
HAL Id: hal-01220607
https://hal.science/hal-01220607

Submitted on 26 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event Algebra for Transition Systems Composition -
Application to Timed Automata

Elie Fares, Jean-Paul Bodeveix, M Filali

To cite this version:
Elie Fares, Jean-Paul Bodeveix, M Filali. Event Algebra for Transition Systems Composition - Ap-
plication to Timed Automata. 20th International Symposium on Temporal Representation and Rea-
soning (TIME 2013), Sep 2013, Penscacolq, FL, United States. pp.125-132, �10.1109/TIME.2013.23�.
�hal-01220607�

https://hal.science/hal-01220607
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12720

Official URL: http://dx.doi.org/10.1109/TIME.2013.23

To cite this version : Fares, Elie and Bodeveix, Jean-Paul and Filali,
Mamoun Event Algebra for Transition Systems Composition - Application
to Timed Automata. (2013) In: 20th International Symposium on Temporal
Representation and Reasoning (TIME 2013), 26 September 2013 - 28
September 2013 (Penscacolq, FL, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Event Algebra for Transition Systems Composition

Application to Timed Automata

Elie FARES

IRIT, Université de Toulouse

Jean-Paul BODEVEIX

IRIT, Université de Toulouse

Mamoun FILALI

IRIT, Université de Toulouse

Abstract—Formal specification languages have a lot of notions
in common. They all introduce entities usually called processes,
offer similar operators, and most importantly define their op-
erational semantics based on labeled transition systems (LTS).
However, each language defines specific synchronizing and/or
memory structures. For instance, in CSP, the synchronization
is defined between identical events, while in CCS and in
synchronization vectors-based views it is defined respectively
between complementary events or between possibly different
events. In this paper, we aim at capturing some similarities
of specification languages by defining a label-based composition
formal framework. Firstly, we define a high-level synchronization
mechanism in the form of an abstract label structure. We then
couple this label structure with several compositional operations
and properties. Secondly, we introduce an LTS-based behavioral
framework and define a unique LTS composition operator which
is reused to define syntactic composition of extended transition
systems and a compositional semantics.

I. INTRODUCTION

For the past three decades, specification languages such

as CSP [17], CCS [16], LOTOS [10], Altarica [5], and

BIP [6] have proven valuable in the specification and design of

concurrent and distributed systems. The behavioral aspects of

these languages share a common base since they all define

their operational semantics in terms of labeled transition

systems (LTS). Yet, the difference lies in the synchronizing

structure of the labels of these systems. For example in CSP

the synchronization is defined between two identical events,

while in CCS and in synchronization vectors-based views,

it is defined respectively between complementary events or

between possibly different events. Through the years, the basic

versions of some of these languages have been extended by

time, memory, and priority notions. Accordingly, other for-

malisms have emerged in order to model the semantics of these

extensions. For example, we can cite Alur and Dill’s timed au-

tomata [3] and Henzinger et al’s timed transition systems [11]

that both capture the time addition or the semantic model

of [19] used to model the priorities. However, even though

the rules of the composition operations of these formalisms

are the same in nature (synchronous and asynchronous rules),

they are well distinguished in reality, maybe because of the

specific attributes that come with each formalism. A distinct

composition operation is then introduced for each defined

formalism.

In this paper, we aim at capturing some similarities of

specification languages by providing a semantic framework

for system composition. For this purpose, we introduce a

high-level synchronization mechanism in the form of a label

structure. The label structure is abstract enough [4] so that

both homogeneous and heterogeneous system synchronization

could be described. It is equipped with a composition operator

which encapsulates the specific composition laws of each

language and would further serve as a parameter of the

behavioral framework. Thanks to the separation between the

composition laws and the behavioral framework, the latter,

which is based on LTS, offers a unique LTS composition

which is reused to define syntactic composition of timed

automata and a compositional semantics. The idea of a label

structure or similar constructs is not new since it appears

in earlier studies [14], [15], [18], [13]. In [14], [15], the

label composition operator appears under a functional form

(the same as ours, see Label Structure : Section II) but the

authors do not go beyond this definition, while in [18], [13],

it appears under a relational form. In these latter studies, the

authors are interested in reaching generic semantic rules for

process calculi behavioral operators (prefix, choice...). This is

orthogonal to our goal that consists in reaching a label-based

composition framework for specification languages.

Our contribution can be viewed from two perspectives. One

way is to see this work as an abstraction of the composition of

different behavioral formalisms via a separation of the labels

composition laws of each language and a reuse of the LTS

composition. In fact, depending on the language, the label

structure is defined and instantiated differently. Using the

common framework, one would then proceed by giving the

semantics of other behavioral operators of the specification

language in question. Another way to see our label structure

and their associated operations is as a generalization of the

composition functions given and used in [14], [15]. Indeed,

we show how such abstract composition functions (or label

structures in our terms) may be implemented and instantiated

to simulate existing synchronization mechanisms. Most impor-

tantly, we push forward this work by giving new definitions,

properties, and operations to manipulate such label structures.

The rest of the paper is organized as follows. In the second

section, we start by defining the label structure along with its

associated properties and operations. In the third section, we

define our behavioral framework and show how it reuses the

label structure notions. We conclude the paper in the fourth

section.

II. LABEL STRUCTURE

We start by describing the labels of transition systems by

means of a label structure which is later used as an attribute

of transition systems.

Definition 1 (Label Structure): A label structure is a tuple

〈L,✶〉 where L is a set of labels and (✶: L × L 9 L) is a

partial binary composition operator over L.

The function is partial because some composition may be

blocked since ✶ describes exclusively synchronous composi-

tions. The asynchronous aspects are covered later (see LTS

composition). Our composition then models the following

cases :

1) A successful synchronization between l and l′ that

results in l ✶ l′ ∈ L.

2) A blocking synchronization between l and l′ : (l, l′) /∈
dom(✶).

Let the reader not confuse our label structure with other event

structuring propositions, namely with the event structures [8].

Event structures model the occurrence of events during the

system execution via the introduction of a causal dependency

relation and a conflict relation between the events. In our case,

we introduce a label structure which models the way the labels

(i.e., events) are statically composed.

Definition 2 (Commutativity of a Label Structure): Given

a label structure LS = 〈L,✶〉, LS is said to be commutative

if its composition operator ✶ is commutative. Formally, for

l1, l2 and l3 ∈ L, LS is commutative if :

(l1, l2) ∈ dom(✶)⇒ (l2, l1) ∈ dom(✶) ∧ l1 ✶ l2 = l2 ✶ l1

Definition 3 (Associativity of a Label Structure): Given a

label structure LS = 〈L,✶〉, LS is said to be associative if its

composition operator ✶ is associative. Formally, for l1, l2 and

l3 ∈ L, LS is associative if it satisfies the following conditions

1) (l1, l2) ∈ dom(✶) ∧ ((l1 ✶ l2), l3) ∈ dom(✶) ⇔
(l2, l3) ∈ dom(✶) ∧ (l1, (l2 ✶ l3)) ∈ dom(✶). This

means that independently of the composition order, they

are both defined.

2) (l1, l2) ∈ dom(✶) ∧ ((l1 ✶ l2), l3) ∈ dom(✶) ⇒
((l1 ✶ l2) ✶ l3) = (l1 ✶ (l2 ✶ l3)). This means that

independently of the composition order, they both lead

to the same result.

Definition 4 (Stability of a Set of Labels): Given a label

structure LS = 〈L,✶〉 and a label set G ⊆ L, we say that

G is stable over LS if ∀(l1, l2) ∈ dom(✶), l1 ✶ l2 ∈ G ⇒
l1 ∈ G∧ l2 ∈ G, and ∀(l1, l2) ∈ dom(✶), l1 ∈ G∨ l2 ∈ G⇒
l1 ✶ l2 ∈ G.

A. Label Structure Examples

a) Time Label Structure: For ∆ a time domain, e.g., non

negative real numbers, naturals . . . , equipped with a binary

associative operator + and a neutral element 0, we introduce

the time structure TS on the domain ∆. Its composition

operator is only defined between identical time labels δ and

returns the label itself.

TS = 〈∆, (δ1, δ2) 7→ δ1 if δ1 = δ2〉

b) Basic CSP Synchronizing Structure: Here, we model

the case of the completely synchronous composition of CSP.

For C a set of communication ports, a synchronizing structure

on C is the label structure :

SyncCSP = 〈C, (c1, c2) 7→ c1 if c1 = c2〉

The synchronization of two ports of the set C is only defined

when these two ports are the same. Otherwise an interleaving

occurs.

c) CCS Synchronizing Structure: For C a set of events,

C? = {c? | c ∈ C} and C! = {c! | c ∈ C}, this is represented

in our label structure as follows :

SyncCCS =

〈C?∪C!∪{τ}∪{(c!, c?) 7→ τ | c ∈ C}, {(c!, c?) 7→ τ | c ∈ C}〉

B. Label Structure Properties

We give the frequent label structures properties used in this

paper.

Property Definition Example

Idempotency
∀l ∈ L,

(l, l) ∈ dom(✶) ∧ l ✶ l = l
SyncCSP , TS

Unique
Composition

∀l1l2 ∈ L, (l1, l2) ∈ dom(✶)⇒
∀l ∈ L, ((l1 ✶ l2), l) /∈ dom(✶)
∧(l, (l1 ✶ l2)) /∈ dom(✶)

SyncCCS

Diagonality
∀l1l2 ∈ L,

(l1, l2) ∈ dom(✶)⇔ l1 = l2
SyncCSP , TS

We denote by ACI the conjunction of the associativity,

commutativity and idempotence properties. A label structure

fulfilling the ACI property is seen as a join semi-lattice where

✶ is interpreted as the join operator and the partial order

relation l ≤ l′ is defined by l ≤ l′ , l ✶ l′ = l′.

C. Composition of Label Structures

We define the product and the sum of two label structures.

The product operation builds new labels as pairs of the

composed labels. For example, this is used when composing

synchronization and memory access labels. Unlike the product

operation, the labels of the sum operation are defined over the

union of the composed labels. This is used when composing

synchronization and time labels to specify that only one of the

events may occur at one time and not simultaneously.

1) Product of Label Structures: Given two label structures

〈L,✶〉 and 〈L′,✶′〉, their product ranges over the set P =
(L ∪ {ǫ}) × (L′ ∪ {ǫ′})\{(ǫ, ǫ′)} where ǫ (resp. ǫ′) is a new

element of L (resp. L′) supposed to be neutral 1 for the ✶

operator of its respective label structure. For l1, l2 ∈ L and

l′1, l′2 ∈ L′, the composition of (l1, l
′
1), (l2, l

′
2) is defined only

if the composition of l1 and l2 and the composition l′1 and l′2
are both defined.

〈L,✶〉 ⊗ 〈L′,✶′〉 =

〈P,

(

(l1, l
′
1), (l2, l

′
2) 7→ (l1 ✶ l2, l

′
1 ✶

′ l′2)
if (l1, l2) ∈ dom(✶) ∧ (l′1, l

′
2) ∈ dom(✶′)

)

〉

1If L had already a neutral element ǫ, we suppose that n ✶ ǫ = ǫ ✶ n = n.

2) Sum of Label Structures: Given 〈L,✶〉 and 〈L′,✶′〉,
their sum ranges over the union of L• ∪ •L′ where L• =
{l• | l ∈ L} and •L′ = {•l | l ∈ L′}.

〈L,✶〉 ⊕ 〈L′,✶′〉 =

〈L•∪•L′,

(

l1
•, l2

• 7→ (l1 ✶ l2)
•
if (l1, l2) ∈ dom(✶)

•l1,
•l2 7→

•(l1 ✶
′ l2) if (l1, l2) ∈ dom(✶′)

)

〉

Proposition 1 (Preservation of ACI): Given LS and LS′,
if LS and LS′ satisfy one of the ACI properties then LS ⊕
LS′and LS ⊗ LS′ satisfy this same property.

D. Label Structure Transformations

A label structure transformation is used to map labels from a

label structure to another. We start by giving the definition of a

transformation followed by instances of such transformations.

Definition 5 (Transformation): A transformation f between

two label structures LS1 = 〈L1,✶1〉 and LS2 = 〈L2,✶2〉 is

defined as a partial morphism f from LS1 labels to LS2 labels

such that :

• ran(✶1) ⊆ dom(f).
• ∀l, l′ ∈ dom(f), (l, l′) ∈ dom(✶1) ⇔ (f(l), f(l′)) ∈

dom(✶2).
• ∀l, l′ ∈ dom(f), (l, l′) ∈ dom(✶1) ⇒ f(l ✶1 l′) =

f(l) ✶2 f(l′).

We write f : LS1 ⇛ LS2 to denote such transformations.

1) Basic Transformations: Given two label structures LS1

and LS2, we define label structure transformations which

are used to embed a label into a sum of labels, destruct

a label sum, extend a label to a couple of labels, or also

project a couple of labels to an element of the couple. These

transformations are given in the following table :

Name Notation Signature Definition

Embedding

Inl ↑⊕ LS1 ⇛ LS1 ⊕ LS2 l 7→ l•

Inr
⊕↑ LS2 ⇛ LS1 ⊕ LS2 l 7→ •l

Retraction

Outl
⊕↓ LS1 ⊕ LS2 ⇛ LS1 l• 7→ l

Outr ↓⊕ LS1 ⊕ LS2 ⇛ LS2
•l 7→ l

Extension

Extl
⊗↑ LS1 ⇛ LS1 ⊗ LS2 l 7→ (l, ǫ)

Extr ↑⊗ LS2 ⇛ LS1 ⊗ LS2 l 7→ (ǫ, l)
Projection

Prjl
⊗↓ LS1 ⊗ LS2 ⇛ LS1 (l, ǫ) 7→ l

P rjr ↓⊗ LS2 ⊗ LS1 ⇛ LS2 (ǫ, l) 7→ l

It is not difficult to see that the transformation properties

(Definition 5) are satisfied by the transformations we have

defined. We note that all these transformations are injective.

2) High-Level Transformations: Given the label structures

LS, LS1, LS2, and ↑LS2

LS1
a transformation from LS1 to LS2,

we define the following four high level transformations :

Name Signature tr Transformation

Tr Inl

(⇑⊕LS
⊕LS

)

(tr : LS1 ⇛ LS2)
→

LS1 ⊕ LS ⇛ LS2 ⊕ LS

{

l1
• 7→ tr(l1)

•

•l 7→ •l

T r Inr

(⇑LS⊕

LS⊕
)

(tr : LS1 ⇛ LS2)
→

LS ⊕ LS1 ⇛ LS ⊕ LS2

{

•l1 7→ •tr(l1)
l• 7→ l•

Tr Extl
(⇑⊗LS

⊗LS
)

(tr : LS1 ⇛ LS2)
→

LS1 ⊗ LS ⇛ LS2 ⊗ LS







(l1, l2) 7→ (tr(l1), l2)
(ǫ, l2) 7→ (ǫ, l2)
(l1, ǫ) 7→ (tr(l1), ǫ)

Tr Extr
(⇑LS⊗

LS⊗
)

(tr : LS1 ⇛ LS2)
→

LS ⊗ LS1 ⇛ LS ⊗ LS2







(l1, l2) 7→ (l1, tr(l2))
(ǫ, l2) 7→ (ǫ, tr(l2))
(l1, ǫ) 7→ (l1, ǫ)

We note here that the transformation properties are satisfied

by the resulting functions. The previous four transformations

also preserve the injectivity of tr.

III. BEHAVIORAL FRAMEWORK

A. Labeled Transition System (LTS)

Definition 6 (Labeled Transition System LTS): Given

LS = 〈L,✶〉, a labeled transition system L over LS –denoted

as LLS– is defined as 〈Q,Q0 ⊆ Q, T ⊆ Q × L × Q〉 where

Q,Q0, T denote respectively the sets of states, initial states,

and transitions. We denote by LTSLS the set of LTSs over

LS.

We write q
l
→ q′ for an element (q, l, q′) of T . Furthermore,

we define the alphabet of an LLS –denoted as αLLS– as the

set of labels that are actually used by the transitions of LLS :

αLLS = {l ∈ L | ∃q q′, q
l
→ q′ ∈ T}.

Definition 7 (Bisimulation): Given ALS = 〈Qa, Q
0
a, Ta〉

and CLS = 〈Qc, Q
0
c , Tc〉, a relation R ⊆ Qc × Qa defines

a simulation between CLS and ALS denoted as CLS -R ALS

iff : (1) ∀q0c ∈ Q0
c , ∃q0a ∈ Q0

a such that (q0c , q
0
a) ∈ R and (2)

∀qc, q
′
c, qa, l if qc

l
→ q′c and (qc, qa) ∈ R, ∃q′a ∈ Qa such that

qa
l
→ q′a and (q′c, q

′
a) ∈ R.

Two LTSs LLS and L′LS are said to be bisimilar through the

relation R ⊆ Q × Q′ denoted as LLS ≃R L
′
LS if LLS -R

L′LS and L′LS -R−1 LLS . Furthermore, we say that LLS and

L′LS are state-bisimilar if transition labels are not required to

match.

Definition 8 (LTS Diagonality, Idempotency and Determinism):

An LTS is said to be diagonal (resp. idempotent) if

the restriction of its label structure to the LTS alphabet is

diagonal (resp. idempotent). An LTS is said to be deterministic

if whenever q
l
→ q′ and q

l
→ q′′ then q′ = q′′. In the rest of

the paper, this set of LTS properties will be named DID.

1) LTS Composition: Given two LTSs defined over 〈L,✶〉,
a set S ⊆ L denoting the allowed synchronization results, and

two sets of labels Al and Ar denoting respectively the left and

right interleaving labels, the label composition function ✶ is

extended to an LTS composition function
Al〈✶

S
〉Ar as follows:

〈Q1, Q
0
1, T1〉

Al〈✶
S
〉Ar 〈Q2, Q

0
2, T2〉 = 〈Q1 ×Q2, Q

0
1 ×Q0

2, T 〉

where the set T is defined by the following rules :

q1
l1→T1

q′1 q2
l2→T2

q′2 (l1, l2) ∈ dom(✶) ∧ (l1 ✶ l2) ∈ S

(q1, q2)
l1✶ l2→T (q′1, q

′
2)

SYNC

q1
l1→T1 q′1 l1 ∈ Al

(q1, q2)
l1→T (q′1, q2)

INTERLEAVINGL

q2
l2→T2 q′2 l2 ∈ Ar

(q1, q2)
l2→T (q1, q

′
2)

INTERLEAVINGR

S is omitted when it is equal to L. In this case, if Al = Ar = ∅
then 〈✶〉 is a fully synchronous composition operator.

Theorem 1 (Bisimulation Compatibility): Given the LTSs

L1, L′1, L2, and L′2 defined over the label structure LS, we

have :

L1 ≃ L2 ∧ L
′
1 ≃ L

′
2 ⇒ L1

Al〈✶
S
〉ArL′1 ≃ L2

Al〈✶
S
〉ArL′2

This theorem allows us to reason by making use of substitution

by bisimulation.

Proposition 2 (Synchronous Composition): Given two

LTSs L1 and L2 defined over the label structure LS, we have

L1〈✶〉L2 ≃ L1〈✶
S
〉L2 if S is stable over LS, αL1 ⊆ S, and

αL2 ⊆ S.

Proposition 3 (Commutativity of
Al〈✶

S
〉Ar): Given two

LTSs L1 and L2 defined over the label structure LS, we have

L1
Al〈✶

S
〉ArL2 ≃ L2

Ar 〈✶
S
〉AlL1 if LS is commutative.

Theorem 2 (Associativity of
Al〈✶

S
〉Ar): Given LS = 〈L,✶

〉, the label sets Al1 , Ar1 , Al2 , Ar2 , S1, S2 ⊆ L, and the LTSs

L1LS
,L2LS

, and L3LS
. If LS is associative, S1, S2, Ar1 , Al2

are stable over LS, and either one of the following conditions

is satisfied :

1) Ar2 ∩ αL3 = ∅ and Al1 ∩ αL1 = ∅.
2) Al1 ⊆ Al2 , Ar2 ⊆ Ar1 , S2∩Al1 = ∅, and S1∩Ar2 = ∅.
3) Al1 ⊆ Al2 , Ar2 ⊆ Ar1 , S ⊆ Al1 , S ⊆ Ar2 , and S1 =

S2.

We have :

L1
Al1 〈✶

S1

〉Ar1 (L2
Al2 〈✶

S2

〉Ar2L3)

≃

(L1
Al1 〈✶

S1

〉Ar1L2)
Al2 〈✶

S2

〉Ar2L3

The conditions of this theorem are only sufficient conditions

and have been selected in order to fit with our needs. Other

conditions can be found in other contexts, for example the

CSP context [17].

We note how the third set of sufficient conditions satisfy

the CCS parallel composition. In this case, this result can be

instantiated by taking S = Al1 = Al2 = Ar1 = Ar2 = L
which leads to the following CCS associativity corollary.

Corollary 1 (CCS Associativity): The CCS parallel compo-

sition operator is associative.

Other associativity corollaries may also be deduced such as

the followings :

Corollary 2: Given an associative label structure LS =
〈L,✶〉, the label set S ⊆ L, the LTSs L1LS

,L2LS
, and L3LS

we have :

1) L1〈✶
S
〉(L2〈✶

S
〉L3) ≃ (L1〈✶

S
〉L2)〈✶

S
〉L3 if S, S∁ are

stable over LS 2. This first proposition is the same as

the weak associativity theorem of the CSP generalized

parallel operator [17]. The hypothesis added in our

context are satisfied by the label structure associated to

CSP.

2) L1〈✶
S
〉(L2〈✶〉L3) ≃ (L1〈✶

S
〉L2)〈✶〉L3 if S, S∁ are

stable over LS and αL1 ⊆ S.

Proposition 4 (Idempotency of 〈✶〉): Given LS = 〈L,✶〉
and LLS , if LLS is DID then 〈✶〉 is idempotent meaning

that LLS〈✶〉LLS ≃ LLS .

B. LTS Transformations

The label structure of an LTS may be changed in a com-

position such as making local a global event (CSP hide) or

changing its name (CSP Rename). Here, we consider some

LTS labels transformations by extending the label structure

transformations to LTS transformations.

Definition 9 (LTS Transformation): Given two label struc-

tures LS1 and LS2, and a transformation f : LS1 ⇛ LS2, we

define [f] : LLS1
→ LLS2

as :

[f]〈Q,Q0,→1〉 =

〈Q,Q0,→2= {(q, f(l), q
′) | l ∈ dom(f) ∧ (q, l, q′) ∈→1}〉

Proposition 5 (Transformation Bisimulation Compatibility):

Given LS1 = 〈L1,✶1〉, LS2 = 〈L2,✶2〉, two LTSs L1 and

L2 both over LS1, and a transformation f : LS1 ⇛ LS2,

L1 ≃ L2 ⇒ [f](L1) ≃ [f](L2).
Theorem 3 (Transformation Compositionality): Given

LS1 = 〈L1,✶1〉, LS2 = 〈L2,✶2〉, two LTSs L1 and L2 both

over LS1, and an injective transformation f : LS1 ⇛ LS2

such that dom(f) is stable over LS1, we have :

[f](L1
Al〈✶

S
〉ArL2) ≃ [f](L1)

f(Al)〈 ✶
f(S)

〉f(Ar)[f](L2)

Proof: We only sketch the proof of the synchronous case.

Given LS1, LS2, LLS1 , and L′LS1
, we prove that the two

sides are bisimilar through the identity relation. The proof is

based on showing that each transition of the first system can be

found in the second system and vice versa. It is depicted in the

following implications which can be read from bottom to top

and vice versa from either sides of the parentheses. The main

points of this proof are first the use of the stability hypothesis

so that we conclude that when l ∈ dom(f) then l1, l2 ∈
dom(f) and conversely, second the use of the injectivity of

f in order to connect the two branches of the proof.

Proposition 6 (Preservation of DID properties): Given

two label structures LS1, LS2, an injective transformation

f : LS1 ⇛ LS2, and an LTS L over LS1, each of the

2S∁ is the complement of S.











q1
l1→ q′1 , q2

l2→ q′2 , l = l1 ✶ l2

(q1, q2)
l
→ (q′1, q

′
2) , l ∈ dom(f)

(q1, q2)
f(l)
→ (q′1, q

′
2)

q1
l1→ q′1 , l1 ∈ dom(f)

q1
f(l1)
→ q′1

q2
l2→ q′2 , l2 ∈ dom(f)

q2
f(l2)
→ q′2 l = l1 ✶ l2

(q1, q2)
f(l)=f(l1)✶f(l2)

−→ (q′1, q
′
2)











DID properties is preserved by the transformation f .

Formally, for P a DID property we have : P (L)⇒ P ([f]L).

IV. TIMED SYSTEMS

A. Timed Transition Systems (TTS)

Definition 10 (TTS): Given a label structure LS = 〈L,✶〉,
a Timed Transition System (TTS) over LS is an LTS over

LS ⊕ TS.

Definition 11 (TTS composition): Thanks to the introduc-

tion of our label structure, the TTS composition is the com-

position of the underlying LTSs.

B. Timed Automata (TA)

We consider first a definition of timed automata [3] in

which no invariants are associated to its locations (this is

close to a timed graph [2] since neither invariants nor com-

mitted states are modeled). The transitions are in the form of

guard/event/reset where the guards contain a conjunction of

constraints represented as clock intervals and the reset actions

consist in a set of clocks to be reset. This is represented

as a product of three label structures. The first manages the

synchronization events, the second manages clock guards, and

the third manages the clock reset. In the rest of this paper, we

consider a set C of clocks and a time domain ∆ (e.g. R+).

1) Guard Label Structure: Based on the Alur Dill timed

automata [3], a guard is a conjunction of interval constraints

associated to clocks. Here, this is modeled as a function C →
2∆. The guard label structure is defined as :

G , 〈C → 2∆, (g1, g2) 7→ (c 7→ g1(c) ∩ g2(c))〉

The guard label structure is ACI.

2) Action Label Structure: Based on the Alur Dill timed

automata [3], an action associated to a discrete transition can

reset some clocks while keeping the other clocks managed

by the current timed automaton unchanged. In order to allow

the composition of reset actions, the clocks not managed by

a given timed automaton are left undetermined. Consequently

an action is modeled by two disjoint sets r denoting the clocks

to be reset and u denoting the clocks to be left unchanged.

Their composition is defined by respectively the union of the

reset sets and the union of the unchanged sets provided that

the reset and the unchanged sets are disjoint.

A , 〈 {(r, u) ∈ 2C × 2C | r ∩ u = ∅},
((r1, u1), (r2, u2)) 7→ (r1 ∪ r2, u1 ∪ u2)

if r1 ∩ u2 = r2 ∩ u1 = ∅〉

The action label structure is ACI.

3) Timed Automata Label Structure: Given a set of clocks

C, we define a timed automaton as an LTS such that its

transitions are labeled by communication channels (defined

by some label structure LS), guards (the label structure G)

and reset actions (the label structure A). For this moment, LS
is left undefined and can either model the CCS-based synchro-

nization or the CSP-based one. Given a label structure LS, a

timed automaton (TA) over LS is an LTS over LS ⊗G⊗A.

TALS = LTSLS⊗G⊗A

Definition 12 (TA Composition): Thanks to our label struc-

ture, the TA composition is defined as the composition of the

underlying LTS systems.

4) TA Semantics: The semantics of a timed automaton is a

TTS over LS ⊗ G ⊗ A. In the following we denote GA for

(G⊗A).
Lemma 1: If LS is associative (commutative) 3 then LS⊗

GA⊕ TS is associative (commutative).

Proof: G, A, and TS are associative (commutative). By

Proposition 1, ⊕ and ⊗ preserves the associativity (commuta-

tivity).

The TA semantics is given via a composition with a clock

manager Clk defined over GA⊕ TS (Fig 2).

�����������������������
��	�

�����

���
�������

� �	��

���

����
��

����������

�

�������

� ��	�
���
��	�
�

��
��������

Fig. 1. Semantics of TA via a Composition of Two LTSs

a) Clock Manager: The Clk automaton contains vari-

ables (denoted as c̄) corresponding to the clocks c of C.

It has two types of transitions. The first type correspond to

transitions of time evolution labeled by •δ in which after

each possible delay all of the clocks are incremented by the

amount of this delay. The second type correspond to discrete

transitions labeled by g, (r, u)
•

in which certain clocks are

checked against their guard constraints (c̄ ∈ g(c)), and clocks

belonging to r are reset. In order to impose the determinism

of Clk, we suppose that r∪u = C in Clk, but we synchronize

labels l of ta with labels l′ of Clk when l ≤ l′. We recall that

3This is verified for both of CCS and CSP.

this partial order relation ≤ has been defined from the join

operator in Section II-B.

Since Clk is diagonal, idempotent, and deterministic, it

follows that Clk〈✶〉Clk ≃ Clk (Proposition 4).

b) Reconstructing the TA Semantics: The TA semantics

is defined by means of a composition between the syntactic

ta and Clk where ta transmits the clock commands to Clk.

Since the LTS composition is defined over the same label

structure, then the label structures on which ta and Clk are

defined have to be adapted so that they both become defined

over LS⊗GA⊕TS. More precisely, we use the left embedding

transformation for ta and the transformed right extension for

Clk. This is formally defined as :

[[ta]] = (ta ↑LS⊗GA⊕TS
LS⊗GA 〈 ✶

(LS⊗GA)•
〉 Clk(⇑⊕TS

⊕TS↑
LS⊗GA
GA))

Theorem 4 (TA Semantics Compositionality): Given two

timed automata ta1 and ta2, [[ta1〈✶〉ta2]] ≃ [[ta1]]〈✶〉[[ta2]].
Proof: This proof is based on proving the bisimulation

between the semantics of the composition of ta1 and ta2 and

the composition of their semantics. We start by unfolding the

semantics of the TA composition [[ta1〈✶〉ta2]] and by applying

a sequence of bisimulations we reach [[ta1]]〈✶〉[[ta2]]. In the

following proof we denote 〈 ✶
(LS⊗GA)•

〉 by ⊛ and ↑LS⊗GA⊕TS
LS⊗GA

by ↑−⊕TS
− .

(ta1 ↑
−⊕TS
−

⊛Clk ↑LS⊗GA⊕TS
GA⊕TS

)〈✶〉(ta2 ↑
−⊕TS
−

⊛Clk ↑LS⊗GA⊕TS
GA⊕TS

)

≃ {Associativity : Corollary 1.2}

(ta1 ↑
−⊕TS
−

⊛(Clk ↑LS⊗GA⊕TS
GA⊕TS

〈✶〉(ta2 ↑
−⊕TS
−

⊛Clk ↑LS⊗GA⊕TS
GA⊕TS

)))

≃ {Commutativity : Proposition 3}

(ta1 ↑
−⊕TS
−

⊛((ta2 ↑
−⊕TS
−

⊛Clk ↑LS⊗GA⊕TS
GA⊕TS

)〈✶〉Clk ↑LS⊗GA⊕TS
GA⊕TS

))

≃ {Associativity : Corollary 1.2}

(ta1 ↑
−⊕TS
−

⊛(ta2 ↑
−⊕TS
−

⊛(Clk ↑LS⊗GA⊕TS
GA⊕TS

〈✶〉Clk ↑LS⊗GA⊕TS
GA⊕TS

)))

≃ {Idempotency : Proposition 4}

(ta1 ↑
−⊕TS
−

⊛(ta2 ↑
−⊕TS
−

⊛Clk ↑LS⊗GA⊕TS
GA⊕TS

))

≃ {Associativity : Corollary 1.1}

((ta1 ↑
−⊕TS
−

⊛ta2 ↑
−⊕TS
−

) ⊛ Clk ↑LS⊗GA⊕TS
GA⊕TS

)

≃ {Synchronous Composition : Proposition 2}

((ta1 ↑
−⊕TS
−

〈✶〉ta2 ↑
−⊕TS
−

) ⊛ Clk ↑LS⊗GA⊕TS
GA⊕TS

)

≃ {Transformation Compositionality : Theorem 3}

((ta1〈✶〉ta2) ↑
−⊕TS
−

⊛ Clk ↑LS⊗GA⊕TS
GA⊕TS

)

Of course, the hypothesis of the applied results have been

verified. Namely, (LS ⊗GA)
•

is stable over LS⊗GA⊕TS,

αta1 ↑
LS⊗GA⊕TS
LS⊗GA ⊆ (LS ⊗GA)

•
, DID is preserved by the

transformations, Clk verifies the DID properties, the product

and the transformation are compatible w.r.t bisimulation and

Lemma 1.

5) Comparison with Standard TA Semantics: We now state

the equivalence between our TA semantics and the standard

one. We start by defining the standard TA semantics by the

function [[]]std : LTSLS⊗GA → LTSLS⊗GA⊕TS such that

[[〈Q,Q0,→〉]]std = 〈Q× (C → R
+), Q0 × {c : C 7→ 0},→s〉

where :

q
(l,(g,(r,u)))
−−−−−−−→q′ ,

∧
c∈C v(c)∈g(c) ,

∧
c∈r v′(c)=0 ,

∧
c∈u v′(c)=v(c)

(q,v)
(l,(g,(r,u)))
−−−−−−−→s(q′,v′)

(q,v)
δ
→s(q,v+δ)

Theorem 5: Given a timed automaton where each transition

is labeled by an action (not by ǫ labels introduced by the

label structure product), its standard and proposed (revised)

semantics are state-bisimilar through the identity relation.

C. Timed Automata with Invariants

We now add state invariants to timed automata as defined

in [12].

1) Invariant Label Structure: Here we consider an invariant

to be an upper bound constraint that may be associated to each

clock. It is defined as a partial function from clocks to the

time domain ∆. The composition of two invariants associates

to each clock, when it exists, the minimum of the two bounds.

The invariant label structure is defined as :

I ,〈C 9 ∆,

(i1, i2) 7→ (c 7→







min(i1(c), i2(c)) if c ∈ dom(i1) ∩ dom(i2)
i1(c) if c ∈ dom(i1) \ dom(i2)
i2(c) if c ∈ dom(i2) \ dom(i1)

)〉

The invariant label structure is ACI.

2) Timed Automata with Invariants Label Structure: Given

a set of clocks C, we define a timed safety automaton (TSA) as

an LTS such that its transitions are labeled by communication

channels (defined by some label structure LS), guards (the

label structure G) and reset actions (the label structure A).

Furthermore, invariants which are usually attached to loca-

tions, are here stored on special looping transitions in order

to synchronize with the Invariant Clock controller (IClk in

paragraph IV-C3a).

Given a label structure LS, a timed safety automaton over

LS is an LTS over LS ⊗G⊗A⊕ I .

TSALS = LTSLS⊗G⊗A⊕I

Definition 13 (TSA Composition): Thanks to our label

structure, the TSA composition is defined as the composition

of the underlying LTS systems.

3) TSA Semantics: The semantics of a timed safety automa-

ton is a LTS over LS ⊗GA⊕ I ⊗ TS.

Lemma 2: If LS is associative (commutative) then LS ⊗
GA⊕ I ⊗ TS is associative (commutative).

Proof: G, A, I and TS are associative (commutative).

By Proposition 1, ⊕ and ⊗ preserves the associativity (com-

mutativity).

The TSA semantics is given via a composition with an

invariant clock manager IClk defined over GA ⊕ I ⊗ TS
(Fig 2).

a) Invariant Clock Manager : The IClk automaton

extends the Clk automaton by constraining the time elapsing.

It synchronizes on the invariant specified by the user-provided

timed automaton, and on any GA label operator that is equal

to the GA label provided by the timed automaton.

Since IClk is diagonal, idempotent, and deterministic, it

follows that IClk〈✶〉IClk ≃ IClk (Proposition 4).

���� ������������������
��� �	

�����

�����
����

� ����

���

�����	
�

��

�

���
����

� �����
��
����	�

��

�����

������������!��
�������

����"
��#�����	

Fig. 2. Semantics of TSA via a Composition of Two LTSs

b) Reconstructing the TSA Semantics: As before, the

TSA semantics is defined by means of a composition between

the syntactic tsa and IClk. The semantics of a timed safety

automaton is reconstructed as follows :

[[tsa]] = (tsa(⇑LS⊗GA⊕
LS⊗GA⊕↑

I⊗TS
I)〈✶〉 Clk(⇑⊕I⊗TS

⊕I⊗TS↑
LS⊗GA
GA))

Theorem 6 (TSA Semantics Compositionality): Given two

timed safety automata tsa1 and tsa2, [[tsa1〈✶〉tsa2]] ≃
[[tsa1]]〈✶〉[[tsa2]].

Proof: This proof is similar to the TA Semantics Com-

positionality proof.

4) Comparison with Standard TSA Semantics: We now

state the equivalence between our TSA semantics and the

derived standard one in which a specific encoding of the state

invariant is taken into account. We start by defining the stan-

dard TSA semantics by the function [[]]std : LTSLS⊗GA⊕I →
LTSLS⊗GA⊕I⊗TS such that [[〈Q,Q0,→〉]]std = 〈Q × (C →
R

+), Q0 × {c : C 7→ 0},→s〉 where :

q
(l,(g,(r,u)))
−−−−−−−→q′ ,

∧
c∈C v(c)∈g(c) ,

∧
c∈r v′(c)=0 ,

∧
c∈u v′(c)=v(c)

(q,v)
(l,(g,(r,u)))
−−−−−−−→s(q′,v′)

q
i
→q ∀c∈C,v(c)+δ≤i(c)

(q,v)
δ
→s(q,v+δ)

Remark that a disjunctive invariant can be modeled using

several looping transitions (second rule).

Theorem 7: Given a timed safety automaton where each

transition is labeled by an action (not by ǫ labels introduced by

the label structure product), its standard and proposed (revised)

semantics are state-bisimilar through the identity relation.

V. TOWARDS GIVING LIFE TO LABEL STRUCTURES

In this section, we show how the previous semantic defi-

nitions could be generalized by attaching behaviors to label

structures. For this purpose, we abstract the timed automata

semantic construction by associating a behavior to label

structures in the form of an LTS. Starting from an LTS

built on a given label structure, a syntactic extension can

be reached by composing labels with those of a new label

structure (for instance, as we have seen, extending LTS to

Timed Automata by adding action and guard labels). The

corresponding semantics can be defined either by overlaying

or by composing the original LTS with the one provided with

the extension.

We show that these two methods are equivalent and that,

provided some hypothesis, the semantics of the extension is

compositional.

A. Semantic Extension

Given a label structure LS1, we introduce an extension label

structure LS2 supposed to be ACI, and its semantics defined

by an LTS C(the controller) over LS2 ⊕ LS3.

We define the extended semantics by the function [[]]stdC :
LTSLS1⊗LS2 → LTSLS1⊗LS2⊕LS3 such that [[L =
〈Q,Q0,→〉]]stdC = 〈Q×QC , Q

0 ×Q0
C ,→s〉 where :

q
(l1,l2)
−−−−→q′ , qC

l′2
•

−−→q′C , l2≤l′2

(q,qC)
(l1,l2)•

−−−−→s(q′,q′C)

q
(l,ǫ)
−−→q′

(q,qC)
(l,ǫ)•

−−−→s(q′,q′C)

qC
•l
→q′C

(q,qC)
•l
→s(q,q′C)

The semantic LTS is defined over the product of the state

space of the syntactic LTS L and the controller C. Its tran-

sitions are built by joining transitions on LS1 ⊗ LS2 and

adding transitions over LS3. In order to allow the composition

with user-given LTSs, we add non-determinism through the

introduction of the label l′2 such that l2 ≤ l′2. Coming back to

Timed Automata, this corresponds to making at least the resets

and the unchanged actions asked by the user. Unreferenced

clocks can be freely modified which allows parallel LTSs to

impose their own modifications.

This semantics is shown to be equivalent to the following

one which reuses the label structure operators

[[L]]C = (L ↑LS1⊗LS2⊕LS3

LS1⊗LS2
〈 ✶
(LS1⊗LS2)

•
〉 C(⇑⊕LS3

⊕LS3
↑LS1⊗LS2

LS2
))

Theorem 8 (Extension Semantic): Given two LTSs L over

LS1 ⊗ LS2 and C over LS2 ⊕ LS3 with LS2 ACI, [[L]]stdC
and [[L]]C are state-bisimilar through the identity relation if

the following conditions hold :

• transitions of L are not of the form (l, ǫ),
• the LS2 labels of the transitions of C are maximal for ≤.

B. Compositionality

The compositionality result concerning the parallel operator

of timed automata can be generalized as follows :

Theorem 9 (Generalized Compositionality): Given two

LTSs L1 and L2 over LS1 ⊗ LS2 and a controller C over

LS2 ⊕ LS3, we have

[[L1〈✶〉L2]]C ≃ [[L1]]C〈✶〉[[L2]]C

if the following conditions hold :

• LS1 and LS3 are associative and commutative.

• LS2 is ACI.

• C is DID.

This theorem has a similar proof as the timed automata one.

Furthermore, all the hypothesis are satisfied in the timed

automata context.

VI. CONCLUSION

We have presented a formal semantic framework for study-

ing, defining, and manipulating the composition of extended

transition systems based on the composition of their labels.

The framework is based on the idea of defining a label

structure containing a composition operator. Depending on

the language in question, a different label structure is defined

and thus different composition laws are integrated. The label

structure is then used as a parameter of labeled transition

systems which describe the common semantic domain of

the considered languages. We believe that the suggested

parametrization of the behavioral framework is a promising

work and may represent, especially with the perspectives we

have, the first step towards giving a unified formal semantic

framework for different process algebras and specification

languages.

In our study, we emphasize on composition operators of

process algebras without concentrating on other behavioral

operators. In this context, we have pushed forward existing

work of similar structures [14], [18], [13] by offering a richer

set of operations and properties such as the composition of

label structures and transformations between label structures.

Following our technique, the composition of different LTS

extensions, whether it is a syntactic model or a semantic

model, is captured by a unique composition operation defined

on LTS. This is a direct result of the separation between the

label structure and the behavioral framework. This result is

different than what can be found in the literature since with

each system, a different composition operation is provided.

This can be seen classically in the composition operations of

LTS and TTS. Even though a TTS is exactly an LTS having

additionally time transitions, usually its composition operation

does not reuse the LTS one.

Furthermore, generic results concerning label structures and

LTS transformations are applied to establish well known prop-

erties of high-level structures such as the definition of timed

automata semantics. We have shown that these semantics

match with the standard timed automata semantics and that the

timed automata are compositional w.r.t the parallel operator.

We are now working on a dual view of this work which

consists in coupling our label structures to states. This will

help us to naturally take into consideration state-based mech-

anisms such as the the committed states of UPPAAL [7]. We

are also working on defining the formal semantics of real

time languages (BIP [6] and FIACRE [9]). Namely, we are

interested in extending our label structure with priorities which

are present in all the three cited languages. Another extension

is to revisit this work by incorporating some categorical flavor.

Finally, all the theorems related to the presented framework

have been validated in the proof assistant Coq. The Coq theory

may be found at [1].

Acknowledgement: The authors would like to thank the

reviewers for thoroughly reading the paper.

REFERENCES

[1] http://www.irit.fr/~Jean-Paul.Bodeveix/COQ/LblStr.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-
time. Inf. Comput., 104(1):2–34, May 1993.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.

Sci., 126(2):183–235, Apr. 1994.
[4] F. Arbab. Abstract behavior types: a foundation model for components

and their composition. Sci. Comput. Program., 55(1-3):3–52, Mar. 2005.
[5] A. Arnold, G. Point, A. Griffault, and A. Rauzy. The AltaRica formalism

for describing concurrent systems. Fundam. Inf., 40(2-3):109–124, 1999.
[6] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time

components in bip. In SEFM, pages 3–12. IEEE Computer Society,
2006.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
M. Bernardo and F. Corradini, editors, International School on Formal

Methods for the Design of Computer, Communication, and Software

Systems, SFM-RT 2004. Revised Lectures, volume 3185 of Lecture Notes

in Computer Science, pages 200–237. Springer Verlag, 2004.
[8] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central

Models and Their Properties, Advances in Petri Nets 1986, Part II,

Proceedings of an Advanced Course, Bad Honnef, 8.-19. September

1986, volume 255 of Lecture Notes in Computer Science. Springer, 1987.
[9] P. Farail, P. Gaufillet, F. Peres, J.-P. Bodeveix, M. Filali, B. Berthomieu,

S. Rodrigo, F. Vernadat, H. Garavel, and F. Lang. FIACRE: an interme-
diate language for model verification in the TOPCASED environment. In
European Congress on Embedded Real-Time Software, ERTS’08, 2008.

[10] I. O. for Standardization. Information processing systems - open systems

interconnection - LOTOS - a formal description technique based on the

temporal ordering of observational behaviour. International standard.
ISO, 1989.

[11] T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In
J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, editors, Real-

Time: Theory in Practice, volume 600 of Lecture Notes in Computer

Science, pages 226–251. Springer, 1992. 10.1007/BFb0031995.
[12] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.
[13] T. Hoare and P. O’Hearn. Separation logic semantics for communicating

processes. Electron. Notes Theor. Comput. Sci., 212:3–25, Apr. 2008.
[14] H. Hüttel and K. Larsen. The use of static constructs in a model process

logic. In A. Meyer and M. Taitslin, editors, Logic at Botik ’89, volume
363 of Lecture Notes in Computer Science, pages 163–180. Springer
Berlin Heidelberg, 1989.

[15] K. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time
systems. In H. Reichel, editor, Fundamentals of Computation Theory,
volume 965 of Lecture Notes in Computer Science, pages 62–88.
Springer, 1995. 10.1007/3-540-60249-6 41.

[16] R. Milner. Communication and concurrency. Prentice Hall International,
1995.

[17] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997.

[18] A. W. Roscoe. On the expressiveness of CSP. Technical report,
www.cs.ox.ac.uk/files/1383/complete(3).pdf, 2011.

[19] E. Sekerinski and K. Sere. A theory of prioritizing composition.
Technical report, 1996.

