
HAL Id: hal-01220544
https://hal.science/hal-01220544v1

Submitted on 27 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal summation in a neuromimetic micropillar laser
F Selmi, R Braive, G Beaudoin, I Sagnes, R Kuszelewicz, Sylvain Barbay

To cite this version:
F Selmi, R Braive, G Beaudoin, I Sagnes, R Kuszelewicz, et al.. Temporal summation in a neu-
romimetic micropillar laser. Optics Letters, 2015, �10.1364/OL.40.005690�. �hal-01220544�

https://hal.science/hal-01220544v1
https://hal.archives-ouvertes.fr


Temporal summation in a neuromimetic micropillar laser

F. Selmi,1 R. Braive,1 G. Beaudoin,1 I. Sagnes,1 R. Kuszelewicz,2 and S. Barbay1, ∗

1Laboratoire de Photonique et de Nanostructures,

LPN-CNRS UPR20, Route de Nozay, 91460 Marcoussis, France
2Neurophotonics laboratory,Université Paris Descartes,
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Neuromimetic systems are systems mimicking the functionalities or architecture of biological
neurons and may present an alternative path for efficient computing and information processing.
We demonstrate here experimentally temporal summation in a neuromimetic micropillar laser with
integrated saturable absorber. Temporal summation is the property of neurons to integrate delayed
input stimuli and to respond by an all-or-none kind of response if the inputs arrive in a sufficiently
small time window. Our system alone may act as a fast optical coincidence detector and paves the
way to fast photonic spike processing networks.

Neuromimetic photonic systems are optical systems
that mimic the functionalities or the architecture of bi-
ological neurons, and can represent an alternative path
for computing and processing information very efficiently
both in terms of energy, speed, and robustness versus
noise [1, 2].

From a functional and basic point of view, a biologi-
cal neuron can be thought of as a system than can in-
tegrate information from various stimuli, and respond
in an all-or-none fashion if the integrated input stimuli
exceed a certain threshold [3]. This latter property is
called excitability and has been experimentally demon-
strated already in many nonlinear semiconductor optical
systems, like active semiconductor cavities with feedback
[4, 5], with optical injection [6–10] or with saturable ab-
sorber [11, 12]. The former property is called temporal
summation. Temporal summation refers to the ability
of the system to integrate different, potentially delayed,
presynaptic stimuli and to emit a spike if the integra-
tion of the inputs exceeds the excitable threshold. Since
in that case the system acts as an integrator, it has a
time constant and the summation only takes place if the
presynaptic stimuli arrive within in a given time window.
While most of the cortical neurons are integrators [13],
note that there also exists so called resonator neurons for
which summation rules depend more on the phase of the
input stimuli with respect to their subthreshold oscilla-
tion frequency [13, 14].

In optical systems, the response is in the form of an
intensity spike with a characteristic shape and can be
well under the nanosecond timescale [11, 15]. Following
the demonstration of excitability in a planar semicon-
ductor laser with integrated saturable absorber [11], it
has been suggested [16] that this kind of system could
act as a leaky integrate-and-fire neuron, a model of neu-
ron widespread in neuroscience [17] and optically imple-
mented with telecom components in [18].

The excitable response of micropillar lasers with inte-
grated saturable absorber has been investigated in [12]
demonstrating the absolute and relative refractory peri-
ods, in complete analogy to biological systems. In this

Letter we investigate the response of a micropillar laser
with integrated saturable absorber to sub-threshold stim-
uli and show that the system can integrate the stim-
uli and emit an excitable spike if the stimuli are close
enough in time. This demonstrates temporal summation
in this system and its ability to act as a fast optical co-
incidence detector [3, 19], a property usable for optical
pattern recognition tasks. This property is also at the
base of some neurocomputational models for e.g. sound
localization in the barn owl auditory system [20]. It is
also of paramount importance to fabricate optical neu-
romimetic circuits by e.g. coupling several micropillar
units since, together with excitability, it demonstrates a
fast and compact leaky integrate-and-fire optical neuron.

The experiment consists of a micropillar laser with in-
tegrated saturable absorber of original design described
in [12, 21]. The micropillar is optically pumped by a
laser diode array emitting around 800nm and emits light
close to cavity resonance designed at 980nm. The active
medium consists of two InGaAs/AlGaAs quantum wells
while the saturable absorber medium has only one quan-
tum well. Optical perturbations are sent to the system
thanks to a Ti:Sa model-locked laser emitting ∼ 80ps
duration pulses with a 80MHz repetition rate (see Fig-
ure 1). The rate can be down-sampled thanks to a pulse
picker. A tunable delay line is inserted in the perturba-
tion path allowing consecutive perturbations with a delay
of several hundreds of picoseconds to several nanosec-
onds. The pump and perturbation beams are coupled
into the micropillar thanks to a dichroic mirror and a
microscope objective. Two fast avalanche photodetectors
(APD1 and APD2) with 10GHz and 4GHz bandwidth re-
spectively record the input pulses and the response from
the micropillar. The signals are analyzed with a 6GHz
oscilloscope.

The micropillar is driven in the excitable regime, 9%
below the self-pulsing threshold, thus no laser light is
emitted. Two consecutive sub-threshold perturbations
are sent onto the micropillar at 797.5nm, close to the
pump wavelength, with a variable delay δ. The first and
second perturbation are set to 74% and 80% of the ex-
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Figure 1. Experimental setup: LDA, laser diode array; DM,
dichroic mirror; BS, beamsplitter; MO, microscope objective
(63×, NA=0,85). Ti:Sa, mode-locked laser (80ps pulse du-
ration); AOM, pulse picker; APD1,2, avalanche photodiodes;
Cam, CMOS camera.

citable threshold so that none of each perturbation is able
by itself alone to trigger an excitable response. Since
noise is present in the system (either internal, sponta-
neous emission noise or external noise sources such as
pump noise or noise in the perturbation amplitude), we
record the response of the system after sending 10000
identical perturbations. The results are shown on Fig.2.
For a large perturbation delay (δ = 700ps, Fig.2f), the
perturbations rarely adds-up to trigger an excitable re-
sponse while for shorter ones, a clear, large amplitude
response R is visible. This means that the system in-
tegrates the perturbations which produces an above-
threshold stimulus able to trigger a large, excitable re-
sponse. Note that the excitable response, when present,
has always the shape depicted on Fig.2a) when a single
event is plotted (green curve). The average response has
a dispersion in time because of the dynamical delay in-
duced by the noise, which can be mostly attributed to
pump and perturbation noise. In order to quantify the
response we plot in Fig.4a the median of the response
amplitude R versus delay δ. A clear transition is visible
in the amplitude : for delays below 610ps the perturba-
tions trigger an excitable response and are thus tempo-
rally summed. For larger delays the summation does not
occur anymore. This behavior is in stark contrast to the
case of a gain-switched laser that would respond linearly.
The transition depends on the excitable threshold value
and thus on the bias pump [12], and on the amplitude of
the incoming perturbations. Summation also occurs for
a resonant perturbation at the cavity resonance close to
980nm, as can be seen on Fig.3. In that case, the exci-
tation wavelength is λ = 980.471nm. The bias pump is
set to 90% of the self-pulsing threshold in the excitable
regime, as can be seen in the inset. The two perturba-
tions are set 44% and 66% of the excitability threshold
for the direct and delayed pulses respectively. They are
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Figure 2. Experimental traces of the system’s response to two
incoming, sub-threshold perturbations for different perturba-
tion delays δ : a) 210, b) 320, c) 420, d) 520, e) 610 and f)
700ps. The plots show the statistical density of points (in log
scale) for 10000 different realizations. On the plots a typical
response pulse is shown in green. Inset : excitable response
to a single perturbation. Red stars are the detected response
maxima. Orange is a plot of the median in a sliding window
with 500 points.

clearly visible in the recorded traces and are marked by
arrows. Temporal summation occurs for short delays (a),
220ps and to a lesser extent b) 350ps) and is absent for
the other delays (c–e) 450, 540 and 630ps). Contrarily
to the incoherent excitation case, the excitable curve in
inset shows a marked plateau for stimuli above the ex-
citable threshold. This behavior is important in view of
cascading several excitable units. The fact that tempo-
ral summation is possible for incoherent (perturbation on
the gain carrier density) and ”coherent” (perturbation on
intensity at cavity resonance) adds some flexibility to the
system and has no counterpart in biological systems.
Note also that there is a delay of nonlinear origin in

the response that depends on the summed perturbations
(Fig.4a). This mechanism is interesting from a neu-
romimetic point of view since it provides a natural time-
coding mechanism for the amplitudes : for a large input
the delay is short, while it is long for a small (supra-
threshold) summed input.
The experimental results are compared to numerical

simulations of the Yamada model with spontaneous emis-
sion [11, 22]. This model reads:

İ = (G−Q− 1)I + β(G + η)2 (1)

Ġ = γg(µ−G(1 + I)) (2)

Q̇ = γas(γ −Q(1 + sI)) (3)

. The dynamical variables are the intracavity intensity I,
the gain G and the absorption Q. Recombination rates
of carriers in the gain and saturable absorber sections
are respectively γg and γas. Other parameters are s the
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Figure 3. Coherent temporal summation with input perturba-
tion wavelength λ = 980.471nm. The bias pumping is set to
90% of the self-pulsing threshold. The input stimuli are set to
44% and 66% of the excitability threshold for the direct and
delayed pulses respectively. The plots show the statistical
density of points (in log scale) for 10000 different realizations
of the input perturbations with delays (a–e) : 220ps, 350ps,
450ps, 540ps and 630ps. On the plots, a typical response
pulse is shown in green. The intensity perturbations are in-
dicated by arrows. In inset : excitable response to a single
perturbation median-averaged over 500 points.

saturation parameter, γ the linear losses and β the spon-
taneous emission factor. The term G+ η is directly pro-
portional to the carrier density in the gain section. The
β parameter is small here and steady state solutions can
be expended in power series of β [12]. Let {Iss, Gss, Qss}
be a steady state solution of Eqs.3. A simple approach to
get an analytic insight into the dynamics is to consider
that the intensity is small (Iss ∝ β) and almost constant
as long as a pulse has not been triggered. Suppose at
time t = 0 a first delta-like sub-threshold perturbation is
sent e.g. on the gain followed by a second perturbation
on at time t = δ (in units of the photon lifetime in the
cavity) such that µ → µ+ µ1δD(t) + µ2δD(t− δ), where
δD is the Dirac delta function. We can then solve for
G(t) such that

G(t) = Gss +Π(t)µ1 exp

[

−γgt

1 + Iss

]

+

Π(t− δ)µ2 exp

[

−γg (t− δ)

1 + Iss

]

(4)

with Π(t) the unit-step function. As noted in [12], in a
first approximation the net gain R(t) = G(t) −Q(t) − 1
governs the triggering of an excitable pulse : a pulse can
only be excited if R(t) exceeds zero for a sufficiently large
amount of time. Hence the final state of the system is
controlled by the net gain immediately after the second
perturbation at t = δ+ (always considering a first, sub-
threshold stimulus). Numerical simulations are shown

(b)

Figure 4. (a)Median of the maximum response R (blue) from
experimental data in Fig.2 for two consecutive stimuli sepa-
rated by the delay δ. The response to each perturbation alone
is plotted in light blue (empty diamond, empty circle respec-
tively). The response delay (relative to the shortest response
delay) τ∗

R is shown in red. (b) Same for model with param-
eters : µ = 2.48, µ1 = 0.43, µ2 = 0.43, s = 10, γg = 0.005,
γas = 0.01, γ = 2, η = 1.6, β = 1× 10−5. The response delay
τR is relative to the second perturbation.

on Fig.5. The net gain is plotted together with the re-
sponse to the consecutive stimuli. Simulations of the full
system (Eqs.3) and of the approximate solution (Eqs.4)
for the net-gain are shown. The parameters are sim-
ilar to the one used in [12] except the recombinations
rates that have been tuned to match better the exper-
imental results. With the estimated photon lifetime of
the empty cavity being 3.25ps, a reasonable qualitative
agreement is met between the model and the experiment.
The critical delay is found to be δc ≃ 218, that is to say
708ps in physical units with the estimated photon life-
time. This is in reasonable agreement with the exper-
imental value in Fig.4a between 600 and 700ps and for
incoherent perturbation conditions similar to those of the
experiment: namely, consecutive perturbations of ampli-
tude 74% of the single perturbation excitable threshold
µex with the pump at 91% of the self-pulsing threshold
(corresponding here to the numerical value of 2.88). The
sub-threshold dynamics of the net gain is very well re-
produced by the linear approximation solution until it
completely fails when a pulse is triggered, as expected.
For the longest delay (δ = 244), when the summed per-
turbations are sub-threshold, the approximate net gain
deviates from the full solution after the second perturba-
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tion because it passes close to 0 and hence the intensity
dynamics, even failing to trigger an excitable response,
has a non-negligible influence on it. The response and
the delay in the response versus delay between the sub-
threshold stimuli are shown in Fig.4b. A good agreement
is found with the experimental results. The response
abruptly switches to zero when the delay δ is larger than
a critical delay δc ≃ 218. At this point, the response
delay τR diverges as one expects. Note that there is
a point for the response delay τR in the experimental
curve (Fig.4) even after the critical delay δc because of
noise that is able to trigger a few excitable pulses even for
stimuli on average below the excitable threshold. These
events are taken into account for the determination of
τR. The divergence of the delay for perturbations close
to the excitable threshold is also responsible for the large
dispersion in response times clearly visible in Fig.2d-f)
because a larger number of stimuli will be brought just
above the excitable threshold in these cases. It is interest-
ing to notice that the final state of the system is different
for asymmetric perturbations: for a balanced perturba-
tion such that µ1 + µ2 is constant, the highest net gain
at time δ is obtained for asymmetric perturbations with
µ1 < µ2. This slight effect means that the temporal sum-
mation considered here is a non-commutative operation.

Figure 5. Numerical simulations of the system Eqs.3 showing
the response to two sub-threshold stimuli on the gain (µ1,2)
with a variable delay δ : net gain (blue), intensity (red) and
linear solution (Eqs4, orange dashed line). Parameters are the
same as in Fig.4. The excitable threshold is µex ≃ 0.581, and
µ1 = µ2 = 0.74µex . The delays are δ = 61, 122, 183 and 244
corresponding respectively to physical delays of 200, 400, 600
and 800ps.

The critical delay is computed for two input stim-
uli of equal amplitudes µ0 in Fig.6. For an amplitude
µ0 < 0.37, temporal summation never occurs since the
summed stimuli are not large enough to cross the ex-
citable threshold even for zero delay. On the contrary,
for larger stimuli the maximum possible delay giving rise
to an excitable response increases first almost linearly
with the stimulus strength. When a single stimulus is al-
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Figure 6. Critical delay δc versus amplitude of the two stimuli
for µ1 = µ2. Dashed lines correspond to the case of Fig.4(b)
and µ1 = µ2 = 0.43.

most able to trigger an excitable response obviously the
maximum delay increases and diverges.

In conclusion we have studied the effect of consecutive
sub-threshold stimuli on the response of a semiconductor
micropillar neuromimetic system. We have shown that
the system can integrate stimuli with a time constant
of the order of several hundreds of picoseconds which de-
pends on the recombination times of carriers in the active
medium and respond with a macroscopic, excitable pulse
if the time delay between the stimuli is shorter than a
critical delay. The critical delay depends on the excitable
threshold which is controllable by the amount of pumping
of the system. This system thus simulates the behavior
of a leaky integrate-and-fire neuron and is particularity
suited for building more advanced processing function-
alities. Incoherent and coherent perturbation schemes
have been demonstrated, the latter being important to
demonstrate cascadability of such excitable systems. As
was demonstrated in [23], a sufficient number of excitable
processing units coupled appropriately is capable of uni-
versal computation. It is however important to keep in
mind that even a single unit has also processing capabili-
ties [3]. In the case of two stimuli, this system behaves as
a fast optical coincidence detector, a functionality that
may be of importance in many applications like pattern
recognition in optical signals, in analogy to biological sys-
tems using these property for sound localization [20].
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