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Continuous time semi-Markov inference
of biometric laws associated with

a Long-Term Care Insurance portfolio

Guillaume BIESSY 1
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Abstract
Unlike the mortality risk on which actuaries have been working for more than a century, the long-

term care risk is young and as of today hardly mastered. Semi-Markov processes have been identified
as an adequate tool to study this risk. Nevertheless, access to data is limited and the associated
literature still scarce. Insurers mainly use discrete time methods directly inspired from the study of
mortality in order to build experience tables. Those methods however are not perfectly suited for the
study of competing risk situations.

The present paper aims at providing a theoretical framework to estimate biometric laws associated
with a long-term care insurance portfolio. The presented method relies on a continuous-time semi-
Markov model with three states: autonomy, dependency and death. The dependency process is
defined using its transition intensities. We provide a formula to infer the mortality of autonomous
people from the general population mortality, on which we ought to have more reliable knowledge.
We then propose a parametric expression for the remaining intensities of the model. Incidence in
dependency is described by a logistic formula. Under the assumption that the dependent population
is a mixture of two populations with respect to the category of pathology that caused dependency, we
show that the resulting intensity of mortality for dependent people takes a very peculiar form, which
is semi-Markov. Estimation of parameters relies on the maximum likelihood method. A parametric
approach eliminates issues related to segmentation in age categories, smoothing or extrapolation at
higher ages. While creating model uncertainty, it proves very convenient for the practitioner. Finally,
we provide an application using data from a real long-term care insurance portfolio.

Keywords: Long-Term Care Insurance, continuous time semi-Markov process, competing risks,
maximum likelihood, mixture model, parametric model.

1 Introduction
Dependency among elderly people can be defined as a permanent state of inability to perform activ-

ities of daily living on one’s own. It is mostly caused by diseases linked to ageing, such as dementia,
neurological diseases, cardiovascular diseases and cancer. Dependent elderly people require regular care
whose frequency increases with the severity of their status. If some people can rely at least partially on
their family or their friends for help, others have to hire professional caregivers or join a nursing home,
whose average cost exceeds 3,000 € a month. Despite public aids, this cost proves overwhelming for most
pensioners. Therefore, to long-term care is associated a financial risk to which most people are exposed.
In France, part of this risk is transferred through private insurance contracts.

The long-term care risk is complex. Its study requires to take into account incidence in dependency as
well as probabilities of death for both autonomous and dependent people, which are very different from
another. This risk is directly related to ageing through pathologies, and longevity gains in the second
half of the 20th century made it paramount. The first long-term care insurance products appeared for
instance in France at the end of the 1980’s. Average age at subscribing for those products is close to 60
when the average age at which dependency occurs is close to 85. Therefore, even on older portfolio, the
number of claims remains limited, and so does the data available. Moreover, insurers and public aids use
different definitions to asses the level of required care. Insurers may also change either their definition or
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their underwriting and claims policy over time. All those elements make data aggregation from several
sources very difficult, which may explain the difficulty of getting a better knowledge of the risk.

Markov processes are such that their transition probabilities only depend on the current state of the
process. Semi-Markov process is a generalization for which transition probabilities depend on both the
current state and the time spent in the current state. One can find more details about those processes
in Cinlar (1969). Multi-state models based on Markov and semi-Markov processes have led to many
application in the field of epidemiology. Due to the similarities between dependency and pathologies,
those processes appear as natural candidates to study this phenomenon. One can refer to Haberman
and Pitacco (1998) or more recently Christiansen (2012) which handle life insurance models in general
and among them long-term care insurance models. Practitioners have also played a key role in the
knowledge of the dependency risk. One of the very first model was presented in SCOR (1995). Relying
on a parametric approach, it highlights the exponential increase in the probabilities of incidence in
dependency, and defines dependent mortality (resp. autonomous mortality) as a linear function of the
general population mortality, computed via an exogenous mortality table. With only 5 parameters
required to model the whole dependency process, this model is remarkably simple. It is however based
on the Markov assumption that dependent mortality only depends on the age of the dependent, and not
on the time since the entry in dependency. This assumption is still used today by many insurers as well
as in recent academic papers like Pitacco (2015), because it allows for simpler models.

In this article, we present a very different approach relying on a continuous-time semi-Markov process,
which is defined using its transition intensities. Compared to a discrete-time approach, it allows to get a
simpler definition of the process. It takes into account the nature of the competing risks (dependency and
death) and does not require any assumption on the order in which events occur within a year. Section
2 derives an equation to express the autonomous mortality using general mortality and other intensities
of the model. Benefits to use general mortality instead of autonomous mortality are discussed with more
details. We then introduce the intensity for general mortality of the portfolio using a simple relational
model as in Brass (1971). We propose a parametric expression for the intensity of incidence in dependency,
based on the logistic form introduced by Perks (1932) for the study of mortality. We use a different
expression for the intensity of mortality in dependency, inspired from a mixture model where there would
be two homogeneous populations of dependent people, with different mortality intensities. Estimation
of various parameters relies on the maximum likelihood method. We also introduce formulas for pricing
and reserving based directly on the transition intensities. Section 3 provides an application of the model
based on data from a real insurance portfolio. For each transition intensity, several models of increasing
complexity are compared using the Bayesian Information Criterion, and robustness of estimation is also
assessed using a non-parametric quantile bootstrap method. Finally, Section 4 summarizes the results
obtained and discusses limits and potential improvements of the model.

2 Model

2.1 Notations
For x0 ≥ 0, let us consider a continuous-time process (Zx)x≥x0 with values in the 3-state set E =

{A, I,D} of autonomy, dependency, death. Let us assume that Z is càd-làg and that Zx0 = A. The index
variable of the process Z is called age of the process. Therefore x0 is an initial age where all individuals
are assumed to be autonomous. For x ≥ x0 let us denote by Ax (resp. Ix, Dx) the probability for the
process to be in the state of autonomy (resp. dependency, death) at age x or more formally

Ax =P (Zx = A),
Ix =P (Zx = I),
Dx =P (Zx = D).

Hence Ax0 = 1 and for all x ≥ x0, Ax + Ix +Dx = 1.
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Figure 1: The 3 states continuous-time model and the associated transition intensities

We now introduce the transition intensities, also called instantaneous transition probabilities. We
make the assumption that the transition between dependency and death is semi-Markov and depends on
both the age of entry in the dependency state and the time spent in this state while other transitions only
depend on the current age. Transition intensities allow us to fully describe the behaviour of the process

µa(x) = lim
h→0

1
h
P (Zx+h = D|Zx = A) ,

λ(x) = lim
h→0

1
h
P (Zx+h = I|Zx = A) ,

µi(x, t) = lim
h→0

1
h
P (Zx+t+h = D|Zx− = A,Zx = I, Zx+t = I) .

Those intensities are called respectively intensity of entry in dependency, intensity of mortality for
autonomous people and intensity of mortality for dependent people. We consider that death is an ab-
sorbing state and that there is no transition allowed from dependency to autonomy. A representation of
the model can be found on Figure 1. We express below Ax and Ix for x > x0 using transition intensities
of the model.

For x ≥ x0, h ≥ 0, we have

P (Zx+h = A) = [1− P (Zx+h = I|Zx = A)− P (Zx+h = D|Zx = A)]× P (Zx = A)

and therefore
d
dxP (Zx = A) = − [µa(x) + λ(x)]P (Zx = A).

As Ax0 = 1, this equation can be solved in

Ax = exp

− x∫
x0

[λ(u) + µa(u)] du

 . (1)

For x ≥ x0, t, h ≥ 0, we can write

P (Zx+t+h = I|Zx− = A,Zx = I) =P (Zx+t+h = I|Zx− = A,Zx = I, Zx+t = I)
× P (Zx+t = I|Zx− = A,Zx = I).

which gives us

d
dtP (Zx+t = I|Zx− = A,Zx = I) = −µi(x, t)P (Zx+t = I|Zx− = A,Zx = I).

As
P (Zx = I|Zx− = A,Zx = I) = 1

we obtain

P (Zx+t = I|Zx− = A,Zx = I) = exp

− t∫
0

µi(x, u)du

 .
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Moreover, as we have

Ix =
x∫
x0

P (Zu = A)P (Zu+du = I|Zu = A)P (Zx = I|Zu = A,Zu+du = I)

we get an expression of the probability to be dependent at age x ≥ x0

Ix =
x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

 du. (2)

2.2 Link with general mortality
Let us consider the intensity of mortality for the general population defined by

µg(x) = lim
h→0

1
h
P (Zx+h = D|Zx ∈ {A, I}) .

Figure 2 represents the fourth transition in our model, a transition between life and death for the general
population.

{A, I} D
µg(x)

Figure 2: Intensity of transition for the general population

Lemma. For x ≥ x0 and t ≥ 0, let us denote by ∆(x, t) the difference between the intensity of mortality
for dependent people and the intensity of mortality of autonomous people with the same age, so that
∆(x, t) = µi(x, t) − µa(x + t). Then the intensity of mortality for autonomous people is solution of the
following equation

µa(x) = µg(x)−

x∫
x0

λ(u)∆(u, x− u) exp
(
−
x∫
u

[∆(u, v − u)− λ(v)] dv
)
du

1 +
x∫
x0

λ(u) exp
(
−
x∫
u

[∆(u, v − u)− λ(v)] dv
)
du

. (3)

Proof. Differentiating (1) and (2) gives us equations (4) and (5) below which describe the evolution of
the probabilities Ax and Ix. Similarly, from the definition of µg we get equation (6). We obtain a system
of 3 differential equations

d
dxAx = −[λ(x) + µa(x)]Ax (4)

d
dxIx = λ(x)Ax −

x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du (5)

d
dx (Ax + Ix) = −µg(x)(Ax + Ix). (6)

Summing the evolution equations (4) and (5), then identifying with equation (6) yields

µg(x)(Ax + Ix) = µa(x)Ax +
x∫
x0

λ(u)Au exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du.

With simple algebra we get

µa(x) = µg(x)
(

1 + Ix
Ax

)
−

x∫
x0

λ(u)Au
Ax

exp

− x∫
u

µi(u, v − u)dv

µi(u, x− u)du.
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Using (2) and (1), we obtain after a few simplifications

µa(x) = µg(x)−
x∫
x0

λ(u) exp

− x∫
u

[µi(u, v − u)− λ(v)− µa(v)] dv

 [µi(u, x− u)− µg(x)] du.

Now, we replace the intensity of mortality for dependent people using the formula

µi(x, t) = µa(x+ t) + ∆(x, t)

which gives us

µa(x) = µg(x)−
x∫
x0

λ(u) exp

− x∫
u

[∆(u, v − u)− λ(v)] dv

 [µa(x)− µg(x) + ∆(u, x− u)] du.

This finally leads to the result.

Equation (3) allows us to use the general mortality instead of the autonomous mortality in the
model. On one hand, mortality of autonomous people is complex to predict, because people can leave
the autonomy state either by becoming dependent or dying. Furthermore, the scope of autonomous
people depends directly on the definition used for dependency. Therefore predicting the autonomous
mortality requires to have intensive knowledge of the dependency process beforehand. On the other
hand, general mortality has been studied for a long time by actuaries, demographers, biologists and is
very well documented. One can therefore rely on reference mortality table and a wide range of models.

The formula does not give an analytic expression for the intensity of autonomous mortality in the
most general case. Numeric methods can however be used to compute it. With an ad hoc choice of
model, the inner integrals in the formula take an analytical expression and numeric approximation is
only required for the outer integrals. Intensity of general mortality appears directly in the equation,
which is very convenient if we want to use an external reference for this intensity.

2.3 Data structure
In practice, data issued from insurance portfolio generally consists in two databases. The first database

gathers information on contributors and the second on annuitants. From one portfolio to another, data
quality and available information may vary a lot. In what follows, we assume both databases contain the
variables of Table 1, listed as follows

– DoB: date of birth of the individual,
– DoS: date of start. For contributors, it is the date of subscribing. For annuitants, the date of entry
in dependency.

– DoE and CoE: Respectively the date of end and cause of end for the individuals. In the case where
the observation ends because of death, we use code 1 for the cause, in the case of exit because of
entry in dependency, we use code 2. For individuals still autonomous when the observation stops,
trajectories are right-censored. We use code 0 and the date of exit is the date at which observation
ends.

DoB DoS DoE CoE

23/12/1941 11/10/1992 27/09/2006 2

14/06/1926 28/03/1997 31/12/2013 0

17/04/1937 28/03/1995 04/08/2003 1

Table 1: Example of a database of contributors.

Other covariates such as gender, type of residence (home or facility), marital status, cause of depen-
dency, amount of annuity and premium for aggravated risk may be available and bring useful additional
informations. In what follows, we assume that the only covariate available is gender and we estimate a
different model for each gender.
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The observation period must often be limited in some way
– By setting the date at which the observation ends. With each database is associated a date of
extraction, which is the date of the latest entry in the database. In practice, some claims are
reported up to one year after their occurrence, which may result in some missing information
during the last year of observation. It may therefore be a good idea to arbitrarily set a date for the
end of the observation one year prior to the date of extraction, in order not to underestimate the
number of events. It may then be required to change some date of ending accordingly and set the
associated code to 0.

– By removing the first years of individual exposure. In individual long-term care insurance, insured
often have to pass some sort of medical selection. While it is generally very simple, with just a few
questions, it has a huge impact on incidence probabilities in dependency for the first few years after
subscribing. In order not to underestimate the incidence rate, it may be a good practice to discard
the first 3 years of observation for each individual.

– By limiting the length of the observation period. When we study the behaviour of a population
for a specific risk, it may change over time. There are several factors involved, such as changes in
the definition of dependency, underwriting and claim management policy or underlying biometric
changes. Limiting the length of the observation study is therefore required. The optimal observation
period would be around 5 years. However, due to limited volume of data, it may sometimes be
necessary to consider a longer period.

Once the data has been processed, we can put it in a form which can be used directly to fit the model
for biometric laws

– The age of entry x = DoS−DoB,
– The age of exit y = DoE−DoB,
– The cause of exit c = CoE.

2.4 Parametric modelling of the intensities
In this section, we propose to rely on a parametric expression for each of the transition intensities in

the model.

2.4.1 Intensity of general mortality

For the intensity of general mortality of the portfolio, we use an external reference through a relational
model as described in Brass (1971, 1974) or Hannerz (2001).

Let Fg be the cumulative distribution function associated with the intensity of general mortality µg
such that

Fg(x) = 1− exp

− x∫
x0

µg(u)du

 .

Then we define the cumulative distribution odds (CDO) by

CDOg(x) = Fg(x)
1− Fg(x) .

In his model, Brass makes the assumption that the logarithm of the CDO associated with the mortality of
the standard population and the specific population are parallel curves. We denote by F refg (resp. µrefg )
the cumulative distribution function (resp. intensity of mortality) associated with the mortality of the
standard population. Under this assumption, a natural estimator for the intensity of general mortality
of the portfolio is

µ̂g(x) =
β̂µrefg (x)

1− (1− β̂)F refg (x)

where β̂ is the solution of the equation

∑
x

Dx =
∑
x

Dref
x

β̂Nx

Nref
x (1− (1− β̂)F refg (x))

where Dx and Nx (resp. Dref
x and Nref

x ) are the number of death observed and the number of years
lived between ages x and x + 1 for the specific population (resp. for the standard population). Brass
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model only requires the estimation of a single parameter β̂. It gives a new estimator which converges
smoothly towards the mortality reference at higher ages while predicting the same number of deaths as
in the empirical data.

2.4.2 Intensity of incidence in dependency

Let us consider the following parametric expression for the intensity of incidence in dependency

λ(x) = exp(aλx+ bλ)
1 + exp(aλx+ cλ) + dλ (7)

with aλ > 0, bλ, cλ ∈ R ∪ {−∞} and dλ ≥ 0.

This is a logistic formula with 4 parameters, which was introduced by Perks (1932) under an equivalent
form to explain human mortality. A few remarks can be made about this model. Parameter dλ is the initial
intensity, present at all ages. If we set dλ = 0 we obtain the logistic model with 3 parameters presented
in Beard (1959, 1971). Parameter aλ is related to the growth rate of the intensity, which is comprised
between 0 and aλ with the intensity at the tipping point of the function being aλ/2. Parameter cλ gives
the position of the tipping point of the logistic function, reached for x = −cλ/aλ. Finally, parameter bλ
allows to set the asymptotic limit of the intensity, which is given by dλ + exp(bλ − cλ).

In the case where cλ = −∞, we obtain the exponentials models introduced in Gompertz (1825) and
Makeham (1867) that can therefore be considered as sub-models of the logistic model.

Experience from insurers shows that the intensity of incidence in dependency increases exponentially
with respect to age. At higher ages, data becomes scarcer. As dependency is linked to ageing, it
is reasonable to expect that the behaviours of mortality and morbidity are quite similar and that an
exponential or logistic form is suited to model incidence in dependency. The logistic formula has already
been used to this extent, e.g. in Rickayzen and Walsh (2002).

For an individual p defined by his/her age of entry in the portfolio xp ≥ 0, his/her age of exit yp > xp
and the associated exit cause cp ∈ {0, 1, 2} the partial log-likelihood has the following expression

lp(λ) = log

exp

−yp∫
xp

λ(u)du

λ(yp)δ
2
cp


=δ2

cp log(λ(yp))−
yp∫
xp

λ(u)du

=δ2
cp log

(
exp(aλyp + bλ)

1 + exp(aλyp + cλ) + dλ

)
− exp(bλ − cλ)

aλ
log
(

1 + exp(aλyp + cλ)
1 + exp(aλxp + cλ)

)
− dλ(yp − xp),

where for k, l ∈ N, δlk =
{

1 if k = l,

0 otherwise.

2.4.3 Intensity of dependent mortality

In this section, we consider a mixture of two populations and within each population we assume the
mortality is the sum of a common term and a population specific mortality which only depends on the
age of entry in dependency x. Under those assumptions, we show that the resulting mortality of the
mixture takes a peculiar parametric form, which is semi-Markov. In what follows, we discuss how those
assumptions apply to the population of dependent people and we then propose a parametric model of
the previously mentioned form for the mortality of dependent people.

Lemma. Let us consider a model with 2 distinct states of dependency I1 and I2, such that the respective
transition intensities from autonomy to those states are λ1(x) and λ2(x) and no transition is allowed
between those states or back to autonomy (see Figure 3). Let us assume that the intensity of mortality
for dependent in state Ik can be written as

µi,k(x, t) = µ0(x, t) + ∆k(x)

with x ≥ x0, t ≥ 0 and k ∈ {1, 2}.
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Then to ensure the consistency between this model and the 3-state model, the following relations must
be satisfied

λ(x) =λ1(x) + λ2(x)

µi(x, t) =µ0(x, t) + θ1(x) + θ2(x)
1 + θ3(x) exp(θ2(x)t)

where 
θ1(x) = ∆1(x)
θ2(x) = ∆2(x)−∆1(x)

θ3(x) = λ1(x)
λ2(x) .

A D

I1

I2

µa(x)

λ1(x)

λ2(x)

µi,1(x, t)

µi,2(x, t)

Figure 3: Model with 2 completely separate states of dependency.

Let us discuss the assumptions made in the lemma. The dependent population is heterogeneous
because of the underlying pathologies that can cause dependency. Main causes of dependency are demen-
tia, cancer, neurological and cardiovascular diseases. From an insurance perspective, we are concerned
about the mortality associated with those pathologies starting from the entry in the state of functional
limitation defined as dependency. On one hand people affected with terminal cancer, as well as people
who had multiple strokes or a high severity infarction have a very high probability of dying within the
few months following their entry in dependency. On the other hand, people affected with dementia,
neurological diseases or less severe cardiovascular diseases may expect to survive for several years. It
then becomes natural to see the dependent population as a mixture. We further assume that it has only
two components which corresponds to the two groups of pathologies mentioned above and that within
each component, the mortality of the population is homogeneous. A more realistic model would consider
as much components as the number of pathologies, however it would prove very difficult to assess the
mortality for each component given the limited amount of data available.

Another key assumption of the lemma is the additive mortality structure within each population. As
regards dependency, the common term would be the mortality of autonomous people, and the specific
term would be the additional mortality linked to the pathology responsible for dependency. The additive
structure is based on the assumption that dependent people have increased mortality because of the
pathology that caused dependency but are still exposed to other causes of death. The specific mortality
associated with the cause of dependency is determined at the age of entry in dependency and does not
change over time. This assumption is paramount if we want the structure of the mixture to remain
understandable. It is a strong assumption from a medical point of view. However, given the average
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duration of dependency, most of the time age of entry in dependency and current age remain within a
few years of each other so the impact should be quite limited.

In the lemma we also assume that there is no transition between the two states of dependency. Of
course, if someone was to be afflicted by dementia and then by a terminal cancer, its mortality level
would better match the mortality of the group with cancer, while our model gives it the mortality of the
group with dementia, because it is the first cause of dependency. However, such cases remain very rare,
as the weight of cancer among causes of dependency greatly decreases with age.

Proof. The first relation on the incidences in dependency is obvious. For the second relation, let us
denote by ηk(x, t) the proportion of dependent in state Ik among the population of people who became
dependent at age x ≥ x0 and then survived for a time t ≥ 0.

We have for x ≥ x0, t ≥ 0, k ∈ {1, 2}

ηk(x, t) = P (Zx+t = Ik|Zx− = A,Zx ∈ {I1, I2})
P (Zx+t ∈ {I1, I2}|Zx− = A,Zx ∈ {I1, I2})

= P (Zx = Ik|Zx− = A,Zx ∈ {I1, I2})× P (Zx+t = Ik|Zx− = A,Zx = Ik)
2∑
l=1
P (Zx = Il|Zx− = A,Zx ∈ {I1, I2})× P (Zx+t = Il|Zx− = A,Zx = Il)

=
λk(x) exp

(
−
t∫
0
µi,k(x, u)du

)
2∑
l=1
λl(x) exp

(
−
t∫
0
µi,l(x, u)du

) .
The intensity of the mortality for the population of dependent people is

µi(x, t) =
2∑
k=1

ηk(x, t)µi,k(x, t)

=
2∑
k=1

λk(x) exp
(
−
t∫
0
µi,k(x, u)du

)
2∑
l=0
λl(x) exp

(
−
t∫
0
µi,l(x, u)du

)µi,k(x, t)

=
2∑
k=1

λk(x) exp(−∆k(x)t)
2∑
l=0
λl(x) exp(−∆l(x)t)

µi,k(x, t)

=µ0(x, t) +
2∑
k=1

λk(x) exp(−∆k(x)t)
2∑
l=0
λl(x) exp(−∆l(x)t)

∆k(x)

=µ0(x, t) + ∆1(x) + λ2(x) exp(−∆2(x)t)
λ1(x) exp(−∆1(x)t) + λ2(x) exp(−∆2(x)t) [∆2(x)−∆1(x)]

=µ0(x, t) + ∆1(x) + ∆2(x)−∆1(x)
1 + λ1(x)

λ2(x) exp([∆2(x)−∆1(x)] t)

which proves the lemma.

Let us consider a mixture model as described in the lemma with the following parametrization

µ0(x, t) = µa(x+ t)
∆1(x) = φ1 + exp(φ2x+ φ3)
∆2(x) = ∆1(x) + φ4

λ1(x) = exp(φ5x+ φ6)
1 + exp(φ5x+ φ6)λ(x)

λ2(x) = λ(x)− λ1(x)

with φ3, φ5, φ6 ∈ R and φ1, φ2, φ4 ≥ 0.
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In this model, intensities of dependent mortality for specific populations increase with age of entry
in dependency according to two parallel Makeham’s models. For a given pathology, associated mortality
is expected to increase with age, as older people prove more fragile. The choice of Makeham’s model,
which includes both a constant term and a term which increases exponentially with age, seems adapted.
We assume the exponential term is common for the two components mainly for computational purposes.
Should the difference ∆2(x)−∆1(x) depend on x, then estimation of parameters would become hazardous.
To set the level of the intensity of incidence in dependency for the two components, we choose to model
directly the weight of each component in the mixture at entry in dependency, using a logistic law so that
weights remain between 0 and 1.

The resulting intensity of mortality for the aggregated population takes the form presented in the
lemma with 

θ1(x) = φ1 + exp(φ2x+ φ3),
θ2(x) = φ4,

θ3(x) = exp(φ5x+ φ6),

which leads to

µi(x, t) = µa(x+ t) + φ1 + exp(φ2x+ φ3) + φ4

1 + exp(φ4t+ φ5x+ φ6)︸ ︷︷ ︸
∆(x,t)

.

The associated partial log-likelihood for an individual p with an age of entry in dependency xp ≥ 0,
an age of exit yp > xp and the associated cause of exit cp ∈ {0, 1} is

lp(µa,∆) = log

exp

−yp∫
xp

µi(xp, u− xp)du

µi(xp, yp − xp)δ
1
cp


=δ1

cp log(µi(xp, yp − xp))−
yp∫
xp

µi(xp, u− xp)du

=δ1
cp log

(
µa(yp) + φ1 + exp(φ2xp + φ3) + φ4

1 + exp(φ4 [yp − xp] + φ5xp + φ6)

)
−

yp∫
xp

µa(u)du

− (φ1 + exp(φ2xp + φ3) + φ4) [yp − xp] + log
(

1 + exp(φ5xp + φ6)
1 + exp(φ4 [yp − xp] + φ5xp + φ6)

)
.

2.5 Parameters estimation procedure
To estimate the parameters, we use the following procedure
1. We estimate the parameters for the intensity of incidence in dependency λ̂ (resp. the autonomous

mortality µ̂a(1)), using the contributors database and Perks logistic model. More precisely λ̂ is the
maximum likelihood estimator (MLE) constructed by summing the partial log-likelihoods given in
section 2.4.2 and µ̂a(1), the MLE for the intensity of autonomous mortality, takes a similar form.

2. We estimate the parameters for the intensity of general mortality µ̂g by using the individuals of
both databases and Brass relational model in order to get a robust estimate of the intensity of
general mortality with forced convergence towards a reference mortality table at higher ages.

3. We estimate the parameters for the intensity of dependent mortality ∆̂, thanks to the parametric
semi-Markov mixture model introduced previously, to µ̂a(1) and to the annuitant database. To do
so, we use the MLE constructed by summing the partial log-likelihoods given in section 2.4.3.

4. Thanks to equation (3), we compute the value of a second estimator for the intensity for autonomous
mortality µ̂a(2), relying on λ̂, ∆̂, µ̂g and using numerical methods to approximate the outer integrals
in (3).

A summary of the procedure is provided in Figure 4.
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Database of contributors

Database of insured lives

Database of annuitants

Mortality reference

λ̂

µ̂a
(1)

µ̂g

∆̂ µ̂a
(2)

Perks model

Perks model

Parametric mixture model

Brass relational model

Equation (3)

Figure 4: Procedure for the estimation of biometric laws. Dashed (resp. plain) circles represent interme-
diary (resp. final) estimates of biometric laws.

2.6 Link with annual probabilities
Once we have proceeded to the estimation of parameters for transition intensities, annual probabilities

of transition can easily be derived. Those probabilities are generally used by insurers for pricing and
reserving purpose. In the following section, we introduce pricing and reserving formula based on transition
intensities directly. However, expressions of annual probabilities of transition are still interesting for
comparison purposes.

We denote, for x ≥ x0 and t ≥ 0

qg(x) =P (Zx+1 = D|Zx ∈ {A, I}),
qaa(x) =P (Zx+1 = D,∀y ∈ [x ;x+ 1], Zy 6= I|Zx = A),
i(x) =P (∃y ∈ [x ;x+ 1], Zy = I|Zx = A),

qi(x, t) =P (Zx+t+1 = D|Zx− = A,Zx = I, Zx+t = I).

For x ≥ x0 and t ≥ 0

qg(x) =1− exp

−x+1∫
x

µg(u)du

 ,

qaa(x) =
x+1∫
x

µa(u) exp

− u∫
x

[λ(u) + µa(u)] du

 du,

i(x) =
x+1∫
x

λ(u) exp

− u∫
x

[λ(u) + µa(u)] du

 du,

qi(x, t) =1− exp

−t+1∫
t

µi(x, u)du

 .
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2.7 Pricing and reserving
We note τ the continuous time actuarial rate used to compute discounted cash flows. We consider a

product where the autonomous insured life pays a fixed amount of premium at the start of every period of
duration 1/f1 (in year). Should he/she become dependent, he/she is entitled to an annuity R/f2 paid at
the end of every period of duration 1/f2. On the French long-term care insurance market most products
rely on monthly premium and monthly benefit, which means f1 = f2 = 12. Furthermore, let us consider
there is an age ω such that Dω ' 1. In practice, ω = 120 will be used for applications.

Let us introduce additional notation

A(x, y) =P (Zy = A|Zx = A) = Ay
Ax

= exp

− y∫
x

[µa(u) + λ(u)] du

 ,

Ix(t, s) =P (Zx+s = I|Zx− = A,Zx = I, Zx+t = I) = exp

− s∫
t

µi(x, u)du


and

A(x, y) =e−τ(y−x)A(x, y) = exp

− y∫
x

[µa(u) + λ(u) + τ ] du

 ,

Ix(t, s) =e−τ(s−t)Ix(t, s) = exp

− s∫
t

[µi(x, u) + τ ] du


for x0 ≤ x ≤ y and 0 ≤ t ≤ s.

Let us introduce
– P (xs, x, f1) the expected value of insured liabilities for an autonomous insured life with age at

subscribing xs and current age x for a 1 € premium

P (xs, x, f1) = 1
f1

∑
k∈N∩[f1(x−xs);f1(ω−xs))

A(x, xs + k

f1
),

– RFC(xi, t, R, f2) the expected value of insurer liabilities for a dependent insured life, also called
reserve for claim. For an amount of benefit R, an age xi at entry in dependency and a time t spent
in dependency, the corresponding amount of reserve is

RFC(xi, t, R, f2) = 1
f2

∑
k∈N∩(f2t;f2(ω−xi)]

Ixi(t,
k

f2
).

– B(x,R, f2) the expected value of insurer liabilities for an autonomous insured life with current age
x

B(x,R, f2) =
ω∫
x

λ(u)A(x, u)RFC(u, 0, R, f2)du

– The stability premium p∗(R, xs). It is the value of premium that matches insurer and insured
liabilities at the time of subscribing. For an age xs at subscribing and an amount of benefit R we
have

p∗(xs, R, f1, f2) = B(xs, R, f2)
P (xs, xs, f1) .

– The reserve for premium (RFP). This reserve is constituted for autonomous people. Its amount is
equal to the expectancy of future discounted cash flows of benefit minus discounted cash flows of
premium. For an insured of age at subscribing xs, current age x, an amount of premium p and an
amount of benefit R, the associated amount of reserve is

RFP(xs, x, p, R, f1, f2) = B(x,R, f2)− pP (xs, x, f1).
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2.8 Model selection
When we deal with complex models, it can be very interesting to compare sub-models to see if the use

of many parameters is justified. To this extent, we can rely on the Bayesian Information Criterion (BIC).
For a model mi characterized by a number of parameters pi and a log-likelihood function li maximized
at θi, the expression of the criterion is as follows

BICi = −2li(θi) + pi log(n)

where n represents the number of observed transitions in the expression of the likelihood. The choice of
the coefficient in front of the number of parameters log(n) differs from the the one made in the original
Akaike’s Information Criterion (AIC) where this coefficient is 1. Also, let us note that in the present
version of the criterion we consider the number of observed transition and not the number of individuals
as in the original criterion. The interest in introducing this modification in the case of censored data is
discussed in Volinsky and Raftery (2000). Using the BIC, we are able to compare models, the model with
the lower BIC being the best model.

3 Results
In this section, we provide an example using data from a long-term care insurance portfolio. The

definition used for dependency is "3ADL4" which means that an insured life is considered dependent
if he/she has permanently lost the ability to do on his/her own at least 3 among the 4 activities of
daily living defined by the contract (functional mobility, dressing, bathing, eating). The portfolio we
consider contains a large number of policies and covers a relatively long period. We have information
about policyholders until the age of 95 and trajectories in dependency lasting up to 13 years. The date of
extraction is 11/31/2013 for both contributors and annuitants. We consider a 10 year observation period
between 1/1/2002 and 12/31/2011 for contributors, and remove the first 3 years spent in the portfolio.
For annuitants, we consider the observation period between 1/1/1994 and 12/31/2012, and keep the
full exposure over this period. Database of contributors contains 160,669 individuals after the data has
been processed, for a total of 1,325,578 years of exposure with 75.9 % of the lines being right censored.
Database of annuitants contains a total of 17,632 individuals for a total of 43,010 years of exposure and
31.4 % of right censored individuals. Women account for 65.3 % of contributors and 65.9 % of annuitants.
Separate models are estimated for men and women.

3.1 General mortality
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Figure 5: Left: Logarithm of cumulative distribution odds for empirical mortality (dotted) and reference
mortality (dashed). Their difference (plain) should be a straight line. Right: Intensity of mortality
estimated from the data (dotted), from the mortality reference (dashed) and resulting from Brass model
(plain). The y-scale has been removed to preserve confidentially of results.

We use Brass relational model with a reference mortality table. Figure 5 (Left) displays the logarithm
of the cumulative distribution odds for empirical probabilities and the mortality reference. Figure 5
represents the empirical and reference intensities of mortality, as well as the intensity fitted by Brass
model. The intensity fitted by the model is close to the empirical value but converges toward the
reference at higher ages, when no empirical data is available.
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3.2 Incidence in dependency
The results of the estimation of incidence in dependency can be found in Table 2. According to the

BIC, Gompertz’s model is the best model for men and Beard’s model the best for women. The choice
of Beard’s model however leads to an asymptotic value for the incidence of 0,155. As far as we know,
this slowing down in the growth of incidence has not been observed in any other study. In addition, by
looking at figure 6, it does not strike us that Beard’s model is a better fit, and the data is really scarce
at higher ages. In what follows, in order to take a conservative estimate, we use Gompertz model, which
gives higher incidence at higher ages, for both men and women.
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Figure 6: Estimates of the incidence in dependency. Dots and ribbon represent empirical estimates with
confidence intervals, when data is sufficient. Plain (resp. dashed) line represent the Gompertz (resp.
Beard) model fitted to the data. The y-scale has been removed to preserve confidentiality of results.

Model Intensity l (men) BIC (men) l (women) BIC (women)

Gompertz λ(x) = eaλx+bλ - 21,383.00 42,782.61 - 42,286.02 84,590.07

Makeham λ(x) = eaλx+bλ + dλ - 21,383.00 42,790.91 - 42,286.02 84,599.09

Beard λ(x) = eaλx+bλ

1 + eaλx+cλ
- 21,382.40 42,789.71 - 42,263.72 84,554.49

Perks λ(x) = eaλx+bλ

1 + eaλx+cλ
+ dλ - 21,382.05 42,797.33 - 42,262.72 84,561.51

Table 2: Value of log-likelihood l and value of BIC for men and women, for several models of intensity
for the incidence in dependency.

3.3 Dependent mortality
For the intensity of dependent mortality, we consider 5 different models. The first model is an additive

model. The dependent population is assumed to be homogeneous and the difference between the intensity
of mortality for autonomous and dependent people is flat

µi(x, t) = µa(x, t) + φ1. (8)

The second model is a time-homogeneous mixture model. It relies on the idea that there are two
populations of dependent people, but does not consider that the incidence and specific mortality associated
with each population change with respect to age of entry in dependency

µi(x, t) = µa(x+ t) + φ1 + φ2

1 + φ3 exp(φ2t)
. (9)
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The third model is the full 6 parameters model presented in Section 2.4.3, with

µi(x, t) = µa(x+ t) + φ1 + exp(φ2x+ φ3) + φ4

1 + exp(φ4t+ φ5x+ φ6) (10)

with φ1, φ2, φ4 ≥ 0 and φ3, φ5, φ6 ∈ R.
For comparison purposes we also consider the historical Markov model introduced in SCOR (1995)

which is a linear function of the autonomous mortality with intercept

µi(x, t) = αµa(x+ t) + β (11)

with α, β ≥ 0.
We could also use a generalized linear model (GLM). In a Markov approach, we only consider the

current age x+ t as a predictor

logµi(x, t) = logµa(x+ t) + β0 + β1(x+ t) (12)

but with a semi-Markov approach, we can consider separate coefficients to take into account both age at
entry in dependency x and time spent in dependency t

logµi(x, t) = logµa(x+ t) + β0 + β1x+ β2t (13)

with β0, β1, β2 ∈ R.

Model equation l (men) BIC (men) l (women) BIC (women)

(8) - 8,991.16 17,999.26 - 17,935.40 35,888.59

(9) - 8,345.68 16,725.23 - 17,459.71 34,955.01

(10) - 8,277.13 16,613.52 - 17,383.60 34,829.51

(11) - 8,991.15 18,007.70 - 17,933.31 35,893.32

(12) - 8,985.00 17,995.39 - 17,911.98 35,850.66

(13) - 8,760.70 17,555.26 - 17,823.84 35,683.29

Table 3: Value of log-likelihood l and value of BIC for men and women of previously listed models for
the intensity of dependent mortality.

Table 3 gives the log-likelihood and the BIC associated with the different models. The first 3 models
are embedded models of increasing complexity. As the value of the BIC diminishes significantly when we
go from the first to the second and from the second to the third, the use of more parameters is validated
by the criterion. Model (11) is a submodel of model (8) which has a higher value for the BIC. The
criterion does not validate the use of the additional parameter α in this case. Models (12) and (13) are
not submodels of the other models. However, looking at the likelihood, it appears that they are better
than model (8) but a lot worse than (9) and (10). Model (12) is a submodel of model (13) and the BIC
shows that taking into account separate terms for age of entry and time spent in dependency clearly
improves the quality of the model. In what follows, we only consider model (10) for applications.

Figure 7 represents the annual probabilities associated with the model. We compute empirical annual
probabilities by grouping dependent people, according to their age of entry in dependency, in three cate-
gories: 60 to 70, 70 to 80 and 80 to 90. We then consider that individuals in one category have the same
annual death probabilities which only depend on time spent in dependency. Under the normal approx-
imation, we represent 95 % confidence intervals. Methods for the estimation of empirical probabilities
and construction of confidence intervals can be found in Planchet and Thérond (2006). Even with a large
volume of data and 10 years subdivisions, confidence intervals are still very wide, especially for men, at
higher age and/or high time spent in dependency. Nevertheless, the annual probabilities computed using
the model appear to match the empirical probabilities very well.
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Figure 7: Consecutive death probabilities for dependent people according to the model (dots) with
empirical probabilities (plain line) and 95 % confidence intervals (dashed lines). The y-scale has been
removed to preserve confidentiality of results.
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mixture appearing as dashed lines. The y-scale has been removed to preserve confidentiality of results.

0%

20%

40%

60%

60 70 80 90 100
Age at entry in dependency

P
er

ce
nt

ag
e 

of
 p

at
ho

lo
gi

es

gender

female

male

Percentage of pathologies associated with high mortality
female

male

10−4

10−3

10−2

10−1

10−4

10−3

10−2

10−1

60 70 80 90 100
Age at entry in dependency

In
te

ns
ity

 o
f i

nc
id

en
ce

 in
 d

ep
en

de
nc

y

Type of pathology

low mortality

high mortality

Intensity of incidence in dependency by type of pathology

Figure 9: Left: prevalence of high mortality pathologies in the population of new dependents inferred by
the model; right: Intensity of incidence in dependency by category of pathologies inferred by the model.
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Figure 8 represents the intensity of dependent mortality for the first 12 months spent in dependency.
Younger people have higher initial intensity of mortality but lower ultimate values. Figure 9 provides
information regarding the breakdown of the population of new dependent and the incidence for each
population of dependent, according to the model. One should keep in mind that pathologies are not
observed in the data and this figure only represents the underlying distribution inferred by the model.
The higher prevalence of high mortality pathologies among younger people explains the results of Figure
8.

3.4 Autonomous mortality
Figure 10 represents the intensity of autonomous mortality we get by trying to fit directly a logistic

model to the data and the intensity we obtain at the end of the procedure, by using equation (3).
We observe a significant difference at higher ages, where fitting directly the logistic model leads to
overestimating the autonomous mortality, especially for women.
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Figure 10: Intensity of autonomous mortality. Dots represents the empirical incidence rates estimated
from the data. The dashed line represents the result of a direct fit of Perks logistic model and the plain
line represents the intensity refined by using equation (3). The y-scale has been removed to preserve
confidentiality of results.

3.5 Annual probabilities and prevalence of dependency
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Figure 11: Annual probabilities for autonomous mortality in blue, general mortality in red and incidence
in dependency in green, with 95 % confidence intervals obtained by bootstrap. The y-scale has been
removed to preserve confidentially of results.
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In order to assess the robustness of the estimation performed, we use a classic non-parametric quantile
bootstrap method. From the initial observation database, we build 100 new samples by drawing, with
replacement, as many individuals as in the initial observation database. For each sample, we then run
all the steps of the estimation procedures, and compute the associated annual probabilities as well as the
prevalence of dependency, represented on Figure 11. We observe that general mortality and autonomous
mortality diverge at higher ages. Figure 12 represents the prevalence of dependency and the number of
dependent people as a fraction of the initial population at age 18. The peak of dependency is reached at
age 89 for men and age 93 for women. The prevalence increases exponentially with respect to age, and
is higher for men than women. Overall the confidence intervals are relatively tight, and the estimation
method proves quite robust.
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Figure 12: Prevalence of dependency by age (plain line), with 95 % confidence intervals obtained by
bootstrap. The histogram represents 10 times the number of living dependent people as a percentage of
the initial population at age 18.

3.6 Results of pricing and reserving
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Figure 13: Amount of monthly premium required according to the model, with 95 % confidence intervals
obtained by bootstrap. The y-scale has been removed to preserve confidentiality of results.

We consider a long-term care insurance product where policyholders pay a level premium, whose
amount is fixed at subscribing, at the beginning of every month following subscribing while they are
autonomous. Should they become dependent, they would stop paying the premium and instead receive
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an annuity of 1,000 € at the end of every month following the entry in dependency. Most products in
France work this way. We use a technical rate of 1 % for the pricing of the product. Figure 13 provides
the required premium according to the model for ages at subscribing between 40 and 90, with confidence
intervals obtained by bootstrap. The premium is higher for women than men. Confidence intervals are
very tight, and the uncertainty assessed using bootstrap is very limited compared to other possible causes
of uncertainty on the risk.
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Figure 14: Expected value of reserve for premium by age at subscribing and current age, assessed at
subscribing. Warm colors correspond to higher amount of reserve.
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Figure 15: Expected value of reserve for claim by age at entry in dependency and time spent in depen-
dency, assessed at claim inception. Warm colors correspond to higher amount of reserve.

We compute the expected value assessed at subscribing of the reserve for premium on Figure 14.
This is the product between the amount of reserve computed in Section 2 and the probability for an
individual to remain autonomous until the current age considered, as the reserve for premium only apply
to autonomous insured lives. This reserve reaches a maximum between ages 75 and 88, depending on
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the age at subscribing and then decreases when the cost associated with the claims starts to outweigh
the amount of premium paid by the remaining autonomous insured lives. We also compute the expected
value assessed at claim inception of the reserve for claim on Figure 15. This is the product between the
probability to survive in dependency for the given duration and the reserve for claim computed in Section
2 associated with this same duration. This reserve decreases by duration as the survival probability gets
lower. The initial amount of reserve reaches its maximum around 70 for both men and women. Indeed,
younger claimants have very high death probabilities for the first year spent in dependency, and older
claimants have higher death probabilities for the subsequent years. Claims coming from insured lives
around 70 therefore prove the most expensive claims on average.

4 Discussion
In this paper, we introduce a method to estimate biometrics laws associated with a long-term care

insurance portfolio. This method relies on a continuous time semi-Markov model, as opposed to discrete-
time methods used by practitioners. We provide a formula to include general mortality in the model
instead of autonomous mortality. We then suggest parametric models for all transition intensities. A
logistic model is used for incidence in dependency and Brass relational model is used for the intensity
of general mortality, while for dependent mortality we introduce a more complex model based on as-
sumptions on a representation of the dependent population as a mixture of two groups associated with
different pathologies. Estimation of parameters is performed using the maximum likelihood method. We
also provide adequate formulas for pricing and reserving.

We then apply our methodology to a real long-term care insurance portfolio. Our model proves con-
sistent with empirical estimations of annual probabilities, whenever those probabilities can be computed
from the data available. Empirical probabilities for dependent mortality highlight that mortality during
first year in dependency is way higher than for the subsequent years. Therefore a semi-Markov model
which takes into account both the age and the time spent in dependency is required in order to explain
this phenomenon.

For an insurance company, ignoring the complexity of the dependency process can be very damaging.
Let us consider a company which launches a new insurance product and wants to review the level of
reserves based on the first few years of experience from the portfolio. The exposure and death associated
with the first year in dependency would be overrepresented in the data as many trajectories would be
censored after just a few years. A Markov model only considers age to be relevant to assess transition
probabilities. Such a model would therefore consider that dependent people have a very high mortality
in dependency, not only for the first year but also for every subsequent year. Hence, it would greatly
underestimate the time spent in dependency and the required amount of reserve, which would lead to
heavy losses in the future.

In the present article, we try to assess several sources of error. As we use a parametric approach, there
is a significant risk of model error. We therefore compare the results of the model with the empirical
annual probabilities we obtain using a non-parametric approach. We consider several sub-models and
try to remain parsimonious in the number of parameters by using the Bayesian Information Criterion to
compare them. The robustness of estimation is also assessed using a non-parametric quantile bootstrap
method.

The parametric form we introduce for dependent mortality stems from the assumption that pathologies
can be sorted in two homogeneous groups. This assumption is unrealistic and it might further be improved
by focusing on the study of the pathologies causing dependency. Data about pathologies however is
extremely scarce and kept private by most insurers. Besides, our estimation approach is periodic and
does not consider that intensities are changing over time. The estimation of drifts would indeed prove very
difficult because of the limited observation period, and lack of consistency in definition of dependency,
underwriting and claim management policies over time. Also, most products in France allow the insurer
to increase the level premium in order to account for such drifts of the underlying risk. A sensitivity
approach where we would consider several scenarios and look at the impact of the drifts on the premium
could nevertheless prove very useful. However, as of today, to the best of our knowledge, neither the
data nor the theoretical framework associated with this issue do exist. Finally, the model only covers one
level of dependency, when most insurers provide products with several levels of guarantee. Extending the
model to consider several levels of dependency, as in Lepez et al. (2013) or Biessy (2015) would therefore
be very useful. Once again, finding real data to perform estimation of parameters proves very challenging.

20



References
Beard, R. (1959). Note on some mathematical mortality models. In: G.E.W. Wolstenholme and M.
O’Connor (eds.).The Lifespan of Animals. Ciba Foundation Colloquium on Ageing. pp. 302-311. Little,
Brown, Boston.

Beard, R. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic
processes. In: Biological Aspects of Demography (ed. W. Brass). London: Taylor and Francis.

Biessy, G. (2015). Long-term care insurance: A multi-state semi-Markov model to describe the depen-
dency process in elderly people. Bulletin Français d’Actuariat 15(29), 41–73.

Brass, W. (1971). Mortality models and their uses in demography. Transactions of the Faculty of
Actuaries 33, 123–142.

Brass, W. (1974). Perspectives in population prediction: Illustrated by the statistics of england and
wales. Journal of the Royal Statistical Society 137(4), 532–583.

Christiansen, M. C. (2012). Multistate models in health insurance. Advances in Statistical Analysis 96(2),
155–186.

Cinlar, E. (1969). Markov renewal theory. Advances in Applied Probability 1, 123–187.

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a
new mode of determining the value of life contingencies. Phil. Trans. R. Soc. Lond. 115, 513–583.

Haberman, S. and E. Pitacco (1998). Actuarial Models for Disability Insurance. Chapman and Hall/CRC,
1st edition.

Hannerz, H. (2001). An extension of relational methods in mortality estimation. Demographic Re-
search 4(10), 337–368.

Lepez, V., S. Roganova, and A. Flahault (2013). A semi-Markov model to investigate the different tran-
sitions between states of dependency in elderly people. In: Colloquium of the International Actuarial
Association, Lyon.

Makeham, W. M. (1867). On the law of mortality. Journal of the Institute of Actuaries 13, 325–358.

Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute
of Actuaries 63(1), 12–57.

Pitacco, E. (2015). Actuarial values for long-term care insurance products. a sensitivity analysis. Working
Paper, ARC Centre of Excellence in Population Ageing Research.

Planchet, F. and P. Thérond (2006). Modèles de durée. Economica.

Rickayzen, B. D. and D. E. P. Walsh (2002). A multi-state model of disability for the United Kingdom:
Implications for future need for long-term care for the elderly. British Actuarial Journal 8, 341–393.

SCOR (1995). L’assurance dépendance. Dossiers SCOR, SCOR Tech.

Volinsky, C. T. and A. E. Raftery (2000). Bayesian information criterion for censored survival models.
Biometrics 56(1), 256–262.

21


	Introduction
	Model
	Notations
	Link with general mortality
	Data structure
	Parametric modelling of the intensities
	Intensity of general mortality
	Intensity of incidence in dependency
	Intensity of dependent mortality

	Parameters estimation procedure
	Link with annual probabilities
	Pricing and reserving
	Model selection

	Results
	General mortality
	Incidence in dependency
	Dependent mortality
	Autonomous mortality
	Annual probabilities and prevalence of dependency
	Results of pricing and reserving

	Discussion

