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Abstract – We study the thermal-fluctuation–induced interactions between two surfaces con-
taining Brownian charges which are held at different temperatures. Using a dynamical form of
Debye-Hückel theory implemented within the stochastic equation for the density of mobile Brow-
nian charges, we derive expressions for the average force between the two surfaces as well as its
variance. The latter is found both for the normal, of finite mean, as well as the lateral force, of
zero mean, between the surfaces.

Introduction. – Recently there has been intense in-
terest in the out-of-equilibrium Casimir and/or van der
Waals interactions between objects held at different tem-
peratures [1–8]. The analysis of such systems, taking into
account both quantum and finite temperature effects, is
carried out using the stochastic electrodynamics formal-
ism of Rytov [9]. This is a very general formalism based
on Maxwell’s equations in the presence of random cur-
rents which satisfy the quantum fluctuation dissipation
theorem. The correlation function of currents in the same
body, assumed to be held at fixed temperature, obeys a
quantum fluctuation dissipation theorem with the temper-
ature of the body in question. The electrical properties of
the media in the Rytov formalism are encoded in their
dielectric functions.

Here we will study a classical problem from a more mi-
croscopic, and statistical mechanics, point of view. The
basic model consists of two plates in which a single species
of charge carrier, with a uniform electroneutralizing back-
ground charge (a so-called jellium model), is described
by an over-damped Langevin equation with an applied
force generated by a direct Coulomb interaction with the
charges in the same and opposing plates. In this formalism
the dynamical temperature of each plate is well defined
and appears as the ratio of the Langevin noise (diffusion

constant) to the mobility relating the drift to the applied
force (the local Einstein relation). Within this approx-
imation we compute the average thermal Casimir force
between the two plates and are able to give explicit for-
mulas for the near- and far-field forces in terms of the
microscopic parameters of the problem. The far-field re-
sults are found to have the same dependence on the plate
separation L as results derived within the Rytov formal-
ism [1–8]. In addition the model here allows us to compute
the variance of both the normal and lateral forces in this
out-of-equilibrium context and to our knowledge these are
the first results on force fluctuation statistics for the non-
equilibrium thermal Casimir effect.

The model. – We will consider a system of two parallel
planes of area S separated by a distance L as shown in
fig. 1. Each plane α contains a uniform background charge
density (per unit area) ρcα along with a species of mobile
ion α, of charge qα and diffusion constant Dα, obeying
the Langevin equation

dX
dt

= βαDαqαE +
√

2Dαηα. (1)

Above ηα is zero mean Gaussian white noise with correla-
tion function 〈ηαi(t)ηαj(t′)〉 = δijδ(t−t′) and E is the local
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Fig. 1: (Colour on-line) Schematic of the model, two plates 1
and 2 containing Brownian charges of charge q1 and q2 (not
shown), respectively. The separation between the plates
is L and the in-plane (x, y) coordinate axes are shown for
plate 1. All charges interact via the direct non-retarded three-
dimensional Coulomb interaction.

electric field in the plane which is generated by the electric-
charge distributions in both planes. The temperature of
the plate α is Tα = 1/βα and thus the electrical mobility
of the species α is given by μα = βαDα from the Einstein
relation. The statics of the above model within the Debye-
Hückel approximation has been studied by a number of
authors to understand how charge fluctuations in neutral
colloidal systems give rise to attractive interactions [10] as
well as to better understand the high-temperature limit
of the Casimir force between conductors [11,12]. More
recently [13] a stochastic density functional approach was
applied to the same system in order to see how the thermal
Casimir force evolves in time between two plates having
initially no charge fluctuations. Interestingly the relax-
ation of the thermal Casimir force to its equilibrium value
turns out to be very different from that for a model di-
electric based on polarisable dipole dynamics [14], even if
both models can have identical equilibrium Casimir forces
in the appropriate limits.

Within each plate α the in-plane component of the elec-
tric field can be expressed in terms of the density operator
of each charged species defined by

ρα(x) =
N∑

i=1

δ(x − Xαi) (2)

and is given in the plane α/β by

Eα/β = −1
ε

∫
S

dx′
[
∇||G(x − x′, 0)qα/βρα/β(x′)

+∇||G(x − x′, L)qβ/αρβ/α(x′)
]
, (3)

where ∇|| denotes the gradient operator in the (x, y)-
planes containing the charges. Here ε is the dielectric con-
stant of the system which is assumed to be constant and
G is the Green’s function obeying[

∇2
|| +

∂2

∂z2

]
G(x− x′, z − z′) = −δ(x− x′)δ(z − z′). (4)

We also note that in eq. (3) the uniform background charge
in both planes does not contribute to the in-plane electric
field. It is useful to define the fluctuations of the overall
density (per unit area) of species α with respect to the
mean value ρα via

ρα(x) = ρα + nα(x). (5)

In terms of the field nα(x) one can write the force acting
perpendicularly to the plates as

f⊥ = −q1q2

ε

∫∫
S

dxdx′n1(x)n2(x′)
∂

∂L
G(x − x′, L). (6)

The i-th component force parallel to the plates, which will
be zero on average, is given by

f‖,i = −q1q2

ε

∫∫
S

dxdx′ n1(x)n2(x′)∇iG(x − x′, L). (7)

The density fields ρα in each plate can be shown to
evolve according to the stochastic partial differential
equation [15,16]

∂ρα(x, t)
∂t

= Dα∇|| ·
[
∇||ρα(x, t) − βαqαEαρα(x, t)

]
+∇|| · [

√
2Dαρα(x, t)ηα(x, t)]. (8)

In the above, the noise ηα(x, t) is a spatio-temporal
white-noise vector field of mean zero and with correlation
function

〈ηαi(x, t)ηβj(x′, t)〉 = δαβδijδ(t − t′)δ(x − x′). (9)

Dynamical Debye-Hückel approximation. – As it
stands eq. (8) is a non-linear (as the electric field depends
on the density) partial differential equation with a noise
term that depends on the local density field and is not
amenable to an exact mathematical analysis. However,
one can linearise the equation about the mean value of
the density to find a dynamical theory which yields the
Debye-Hückel high-temperature/weak-coupling theory as
its static limit [13]. The equation is expanded to first
order in nα in the deterministic part and to zeroth order
in the noise part (the first-order correction to the noise
is zero on average so this is compatible with expanding
the deterministic part to first order). The resulting linear
equation in Fourier (Q) space reads, using the Einstein
summation convention on repeated indices,

∂tñα(Q, t) = −M(Q)αβñβ(Q, t) + ξα(Q, t), (10)

where the noise term ξα(Q, t) has the correlation function

〈ξα(P, t)ξβ(Q, t′)〉 = 2(2π)2δ(P + Q)δ(t − t′)Rαβ(Q),
(11)

where
Rαβ(Q) = δαβDαρ̄αQ2 (12)
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C̃11(Q) =
2Qρ̄1

(
D1(β1/β2 − 1)m1m2e

−2QL + (2Q + m2)(2(D1 + D2)Q + D1m1 + D2m2)
)

(2(D1 + D2)Q + D1m1 + D2m2)((2Q + m1)(2Q + m2) − m1m2e−2QL)
, (16)

C̃12(Q) = C̃21(Q) = − 2q1q2ρ̄1ρ̄2Qe−QL(β1D1(2Q + m1) + β2D2(2Q + m2))
ε(2(D1 + D2)Q + D1m1 + D2m2)((2Q + m1)(2Q + m2) − m1m2e−2QL)

, (17)

C̃22(Q) =
2Qρ̄2

(
D2(β2/β1 − 1)m1m2e

−2QL + (2Q + m1)(2(D1 + D2)Q + D1m1 + D2m2)
)

(2(D1 + D2)Q + D1m1 + D2m2)((2Q + m1)(2Q + m2) − m1m2e−2QL)
, (18)

and

M(Q) =

Q2

(
D1 + q2

1D1β1ρ̄1G̃(Q.0) q1q2D1β1ρ̄1G̃(Q, L)

q1q2D2β2ρ̄2G̃(Q, L) D2 + q2
2D2β2ρ̄2G̃(Q, 0)

)
,

(13)

where G̃(Q, z) = e−Qz/2Q is the Fourier transform of G
taken in the (x, y)-plane. From this one can show [17] that
the steady-state correlation function defined by

〈ñα(Q)ñβ(P)〉 = (2π)2δ(Q + P)C̃αβ(Q) (14)

obeys

Mαγ(Q)C̃γβ(Q) + C̃αγ(Q)MT
γβ(Q) = 2Rαβ(Q). (15)

One now has to solve the above linear equation with
3 variables to obtain the corresponding correlation func-
tions. Note that the same formalism could be applied
to systems having more than one charge type; the corre-
sponding equations, while remaining linear, will increase
substantially in complexity. The solution for the steady-
state correlation functions is

see eqs. (16)–(18) above

where mα = βαραq2
α/ε are inverse Debye lengths (for each

system confined to a plane).

The average value of the perpendicular force. –
From the steady-state correlation functions it is now easy
to compute the average thermal Casimir force between the
plates in the non-equilibrium state considered here, and we
find that

〈f⊥(L)〉 =

−S

∫
dQ

(2π)2
QT1T2 m1m2e

−2QL

(m1 + 2Q)(m2 + 2Q) − m1m2e−2QL

× β1D1m1 + β2D2m2 + 2(β1D1 + β2D2)Q
D1m1 + D2m2 + 2(D1 + D2)Q

. (19)

If one sets T1 = T2 = T in the above, the second line of
the above (which is part of the integrand) is equal to β =
1/T and we immediately recover the equilibrium result
〈f (eq)

⊥ (L, T1)〉 found in [13]. Also if the two systems are at

different temperatures but are materially identical in that
D1 = D2 and m1 = m2 we see that

〈f⊥(L, T1, T2)〉 =
〈f (eq)

⊥ (L, T1)〉 + 〈f (eq)
⊥ (L, T2)〉

2
, (20)

this is a relation first noticed in [1] for planar geometries
and subsequently shown to be general within the Rytov
formulation between identical dielectric bodies held at dif-
ferent temperatures [3].

Of particular interest in this model is the far-field limit,
defined by L � m−1

1 ,m−1
2 , where in the equilibrium

case one recovers the universal thermal Casimir force be-
tween ideal conductors [12,13]. For large L the integral in
eq. (19) is dominated by small Q and one finds

〈f⊥(L)〉 ≈ −Sζ(3)
8πL3

× T2D1m1 + T1D2m2

D1m1 + D2m2
, (21)

where ζ(z) denotes the Riemann zeta function. When
T1 = T2 = T the above becomes independent of Dα

and mα and we find a long-distance force which is uni-
versal and independent of the microscopic details of the
two planes. However, once the temperatures are differ-
ent, even the long-distance force depends on the variables
vα = Dαmα which have the dimensions of velocity. The
form of eq. (21) is remarkably simple, but its physical in-
terpretation is far from being obvious. We also notice that
if we take v1 � v2 by taking a very large diffusion constant
D1 or large q1 or ρ1 the force becomes that of a system
with a single temperature T2 at equilibrium. In fact the
plane 1 behaves like a perfect conductor (due to its abil-
ity to react instantaneously to an applied electric field)
and the thermal Casimir force is independent of its tem-
perature. The general behavior of eq. (21) is of the same
form found for the thermal component of the Casimir force
in [1–3] where a dielectric system was considered. Note
that in this classical model there are no constant bulk con-
tributions to the Casimir force. This is because here the
only electrical fields are generated by the charges compos-
ing the two planes in the systems, whereas in a full quan-
tum calculation there are additional contributions to the
electromagnetic field coming from black-body radiation.

In the near-field limit defined by L � m−1
1 ,m−1

2 the
dominant contribution in eq. (19) comes from modes with
wave vectors of amplitude Q ∼ L−1 and here we obtain

〈f⊥(L)〉 ≈ −S

(
T2D1 + T1D2

D1 + D2

)
m1m2

16πL
. (22)
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In the case in which T1 = T2 = T we recover the equi-
librium near-field result. However, we see here that the
way in which the overall force is weighted with the two
temperatures depends on the diffusion constants Dα, in
contrast to the far-field limit where it is determined by
the velocities vα. The results for the average force in the
system with two plates at different temperature show that
the force in both the near- and far-field regimes keep the
same functional dependence on L and that the extent of
both regimes is still determined by the relative values of L
and m−1

α . The weighting of the contribution of each tem-
perature of the force, however, depends on the dynamical
variables Dα and vα. We note that the full temperature
dependence for this system is fully determined by the de-
pendence of mα on the temperature (which is known), as
well as the dependence of Dα on the temperature of the
plate α.

Force fluctuations. – As both the perpendicular
force, eq. (6), and lateral force, eq. (7), are given in terms
of the density fluctuations, we can see that fluctuations of
the densities will induce the fluctuations of the forces.

Using Wick’s theorem we find that the variance of the
perpendicular force is given by

〈f2
⊥〉c = S

q2
1q2

2

ε2

×
∫

dQ
(2π)2

[
C̃11(−Q) C̃22(Q)

∂G̃(Q, L)
∂L

∂G̃(−Q, L)
∂L

+ C̃12(−Q) C̃21(Q)

(
∂G̃(Q, L)

∂L

)2]
. (23)

Substituting the correlation function into this expression
then yields

〈f2
⊥〉c = S

∫
dQ

(2π)2

[
T1T2 m1m2 Q2 e−2QL

((2Q + m1)(2Q + m2) − m1m2e−2QL)2

×
(

2Q + m1 −
D2(1 − β2/β1)m1m2e

−2QL

(2Q + m1)D1 + (2Q + m2)D2

)

×
(

2Q + m2 −
D1(1 − β1/β2)m1m2e

−2QL

(2Q + m1)D1 + (2Q + m2)D2

)

+
m2

1 m2
2 Q2 e−4QL

((2Q + m1)(2Q + m2) − m1m2e−2QL)2

×
(

T2D1(2Q + m1) + T1D2(2Q + m2)
D1(2Q + m1) + D2(2Q + m2)

)2]
. (24)

The variance of the force fluctuations is thus proportional
to the surface S of the plates, this is typical thermody-
namic scaling for equilibrium systems and persists in the
non-equilibrium case when the plate temperatures are un-
equal. The existence of such thermodynamic scaling along
with the absence of any divergences requiring the introduc-
tion of an ultra-violet cut-off, ensures that the variance
of the force fluctuations must take the form of eq. (25)
by dimensional analysis. We note that zero-temperature

Fig. 2: (Colour on-line) Behavior of the variance of the per-
pendicular thermal Casimir force in the far-field limit, as
a function of X ≡ (D1m1 − D2m2)/(D1m1 + D2m2) and
Y ≡ (T1 − T2)/(T1 + T2).

studies of the quantum fluctuations of the Casimir force
between two conductors require the introduction of a cut-
off corresponding to the averaging of the force over a fi-
nite time [18–21]. Studies of the thermal fluctuations of
the force between dielectrics find the same behavior as
found here but with a different prefactor [22]. The case
of massless free fluctuating fields with Dirichlet bound-
ary conditions also has an L (plate separation) dependent
part of the force fluctuation variance which has the same
form as eq. (26) [23]. In both the quantum case and the
thermal-field case, the force on a single (or two infinitely
separated plates) has a non-zero variance; as mentioned
above this is due to the fact that in these studies there is
a contribution to the electric field which is independent of
the charges in the interacting bodies and is generated by
quantum [18–21] or thermal [23] fluctuations of the field
in the surrounding medium.

The rather complicated expression (24) can be simpli-
fied in the near- and far-field limits. In the far-field limit
it is given by

〈f2
⊥〉c ≈ SΘ2

2πL4

[
3ζ(3)

4
− π4

240
− 3

8
Y 2

−
(

3ζ(3)
2

− π4

60

)
XY +

(
3
8
− π4

80
+

3ζ(3)
4

)
X2Y 2

]
,

(25)

where Θ = (T1 + T2)/2, and the temperature and velocity
mismatches are defined by Y = (T1 − T2)/(T1 + T2) and
X = (v1 − v2)/(v1 + v2). We thus see that in the far-field
limit 〈f2

⊥〉c/〈f⊥〉2 ∼ L2/S.
The behavior of 〈f2

⊥〉c is plotted in fig. 2. We see that
〈f2

⊥〉c is maximum for X = Y = 0, and decreases to zero
at X = Y = ±1. From the above equation we also see
that in the equilibrium case T1 = T2 we have

〈f (eq)
⊥

2
〉c ≈ 3ST 2

8πL4

(
ζ(3) − π4

180

)
. (26)

4



The term proportional to XY above is negative, thus
if X and Y have the same sign fluctuations are sup-
pressed. If aα denotes the ionic radius of the ions in
plate α and η′

α the background viscosity, then we see that
vα = ραq2

α/6επη′
αaα by applying the Stokes formula for

the diffusion constant (assuming hard sphere ions). If the
viscosity depends only weakly on the temperature then
so does X. In this regime changing the relative temper-
ature in each plate then either increases or decreases the
fluctuations.

We have also seen that in the far-field limit, when
v1 = v2 the average equilibrium force is the arithmetic
mean of two equilibrium systems, one with temperature
T1 and the other with temperature T2. In this case X = 0
and we see that

〈f2
⊥〉c ≈ 3SΘ2

8πL4

(
ζ(3) − π4

180
− 1

2
Y 2

)
. (27)

We thus see that in this case, and in particular the case
of materially identical plates but with different tempera-
tures, the non-equilibrium system has a force which fluc-
tuates less than the corresponding equilibrium one where
each plate has the temperature Θ = (T1 + T2)/2.

In the near-field limit we find that

〈f⊥(L)2〉c ≈ ST1T2m1m2

32πL2
. (28)

Recalling that one must have L � m−1
α to be in this

regime and that mα = ραβαq2
α/ε, we see that the fluctua-

tions of the force are independent of the two temperatures
in this regime. We also see that the dominant fluctuations
of the near-field force are also independent of the diffusion
constants of the charges in the two plates. In the near-
field limit we find that 〈f2

⊥〉c/〈f⊥〉2 ∼ 1/(Sm1m2) and so
the relative fluctuations of the force with respect to its
average value become independent of L.

The average value of the lateral force is clearly zero,
whereas its connected fluctuation correlator is given by

〈f||,if||,j〉c = S
q2
1q2

2

ε2

∫
dQ

(2π)2
QiQjG̃(Q, L)

× [C̃11(−Q)C̃22(Q)G̃(−Q, L)
− C̃12(−Q)C̃21(Q)G̃(Q, L)]. (29)

The calculation of the fluctuations of the lateral force can
almost be read off from that for the perpendicular force, as
∂G̃(Q, L)/∂L = −QG̃(Q, L), and one finds in the far-field
regime that

〈f||,if||,j〉c ≈ SΘ2

4πL4

[
π4

240
− 3

8
Y 2+

(
3
8
− π4

240

)
X2Y 2

]
δij .

(30)

In principle there can be correlations between the lateral
and transverse forces, but in the present case it can be ver-
ified that there is no correlation. The i = j contribution

Fig. 3: (Colour on-line) Behavior of the variance of the lat-
eral thermal Casimir force in the far-field limit, as a function
of X ≡ (D1m1 − D2m2)/(D1m1 + D2m2) and Y ≡ (T1 −
T2)/(T1 + T2).

gives the variance of the lateral force in an arbitrary direc-
tion. The behavior is plotted in fig. 3. We see that 〈f2

||〉c is
maximum for the plates in thermal equilibrium (Y = 0),
and decreases to zero at |X| = |Y | = 1. In the equilibrium
case we find from eq. (30) that

〈f (eq)
||

2
〉c ≈ ST 2π3

480L4
. (31)

As is the case for the perpendicular force fluctuations,
when X = 0 we see that the effect of a temperature differ-
ence is to decrease the fluctuations with respect to that of
an equilibrium system with the same average temperature.
An interesting difference between the lateral force fluctu-
ations and the perpendicular force fluctuations is that the
latter depends on the relative signs of X and Y through
its dependence on XY while the former does not. Finally
the dominant near-field contribution to the lateral force
fluctuations is identical to that for the fluctuations of the
perpendicular force given in eq. (28).

In the case where plate 1 is taken to be a perfect con-
ductor, and so X = 1, we see that in the far-field limit

〈f⊥2〉c ≈ ST2

2πL4

(
3ζ(3)T2

4
+

π4(T1 − T2)
240

)
, (32a)

〈f||2〉c ≈ ST1T2π
3

480L4
. (32b)

We see here that while the average perpendicular force
in this case in independent of the temperature T1 of the
perfect conductor, its variance and that of the lateral force
do depend explicitly on the temperature of the perfectly
conducting plate.

Conclusions. – We have studied a simple model
of Brownian conductor plates giving rise to a ther-
mal Casimir interaction between the said plates. The
model enables us to study the out-of-equilibrium behav-
ior of the thermal Casimir interaction between the plates
when both plates have different temperatures. We are
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able to obtain explicit expressions for the non-equilibrium
attraction between the plates as a function of the mi-
croscopic parameters of the model. In particular the
far-field interaction shows how the universal Casimir
interaction between conductors is modified by a temper-
ature difference. In contrast to the equilibrium case, the
non-equilibrium far-field force depends explicitly on the
dynamics of the charges through their respective diffusion
constants as well as the static Debye lengths of both sets
of charges. A similar dependence is also seen in the near-
field force; however in both cases the dependence of the
force on L is the same as that found in equilibrium (1/L3

for the far field and 1/L for the near field). The non-
equilibrium modification can thus be thought of as giv-
ing a different non-equilibrium Hamaker constant in both
regimes. The formalism employed has also allowed the
computation of the fluctuations of both the perpendicular
and lateral forces between the plates.

Again the non-equilibrium system has force fluctuations
which have the same dependence on L as the equilib-
rium force, only the temperature-dependent prefactors are
changed. We have also seen that when both systems are
identical, in that they have the same Debye lengths and
diffusion constants (but note that the Debye length de-
pends on the temperature of the plate), the overall force
is given by the arithmetic average of two equilibrium sys-
tems at both temperatures (as is generally the case for
two identical bodies in the Rytov formalism [3]). How-
ever, this does not hold for the fluctuations of the force
(both perpendicular and lateral), which are smaller be-
tween identical plates with different temperatures than
the equilibrium case where both have the same tempera-
ture (T1 + T2)/2.

An obvious extension of this work would be to address
the effects of inertia on the ion dynamics and also to treat
the electromagnetic interactions relativistically. Using a
stochastic density functional theory which exists for par-
tially damped dynamics, involving both the density fields
and currents of both species [24], may render a relativis-
tic calculation feasible. However, the far-field results here
should be relevant up to some length scale, as the near-
field regime is determined by the parameters m−1

α which
are typically nanometric for electrolyte systems. The size
of the relative relativistic correction to the electric field
generated by a charge moving in one plane, at a point
in the other plane, can be estimated from a low veloc-
ity expansion of the Liénard-Wiechert potential. This
correction has order of magnitude R ∼ Lv̇/c2, where v
is the particle velocity and c the speed of light. How-
ever, for a Brownian particle, both the velocity v and
acceleration v̇ have correlation functions which diverge
at equal times. There must however be a microscopic

time scale τ below over which the velocity τ is correlated
(the ballistic regime). Using this, to regularize the cal-
culation of the variance of R, gives R ∼ L

√
D/τ3/c2.

Applying the Stokes-Einstein law for the ionic diffusion
constant D and the estimates τ = a2ρf/η [25], where a
is the ionic radius and ρf is the volumic mass density,
then suggests that retardation effects are negligible up to
length scales of the order of a meter for nanometric ions in
water.
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Phys. Rev. Lett., 107 (2011) 114302.

[9] Rytov S. M., Kravtsov Y. A. and Tatarskii V. I.,
Principles of Statistical Radiophysics, Vol. 3 (Springer,
Berlin) 1989.

[10] Levin Y., Physica A, 265 (1999) 432.
[11] Buenzli P. R. and Martin Ph. A., Europhys. Lett., 72

(2005) 42.
[12] Jancovici B. and Samaj L., Europhys. Lett., 72 (2005)

35.
[13] Dean D. S. and Podgornk R., Phys. Rev. E, 89 (2014)

032117.
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