = P13 = S, L))z,
where fI = IT™(f) is the projection onto N'(L'™)*.
Proof. By Lemma [I1], we find that

(40) = (L LNz = CIIf = fUR = (£, L2 (D)zg = C™ I f = 3 = n(F, L°(F)) s,
since —(1 —n)(f, L°(f))rz > 0 for € (0, 1]. We estimate first the expression A;;[h;, h;] in
definition (36), writing k! = M, 2 £l and i+ = M2 L
Aiylhis ) = (Aylh), B + Ay [nd nt)?
= Aylhl ) + Ayl BT+ 245 [, W) A i by
1
> 5 Aylhi, ) = Aylhit, by TP,

Inserting this estimate into (B6) and (40Q) gives

AL 2 I B+ £ [ By A bl MMM doddo
R

i=1 j#i Y ROXS?

(41) - Z > / Byj Aijlhi, b 1> M; My dvdv* do.
i=1 jAi JROXS?

We claim that the last term on the right-hand side can be estimated from below by
|f*]13,, up to a small factor. For this, we employ the invariance properties of B;; and the
identity M;M; = MM

i '%

/ By Aglhit, WA MM dvdv*do
R6 xS2

J

<4 / Bij (((hi")")? + ((hy)*)? + (hi)? + ((hy)*)?) M; M dvdv*do
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< 16/ Bij(hi")? M; M dvdv*do = 16/ Bij(f7)? M dvdv*do.
RO xS R

6%S2

Thus, the last term on the right-hand side of (1) can be estimated as

Ui . .
4 Z Z/ By Aijlhi, h’j_]zMiMj dvdv*do

i=1 ,7751 R6 xS2

>y > [

i=1 ];él R6xS2

By PMdvdetdo =~y [ (72 Pvide = ~anl 5413
i=1 /R®
taking into account definition () of ;. We infer from ({41 that

~(f LDz = (C" =) = I+ 250 / By Ayl Iy M M; dvdv*do,

i=1 jAi VROXS?
and definition (B6) yields the conclusion. O

4.4. Estimate for the remaining part. It remains to estimate the term —(fIl, L(f1)) 2.

Lemma 13. For fl € N(L™), ice. fI = M (0 + ui - v+ e5|v[?) for some a;, e; € R and
u; € R3, we have
I (sl D' < 2 2
=N L")z = 1 > (Jui = wil® + (e: — €)%,
ij=1

where D > 0 is defined in ([@3).

Proof. Thanks to the momentum and energy conservation, we obtain differences of the
momenta and energies, which will be crucial in the following:
wi oV w0 = v —uy 0" = (u —uy) - (V= 0),

eilv'* + €50 — eifv]® — e5v|* = (ei — ;) (J0'* — [u]).

Using these identities in A;; [hy, hy], where hy = ; + u; - v + e;|v|?, we find that

1 n
_(f”’ Lb(f”))L% - Z Z Z /R6 o Biinj [hll, hg]zMzM;d’Ud’U*dO'
i=1 j#i Y ROXS?

1 ¢ 2 .
- ZZ/M By (s = wy) - (0 = 0) + (ex — e5) (W' = [of?)) MM dod*do
i=1 j#i VR°XS
Using the symmetry of B;; (thanks to assumption (A1)) and of M;M; with respect to v,
the function G(v,v*,0) = Byj(u; — uj) - (v —v)(|v/|* = |[v]?) is odd with respect to (v,v*, o)
and thus, the mixed term of the square in the above integral vanishes. Therefore, we obtain

_(f”’ Lb(f”))L% — iz Z/l% BZ](|(UZ — uj) . (U’ _ ’U)|2 + (6i — ej)2(|'yf|2 _ |U|2)2)

i=1 jAi Y ROXS?
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(42) X M;M; dvdv*do.
Now, we claim that

L 12
/ Bij(u; — uy) - (v" = 0))*M; My dvdv*do = % / Byj|v —'[* M; M dvdv*do.
RO xS2 R6 xS2

To prove this identity, we write w;; and vy for the kth component of the vectores u; and
v, respectively. The transformation (vy, v§, o) — —(vg, vy, 0%) for fixed k leaves B;j, M;,
and M7 unchanged but vj, +— —v; such that

/ Bijv];ngiM;dvdv*da =0 for/l#k.
R6 xS2

Furthermore,
/ BijupveM; M7 dvdv*do = 0 for £ # k,
R6xS2
since the integrand is odd. Therefore,

/ Bij((u; — ug) - (v — v))*M; M dvdv*do
R6xS2

I
NE

(Wi — wjg)(Uie — ujp) / Bij(v), — i) (vg — ve) M; M dvdv*do

R6xS2

>
~
Il

1

|
[M]

(wi — uj,k>2/ Bij (v, — U;)2MiM;dvdv*da.
RO x S2

=
Il

1

In fact, we can see that the integral is independent of k, and we infer that

w0

/ Bij((u; — ug) - (v — v))*M; M dvdv*do
R6 xS2

3
1
= o> - [
k=1

Bijlv — V'[P M; M dvdv*do,
R6 xS2?

from which the claim follows.
Hence, ([@2]) can be estimated as

—(f1 L ()02 = DY (Jui = wy* + (es — €5)?),

i.j=1
where

1
(43) Db = min / Bij min {g‘v — U"Q’ (|fu/‘2 _ |’U‘2)2} MZ’M;d’Ud’U*dO'.
R6xS?

1<i,j<n

It remains to show that D® > 0. The integrand of (43]) vanishes if and only if |v'| = |v].
However, the set
X ={(v,v*,0) eR* xR* x §*: || = |v|}
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is closed since it is the pre-image of {0} of the continuous function F'(v,v*, o) = [v/|* —|v]|?,
i.e. X = F1({0}), recalling that v' depends on (v,v*,o) through ). Since X # R3 x
R3 x S?%, its complement X ¢ is open and nonempty and thus has positive Lebesgue measure.
Since the integrand in (@3] is positive on X¢, we infer that D® > 0. This finishes the

proof. O

4.5. Estimate for the momentum and energy differences. The last step is to derive
lower bounds for the differences », ;(Ju; — u;]* + (e; — e;)?). First, we recall some moment
identities:

(44) / M;dv = p;, Mivjvpdv = pidji, / Milo[*dv = 15p;
R3 R3 R3
forall1<i<mand1<jk<3.

Lemma 14. Let f € L? with fi” = M-l/z(ozi +u;-v+ev?) for 1 <i<n. Then

Mi1/2fidv = pi(a; + 3e;), Mil/zfivdv = pil;, / Mil/zfi\v|2dv = pi(3a; + 15¢;).
R3 R3 3
Proof. Decomposing f = fI + f+, where fIl = II™(f) and f*+ = f — II"*(f), we infer from
Mil/2 e N(L™) (see (34))) that (M-l/z, fi)12 = 0 and hence, by ([34) again,

(M, 1 s Mi(a; +u; - v+ e|v]*)dv = pi(e; + 3e;).
R3
The other identities can be shown in a similar way. 0J

Lemma 15. For all f € D, we have

n

> (s = wf + (e = &) 2 o (IF = TN - 20f = (IR,

ij=1
where u;, e; are the coefficients of the ith component of IT™(f) in [B4), IT* is the projection
on N(L), Cy, > 0 is given by

(45) Ch —60npOo max Z wkwyidv ,

k<5n p

and (V) is an arbitrary orthonormal basis of./\f(Lm) in L2.
Proof. We again decompose f = fll + f+ with fl = II"™(f) and f* = f — fl. Then

(46) Lf =13 < 20113+ 1" = IH(F)I13,)-

We estimate first the difference g := fIl — IT*(f) = II™(f) — II*(f) € N(L™) (note that
N (L) C N(L™)). Let (i) be an arbitrary orthonormal basis of N(L™) in L2. Because of
B4) and V,y; € L°°(]R3) we have 1, € H. Then, by Young’s inequality, we find that

hn

vi(v)dv Z (9, Vr)r2(9, V)2 Z/RS Yrhev;(v)dv

k=1

lgll3, = 9>¢k 2V




26 E. S. DAUS, A. JUNGEL, C. MOUHOT, AND N. ZAMPONT

5n
- Z (9, ¥k)12(9, ¥e) £z (Vrs o)
k=1
1
< §1<I£l?§5 | ¢k7¢f 7‘l| Z guwk L2 +( ,¢g>%g)

k(=1

=51 max |(¢k,¢Z)H|Z(9,¢k)ig:5” max_ | (vr, Po)ul 11972

1<k,(<5n pt 1<k, (<5n
Thus, we infer from (@) that
If = 5N < 201413 + 100 max (g, sl 11 = TTH(F)1 ;-

Because of V(L) C N(L™), we have HmHL = HL and
L= (N)I3s = 1A1Zs — 20 (f), T2 (F)) ez + IHTE ()22
= |F"MZs = 20F, L1()) ez + ()72 = 1122 — T2
Consequently, setting ko = 10n maxy<g p<n |(Vr, ¥e)n/,
(47) Lf = 53 < 20115+ ko (I W72 — IHTE(H)11Z2).
Next, we compute the L? norms of fI and I7%(f). Moment identities (@4) show that

£ =3 [ Mo s+ oo
i=1 /R
— Z M (a2 + (u; - ) + e2|v|* + 2aue|v|*)dv

= Zpoo,i(%z + |u® + 15eF + 6ae;).
i=1

For the computation of the L? norm of IT*(f), we choose the following orthonormal basis
(¢5) = (¢ji)i=1,..n of N(L) in L:

010 = p0*M*85 buins = p M vk duras = (6poc) M ([0 - 3),
where 1 < j <n and 1 < k < 3. Then, using the moment identities of Lemma [14]

n+4 n n 2 n 2
Poo,i Pooi

Inserting the above identities for || f1||2, and ||[IT*(f)||2, into (@), we conclude that

n 2
poo,i
U

I = O < 205 = IO+ b | D 22

=1
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2
o (S (S50

Then, if the inequalities

n n 2 n

(48) P T R Y B N T )
— P i1

(49) Pocsi ¢ — Z Poc,i e Z B ej
i—1 Poo i—1 Poo ij=1

hold, the lemma follows with C) = 6kgpeo.
It remains to prove ([A8)) and ([@9]). To this end, we define the following scalar product
on R3":

(w,v), = Z poo’iu,- v u = (Up, .Uy, U= (V1,...,0,) € R3",

i=1 7°

where w; - v; denotes the usual scalar product in R®. The corresponding norm is ||uf|, =
(u,u)y®. Then 1 = (1,...,1) € R3" satisfies |1]|, = 1. The elementary identity

lully = (u, 1) = flu = (u, 1),1]5

can be equivalently written as

[P Pooit ]2 —

Then, using Z;;l Pocj = Poos

eS| o S

2

poo,i poo,i
Uj U

Z" P
00,]
1%

j=1 o0

Zpooz Zpoo,] u;p — uy)

3 Pec Poo |z Pee
n 2 2
_ Poo,i Z Poo.k Z#i(PooJ/poo)(ui — uj)
=1 P ki Poo Zk;&i Poo k] Poc
n 2 )
Poo,i Poo,k
-3 (e S
i=1 0 Nk U0 )
where \; = (poo,j/poo)(Zk;ﬁi(poqk/poo))_l, Since Z]# = 1, we may apply Jensen’s

inequality to this convex combination, leading to

n 2
Poo,i Poo,k 2
I'< o T E :)\j|u,-—uj|
i= <k;ﬁi Poo )
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=i%<l‘ )Zp“’jlui—ujl%ilui—uﬂ
i=1 7 >

i P ij=1
since psoj < Poo- This ends the proof. 0

Poo,i
Poo

Now, we are able to prove Theorem

Proof of Theorem[3. By Lemmas 2], I3, and I3, we obtain

n

(F Dz > (O = am)llf = B+ S (= i + (e~ €)?)

ij=1
m nD° 2 nD" L 2
> — _ — — — — 11 .

The first term on the right-hand side is nonnegative if we choose n = min{1,4C™C} /(16Cy+
D"}, and estimate () follows with A\ = nD?/(8C}). O

5. CONVERGENCE TO EQUILBRIUM

In this section, we prove Theorem [l The idea of the proof is to adapt the hypocoercivity
method of [23] to the multi-species setting. To this end, we need to verify the structural
assumptions (H1)-(H3) in [23, Theorem 1.1]. The setting is as follows.

Let L be a closed, densely defined, and self-adjoint operator on Domain(L) C L? such
that L = K — A and the operators K and A satisfy the following assumptions:

(H1) The operator A is coercive in the following sense: There exist a norm || - ||z on
H C L? and positive constants 7; (0 < i < 4) such that for all f € Domain(L) C H,
(50) 2ol 72 < mallfll5 < (F, ANz < 2l f 17
(51) (Vof, VoA(F) iz = 5l Vo fllF = al £l
Moreover, there exists a constant C, > 0 such that for all f, g € Domain(L),
(52) (L(f), 9) 1z < Coll fllallglla

(H2) The operator K has a regularizing effect in the following sense: For all € > 0, there
exists C(g) > 0 such that for all f € H},

(Vof, VoK (f))1z < el Vofllzz + C)IIFIZ:-

(H3) The operator L has a finite-dimensional kernel and the following local spectral-gap
assumption holds: There exists A > 0 such that for all f € Domain(L),

—(f L)z = Allf = 1),
where IT” is the projection on N'(L).
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Assumption (H3) is a consequence of Theorem Bl Next, we verify assumption (H1).
Using Lemma [ and the continuous embedding H < L?, we see that (B0) holds. For the
proof of (B1l), we employ Young’s inequality:

(Vo fs VoA (f)) 2 = Z/ Vo fi o V(v f)d
= Z( - flvvfl 'vvyidv‘i‘/]RB ‘vaiPVidU)
Z%Z( /Rg\v WwVil? F2dv +/ IV, fil Vzdv)

i=1
> || Vo f 13 — 2all FII72,

where 73 = 1/2 and vy = max;<;<, Sup,cgps | Vovil?/(2v;). Note that 4 is finite since V,v;
is bounded and v; is strictly positive (see Lemma [7]). Finally, inequality (52)) follows from
the decomposition L = K — A, the compactness and hence continuity of K, the explicit
expression for A, and the Cauchy-Schwarz inequality applied to (L(f),g)r2.

It remains to verify assumption (H2). Let N := p /> M} = (27)=3/4 exp(—|v|2/4). We

decompose K = KU — K@ where KO = (K%, . KY)) and

n

/ fl*
KO — / By MM /i dv*d
By S et e ) e

K =% /  By(MM;)2 frdvtdo
=1 R3xS2
for 1 <7 < n. Because of M; M;* = MM} for all k, we find that

n

* /2 /%
M) e _ 2y e [ (MP)VRE (MRS .
Ki (f) - Z/]R3><SQ B M M <(M/M/*)1/2 + (M{J*M{)ljﬂ dv*do

Jj=1

n M/*)l/2f/ (M/)1/2f/*
— By M} "* M ( + dv*do
ZI/IR3xS2 ((M M)Y2 (M M;)Y?

— Z/ B;; (pif]]\f/*f + p1/2 N/f/*)pif]]\f*dv*da
]:1 R3XS2
The transformation o — —o leaves v and v* unchanged and exchanges v’ and v"*. Assump-

tion (A5) (b;; is an even function) ensures that B;; is unchanged under this transformation.
Therefore,

/ By fIN"* N*dv*do = / By fI*N'N*dv*do,
R3xS2

R3xS2
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and we can write K as
n

(53) KV =23 02 (025D () + 02K (1)),
j=1
where
Kg)(fk):/ By(N" fi + N'fi)N*dv*do, 1<i,j,k <n.
R3xS2

Note that K R j(l). In a similar way, we can decompose the operator K (?):

n n

K2 () =D (pscipoe 1/2N/ ByfiN*dv'do = (pips) K5 (£),
Jj=1 g=1
where
KP(f)=N | ByN*fidv'do.
R3xS2

Next, we estimate the derivatives of Ki(f). It is shown in [23 Eqgs. (5.15)-(5.18)] that for
all € > 0, there exists C'(¢) > 0 such that for any f € H!, 1 <i,j,k <n,and { = 1,2,

(54) IV S (F)l2a < ellV fill2a + @) fill 2.

Then we infer from (53) that

n 2

IV KD (Nl =D

n

1
Tl (VK (F:) + oAV ()

i=1 2]'—1 "
2
1/2 ( 1/2 1 1/2 !
< - Z ‘ / /,jvai(j)(fl) "‘poéz ”Ki(j)(fj))‘ L2
zy 1
<n
< 1r£17/a%X pOO’l Z ||V fl ||L2

i,j=1
Thus, by (B4), it follows that for £ =1,

n

IV K O()IZ < n2(masx poo® S (EIVfillZ, + CE)IFIR).

1<
i=1

A similar computation shows that this estimate also holds for ¢ = 2. We infer that

IVE()IZ: < an(max p)? S (IVFllE + CEIAIE:).
== i=1
This proves assumption (H2) since € > 0 is arbitrary.

Proof of Theorem [ We have verified that assumptions (H1)-(H3) are satisfied. Then,
using exactly the same arguments as in the proof of Theorem 1.1 in [23], but now for the
multi-species case, we conclude the exponential decay (I3)) of the semigroup e'?, which is
the first property of the theorem.
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It remains to show that the decay estimate (I4]) follows from (I3)). For this, we write
the initial value f; as f; = IIB(f;) + (I — IIP)(f;), where IT” is the projection onto N (B)
in L3 ,. Then the solution to (G) is given by

ft)=ePfr=ePHP(f;)+eP( —1I°)(fr), t>0.
We have already shown that
|eB(I — ITP) gl < Ce_Tt||g||H;w forallge H! , t>0.

In particular, the choice g = (I — IT?)(f;) and the property (I — I1%)? = I — ITP lead to
e (1 = 1I%) (o)l < Ce™ (I = LI7)(fD)llz,,-

It remains to prove that f., = II5(f;) = ePIIP(f;) is the global equilibrium. Since
BIIP(f;) = 0 and IT3(f;) does not depend on time, the constant-in-time function g =
ITB(f;) is the unique solution to the Cauchy problem

dig = Bg, t>0, g(0)=1I"(f).
This shows that IT2(f;) = P g(0) = P IIP(f;) and finishes the proof. 0O
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