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Hybrid dynamic modeling and control of switched affine
systems: application to DC-DC converters

Carolina Albea, Germain Garcia and Luca Zaccarian

Abstract— The paper deals with the problem of
control of switched systems described by a set of affine
differential equations. Among the potential applica-
tions, the DC-DC converters constitute an important
class of systems, which concentrates the interest of
the control community. The paper proposes a new
formulation of the problem in the context of hybrid
dynamic systems, which represents an adequate way
for handling the requirements of DC-DC converters,
while guaranteeing theoretically and practically all
specifications in terms of stability and performance.
In this sense, the proposed approach encompasses
several methods considered in the literature. The
method is illustrated for the cases of buck and boost
converters. The developed results are preliminary but
constitute an interesting direction for reducing the
gap between theoretical results and their practical
applications in power electronics.

I. Introduction

The recent developments in power electronics are justi-
fied by the necessary conversion of electric energy in the
domain of industrial and domestic applications. These
last decades, significant advances have been done in
several connected domains like for example, electronic
components, materials, control methods, CAD tools...
which allow for the design of highly reliable and efficient
power processing systems [13]. Consequently, the need
for power processing systems characterized by high fre-
quency, reliability and low cost has increased drastically.
In the context of low current and voltage levels, the
high frequency switching converters play a fundamental
role and are involved in a lot of applications such as
transport systems, informatics and telecommunications
to cite few of them. This explains why, these last years,
in conjunction with the developments evoked above, the
control of DC-DC power converters has been revisited in
the light of these achievements. DC-DC power converters
are switched systems that can be regarded in several
ways. The discontinuous nature associated with their
operation, generates a dynamical complexity, not easy
to handle rigorously with standard mathematical tools.
However, in several practical cases, a DC-DC converter
operates around an equilibrium point, it is possible to
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derive averaged models, in general bilinear, allowing
the use of all the methods developed in the context
of nonlinear systems (feedback linearization, flatness,
passivity... see for example [12] and references therein) or,
in the case of linear models obtained from linearization of
bilinear averaged ones, the use of powerful linear control
design techniques (see for example, [2], [9], [14]). Among
the main limitations, we can point out a difficulty for
quantifying the precision of the approximation obtained
by averaging procedure and the fact that the control laws
properties are only valid locally.

More recently, the control community has concentrated
some efforts to the study of new hybrid control tech-
niques [7] such as the switched systems, a subclass of
hybrid systems characterized by a switching rule which
selects, at each instant of time, a mode in a set of
possible modes, each of them corresponding to a dynamic
subsystem [3], [5]. Applications to the case of DC-DC
converters can be found for example in [1] where the
problem is formulated in terms of control of a switched
system whose modes are described by affine differential
equations. However, it is possible to show that the ob-
tained switching rules can be interpreted as sliding mode
control laws with sliding surfaces implicitly determined
in terms of the state space variables (currents, voltages)
and of the selected equilibrium operation [8]. Even if
the implicit discontinuous nature of DC-DC converters
is taken into account by an appropriate switched model,
the limitation is due to the practical implementation of
the control law whose properties are only ensured for an
infinite switching frequency, while for practical reasons,
the switching frequency must be constrained.

The objective of this paper is to go a step further
and to state a control problem in the context of the
control of hybrid dynamic systems [4] which seems to
be an adequate way for handling the specificities of
DC-DC converters while guaranteeing theoretically and
practically, that the implemented control laws will satisfy
all the specifications in terms of stability and perfor-
mance. The interest is the possibility of identifying and
managing some design parameters affecting important
practical indicators such as: switching frequency, dissi-
pated energy, overshoot... which are not easy to manage
for methods like sliding mode control for example. In
this paper, the considered paradigm is the one developed
in [4] which associates to a continuous-time flow whose
model is of a differential equation type, a discrete-time
behavior capturing the switched characteristic imposed
by the control law and necessary for energy conversion
operations. Two subsets included in an extended space,



built from the state and the control spaces, determine the
regions where the continuous and discrete dynamics are
active. The main tool for proving stability of a compact
attractor defined in this extended space, proceeds by
an appropriate extension of Lyapunov stability theory
developed in the context of hybrid dynamic systems in
[4] and [10]. Due to the affine structure of the modes,
a quadratic Lyapunov function can be selected from a
positive definite symmetric matrix satisfying a set of
Lyapunov inequalities. A hybrid control law with its two
associated flow and jump is deduced from this matrix
and an upper bound of a LQ performance index for
the controlled system can be computed. It is possible to
deduce an optimal guaranteed cost control law leading
to the tight upper bound, by solving a LMI optimization
problem. Although the results proposed in this paper
must be considered as preliminary, they are promising
and could allow solving generic control design problems
encountered in the domain of power electronics.

The paper is organized as follows. The next section
states the problem, defines the considered switched affine
models and gives the adopted assumptions. Section II
proposes the hybrid dynamical model formulation with
the corresponding control law. Section IV discusses op-
timality issues and Section V illustrates the proposed
theory for two well-known DC-DC converters, namely
the buck and the boost converters. A conclusion ends
the paper.

II. Problem formulation

Inspired by the work in [1], we focus on the following
class of switched affine systems, which is relevant in the
context of DC-DC converters:

ẋ=Aux+BuVin,
z =Cux,

(1)

where the available input u is the switching signal, as-
signing a specific desired logical mode among N possible
ones:

u ∈ K := {1, 2, ..., N}. (2)

Moreover, in dynamics (1), Vin ∈ Rm, is a constant volt-
age source, x ∈ Rn is the state, z ∈ Rp is the controlled
output, and Au and Bu present suited dimensions.

This paper focuses on the design problem of a feedback
law for the switching signal u, in such a way to ensure
suitable convergence properties of the plant state x to a
value xe, which is not necessarily an equilibrium for the
continuous-time dynamics in (1), but can be obtained as
an equilibrium for the switching system with arbitrary
switching. A necessary and sufficient condition character-
izing this equilibrium is then represented by the following
standard assumption (see [1], [6]).

Assumption 1: There exists λe = [λe1 , λe2 , ..., λeN ]
satisfying

∑N
l=1 λel = 1, such that the following convex

combination holds:

N∑
l=1

λel(Alxe +BlVin) = 0. (3)

Remark 1: It is emphasized that Assumption 1 is both
necessary and sufficient for the existence of a suitable
switching signal ensuring forward invariance of the point
xe (namely inducing an equilibrium at xe) when under-
standing solutions in the generalized sense of Krasovskii
or Filippov. Indeed, under (3), this signal is a periodic se-
quence of arbitrary small period T , spending a time equal
to λeiT in mode i. Conversely, if Assumption 1 does not
hold, such a signal does not exist because any arbitrary
switching signal can only generate an equivalent action
on ẋ corresponding to a convex combination of the right
hand sides obtained with each mode (namely, equation
(3)). y

In the next section we will propose a hybrid formalism
for the design problem associated to finding a switch-
ing signal u suitably stabilizing a point xe satisfying
Assumption 1. To this end, mimicking the conditions
already presented in [1], we will assume the existence
of the following set of matrices P and Qi, i ∈ K.

Property 1: Given matrices Ai, i ∈ K in (1), there
exists a matrix P = PT > 0 ∈ Rn×n and matrices
Qi = QTi > 0 ∈ Rn×n, i ∈ K, satisfying

ATi P + PAi + 2Qi < 0, (4)

for all i ∈ K.
Note that Property 1 enforces the strong requirement

that all matrices Ai be Hurwitz. Suitable relaxations
of (4) are possible and correspond to only imposing a
similar bound for a convex combination of matrices Ai.
We save these relaxations as future work and concentrate
on this simpler case in this paper.

Selection of matrices P and Qi, i ∈ K satisfying
Property 1 will be discussed in Section IV where an
optimization-based procedure will be suggested, also in
light of the stability and optimality theorems presented
below.

III. Hybrid model and proposed control law

We formulate here the design problem as a hybrid
dynamical system, following the formalism in [4], wherein
continuous-time behavior resembles the evolution in (1),
and the discrete-time behavior captures the jump of the
control signal u from one mode to another. We represent
the overall dynamics as:

H :


[
ẋ
u̇

]
= f(x, u), (x, u) ∈ C[

x+

u+

]
∈ G(x), (x, u) ∈ D,

(5)

where G is a (set-valued) map capturing the switching
logic:

f(x, u) :=

[
Aux+BuVin

0

]
G(x) :=

[
x

argmin
i∈K

(x− xe)TP (Aix+BiVin)

]
(6)

and where the so-called “flow” and “jump” sets C and
D encompass, respectively, the regions in the (extended)



space (x, u) where our switching strategy continues with
the current mode u (set C) or is required to switch to
a new mode (set D). If switching is allowed (namely, if
(x, u) ∈ D) then u will switch according to G in (6).
For the solution proposed in this paper, we select the
flow and jump sets based on the desired equilibrium xe
introduced in Assumption 1 and on the parameters P
and Qi, i ∈ K introduced in Property 1 as follows:

C := {(x, u) : x̃TP (Aux+BuVin) ≤ −ηx̃TQux̃} (7)

D := {(x, u) : x̃TP (Aux+BuVin) ≥ −ηx̃TQux̃}, (8)

where x̃ = x − xe and scalar η ∈ (0, 1) is a design
parameter that will be shown to be useful for suitably
achieving a trade-off between switching frequency and
optimality level as characterized later in Theorem 2 and
commented in Remark 3.

Remark 2: Note that hybrid system (5)–(8) provides a
solution strategy for the selection of the switching signal
u. Indeed, sets (7) and (8) correspond to a specification
about “when” a jump is or is not allowed, and map G in
(6) specifies where a solution “may” jump (that is, what
values of u are allowed after the jump. It is emphasized
that both these elements of our solution may be sources
of non-uniqueness of the solutions. Indeed, sets in (7)
and (8) have overlapping boundaries so that multiple
solutions (flowing or jumping) may arise from the same
initial condition. Similarly, the argmin in the definition of
G in (6) may be nonunique. Despite this non-uniqueness
feature, the stability and optimality results proven below
refer to all possible solutions and therefore it is not
really important what solutions we select in a possible
implementation of this control law (or in a MATLAB
simulation) because stability and optimality properties
hold for all of them. y

The next lemma is a fundamental step to prove our
main result in Theorem 1 below.

Lemma 1: Consider matrices P ∈ Rn×n and Qi ∈
Rn×n, i ∈ K satisfying Property 1, a point xe ∈ Rn
satisfying Assumption 1. Then, for each x ∈ Rn,

min
i∈K

x̃TP (Aix+BiVin) ≤ min
i∈K
−x̃TQix̃. (9)

�

While the proof of Lemma 1 is given in Section VI, we
comment here on its relevance in terms of the nature
of the switching signals generated by our solution. In
particular, property (9) combined with (7) shows that
unless x̃ = x̃+ = 0 (which means that we are at the
equilibrium x = xe), the solution always jumps to the
interior of the flow set C. Indeed, x̃ 6= 0 implies

−x̃TQux̃ < −ηx̃TQux̃,

because η < 1. This fact, together with stability (en-
suring boundedness of solutions) and the sector growth
condition coming from the linearity of the flow dynamics
(1), implies that there is a uniform lower bound on the
dwell time between each pair of consecutive resets before
solutions approach x = xe. Clearly this lower bound
shrinks to zero as solutions approach x = xe because only

arbitrarily fast switching can make xe and equilibrium,
in general. As compared to existing approaches (see e.g.,
[1]) that essentially rely on a “sliding-mode” type of
paradigm, thereby typically leading to very fast switching
and chattering along a sliding surface, our solution is
instead characterized by relatively slow switching, where
the switching frequency can be adjusted, to a certain
extent, using parameter η (see Remark 3 below for extra
details).

Following up to standard stability theory for hybrid
systems [4], we will establish suitable stability properties
of the point xe in terms of uniform global attractivity
of a bounded (and closed) set in the higher-dimensional
space spanned by (x, u). In particular, we will establish
properties of the following compact attractor:

A := {(x, u) : x = xe, u ∈ K}, (10)

encompassing the fact that we are interested in uniform
stability and convergence to a set where x = xe and u
assumed some unspecified value or pattern within the
desired limit set of solutions. The following theorem,
whose proof is given in Section VI, is the main result
of our paper.

Theorem 1: Consider a point xe satisfying Assump-
tion 1 and matrices P ∈ Rn×n and Qi ∈ Rn×n, i ∈ K
satisfying Property 1. Then attractor (10) is uniformly
globally asymptotically stable (UGAS) for hybrid system
(5)–(8). Moreover, UGAS is robust because the attractor
(10) is compact.

IV. Optimality and parameters tuning

Theorem (1) establishes UGAS of the attractor, which
results in desirable uniform stability and convergence
properties. However, we are interested in further provid-
ing a suitable performance guarantee for our solution,
which follows the same paradigm as that one in [1]. This
performance guarantee, may for example refer to desir-
able levels of dissipated energy, current peak, response
time among others.

Within the considered hybrid context, we first recall
that solutions are parametrized by ordinary time t (mea-
suring amount of flow) and discrete-time j (measuring
the number of switches) so that the domain of a solution
ξ (see [4, Ch. 2]) corresponds to a finite or infinite union
of intervals of the following form:

dom ξ =
⋃

j∈domj ξ

Ij × {j}, (11)

with Ij = [tj , tj+1] being a bounded time interval having
the so-called “jump times” tk as extremes, or possibly
being a last unbounded interval open to the right and of
the form Ij = [tj ,+∞). In (11), we use the notation
domj ξ := {j ∈ Z : (t, j) ∈ dom ξ, for some t ∈
R}, namely domj ξ includes all j ∈ Z such that Ij is
non-empty. Within this context, we represent an LQ
performance metric focusing on flowing characteristics of
the plant state, using the following expression:

J(ξ) :=
∑

k∈domj ξ

∫ tk+1

tk

| z̃(τ, k) |2 dτ, (12)



where ξ = (x, u) : dom ξ → Rn×K is a solution to hybrid
system (5)–(8), z̃(t, j) = Cu(t,j), x̃(t, j) for all (t, j) ∈
dom ξ.

With our hybrid switching solution, we may then give
the following guarantee on the performance cost (12).
The proof of the next statement is given in Section VI.

Theorem 2: Consider hybrid system (5)–(8) satisfying
Assumption 1 and Property 1. If

CTi Ci ≤ Qi, ∀i ∈ K, (13)

then the following bound holds along any solution ξ =
(x, u) of (5)–(8):

J(ξ) ≤ η−1x̃(0, 0)TPx̃(0, 0), (14)

where x̃(t, j) = x(t, j)− xe, for all (t, j) ∈ dom(ξ).

Remark 3: It should be emphasized that once matrices
P and Qi ∈ Rn×n, i ∈ K have been fixed compliantly
with requirement (13), the guaranteed performance level
for our scheme (in terms of size of the upper bound for
index J in (12) along solutions) is proportional to the
inverse of η ∈ (0, 1) (see (14)). To this end, large values
of η (as close as possible to 1) are expected to lead to
improved LQ performance along solutions.

On the other hand, one may appreciate by looking at
the flow and jump sets in (7) and (8), that smaller values
of η correspond to strictly smaller jump sets (and larger
flow sets), which reveals that solutions are expected
to flow longer before switches of control input u are
experienced. Therefore we anticipate that solutions with
smaller values of η exhibit a smaller switching frequency.
In other words, one may play with parameter η to
suitably adjust the switching frequency along solutions.
This operation clearly affects the level of guaranteed
optimality, according to (14). y

The problem addressed next is the computation of
parameters P , Qi, i ∈ K, following some kind of opti-
mization with the goal of reducing as much as possible
the right hand side in bound (14). To this end, we make
the following natural selection of matrices Qi, i ∈ K:

Qi = CTi Ci + εI, i ∈ K, (15)

where ε > 0 is a (typically small) positive constant, which
may be selected equal to zero if CTi Ci > 0 for all i ∈ K.
Then it is clear that selection (15) ensures Qi > 0,∀i, as
required, in addition to ensuring bound (13).

Once parameters Qi are selected, under the assump-
tion that Ai are Hurwitz matrices for all i ∈ K, the
following convex optimization expressed by linear matrix
inequalities always leads to a feasible solution:

min
P=PT>0

TraceP, subject to: (16)

ATi P + PATi ≤ −2Qi, ∀i ∈ K,

and this optimal solution clearly satisfies Property 1.

V. Application to converters with two
configurations

The hybrid control scheme given before is tested in two
classic DC-DC converters and compared to the switched
control proposed in [1]. The DC-DC converters are: a
buck converter and a boost converter. These converters
switch between N = 2 affine subsystems, being the state
variable x = [iL vc]

T , where iL denotes the inductor
current and vc denotes the capacitor voltage. Given a
desired equilibrium xe = [ie ve]

T , we select the cost
function J in (12) as follows:

min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vc(τ, k)−ve)2+R(iL(τ, k)−ie)2dτ

where ρ is a positive scalar. Note that the constant
parameters of each term express the weighted sum of the
energy of the error signal of each state variable.

Following (15), we take

Q1 = Q2 =

[
R 0
0 ρ

R0

]
.

We take the parameters given in [1] for comparison
with the switched control algorithm presented therein.
The considered nominal values are: Vin = 100V , R = 2Ω,
L = 500µH, Co = 470µF and Ro = 50Ω. Moreover,
we take a sampling time Ts = 10−6s and ρ = 1000 for
all topologies. Note that, we give more weight to the
voltage than to the current, expecting to obtain a voltage
convergence faster at the expense of a larger current
peak. Simulations are performed in MATLAB/Simulink
by using the HyEQ Toolbox [11].

A. Buck converter

The switched system state space model (1) is defined
by the following matrices:

A1 = A2 =
[−R/L −1/L

1/C −1/R0C0

]
, B1 =

[
1/L
0

]
, B2 =

[
0
0

]
.

The simulation parameters chosen are:

xe =
[
0.8 40

]T
, P =

[
0.28 0.47
0.47 1.16

]
· 10−2.

Note that Property 1 is satisfied. Figure 1 shows the
voltage and current evolutions of the buck converter con-
trolled by our proposed hybrid dynamic control scheme
and by the switched control proposed in [1], for different
values of η. Note that the voltage evolution is essentially
the same, the transient lasts less than 1ms at the expense
of a current peak close to 15A of magnitude. In this
simulation, we stabilize the point corresponding to λe =
[0.43 0.57], satisfying Assumption 1. Thus, the buck
converter with our hybrid control scheme guarantees
UGAS of the attractor in (10) (from Theorem 1) and
optimality guarantees arising from Theorem 2. These
properties can be appreciated from the simulations of
Fig. 1.

On the other hand, the current peak performance is
more suited when η is larger. For η = 0.99, we obtain
essentially the same output performance as the one of



the switched control proposed in [1]. However, we insist
that choosing such a large value of η is not a good idea in
terms of switching frequency. In particular, Fig. 2 shows
the switching frequency in a time slot of the transient
for different values of η. From the figure it appears that
using η = 0.99 we obtain the same frequency as the one
obtained with the switched control proposed in [1] (lower
two plots). Nevertheless, according to Remark 3, as η
is reduced, a reduced switching frequency is expected,
which is consistent with the upper two plots of Fig. 2.
This trend of the switching frequency with respect to
η can be well appreciated in Fig. 3 that shows the
normalized switching frequency as a function of η (dif-
ferent curves correspond to different initial conditions).
The curves are normalized to the switching frequency
experienced with the method of [1]. As expected, for large
values of η, we recover the same frequency as the one in
[1], but reducing η we may give up a little on optimality
level and suitably adjust the switching frequency. In
particular, for η < 0.5 we start seeing some relevant and
interesting reduction. We note that this behavior related
to the value of η can be exploited for on-line adjustment
of the frequency through adaptation of η. We regard this
research direction as future work.
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Fig. 1: Voltage and current evolution of the buck con-
verter.

B. Boost converter

The switched system state space model (1) is defined
by the following matrices:

A1 =

[
−R/L 0

0 −1/R0C0

]
, A2 =

[
−R/L −1/L
1/C0 −1/R0C0

]
,

B1 = B2 =

[
1/L

0

]
.

The chosen simulation parameters are:

xe =
[
3 120

]T
, P =

[
1.45 0.09
0.09 2.48

]
· 10−2,
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Fig. 2: Zoom of u in the buck converter.
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Fig. 3: Evolution of the normalized switching frequency
w.r.t. η for different initial conditions in the buck con-
verter.

which satisfy Property 1 (this is easily checked numer-
ically). Similar to the buck converter case (and the
corresponding Fig.1), Fig. 4 reports voltage and current
evolutions for different selections of η and for the choice
λe = [0.22 0.78] that satisfies Assumption 1. Just as
before, Theorems 1 and 2 guarantee asymptotic stability
and optimality for the scheme. Once again, as η gets
larger, the transient becomes closer to the one obtained
when the switched control proposed in [1]. In all cases,
the transient duration is less than 30ms with a maximum
current peak near 3.25A of magnitude. The switching
frequency in a time slot of the transient is reported in
Fig. 5 for different values of η. Similar to the previous
Fig. 2, we see the expected trend (from Remark 3) of the
switching frequency, as a function of η. A more informa-
tive picture can be grasped by Fig. 6 where, similar to
the previous Fig. 3, it is shown that selecting small values
of η allows us to suitably adjust the switching frequency
while giving up a little on the performance guarantee



(even though Fig. 4 shows that the performance is not
much deteriorated when η is very small, thus showing
some level of conservativeness of our bound). Note that,
as compared to the previous case of Fig. 3, the value of
η for which we obtain essentially the same behavior as
the scheme in [1] is much larger than 0.5 and grows up
to somewhere around 0.95.
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Fig. 4: Voltage and current evolution of the boost con-
verter.
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Fig. 5: Zoom of u in the boost converter.

VI. Proof of the main results

Proof of Lemma 1. First notice that the left hand
side of (3) is linear in λn = [λ1, λ2, ..., λN ],
and λe allows to the compact set Λ ={
λn = [λ1, λ2, ..., λN ], λn ≥ 0,

∑N
l=1 λn = 1

}
. Then,

the following minimum is obtained at the extreme
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Fig. 6: Evolution of the normalized switching frequency
w.r.t. η for different initial conditions in the boost con-
verter.

points:

min
i∈K

x̃TP (Aixe +BiVin)

= min
λn∈Λ

x̃TP

{
N∑
l=1

λnl
Alxe +

N∑
l=1

λnl
BlVin

}

≤ x̃TP

{
N∑
l=1

λelAlxe +

N∑
l=1

λelBlVin

}
= 0. (17)

Then, the proof easily follows from applying (4) and (17)
as follows

min
i∈K

x̃TP (Aix+BiVin)

≤ min
i∈K

x̃TPAix̃+ min
i∈K

(x̃TPAixe + x̃TPBiVin)

≤ min
i∈K
−x̃TQix̃.

�

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. Let us take the candidate Lyapunov
function V (x̃) = 1

2 x̃
TPx̃, being x̃ = x − xe. In the flow

set, C, using its definition in (7), we get

〈∇V (x̃), f(x̃, u)〉 = x̃TP (Au(x̃+xe)+BuVin) ≤ −ηx̃TQux̃.
(18)

In the jump set, D, we get for all g ∈ G(x), denoting
x̃+ = g − xe

V (x̃+)− V (x̃) =
1

2

{
x̃TPx̃− x̃TPx̃

}
= 0. (19)

Uniform global asymptotic stability is then shown ap-
plying [10, Theorem 1]. In particular, since the distance
of x to the attractor (10) is defined by | x |A=| x̃ |, we
have that [10, eq. (6)] holds from the structure of V and
from (18) and (19). To show practical persistent flow, we
first need to build a restricted hybrid system Hδ,∆ by
intersecting C and D with set

Sδ,∆ = {x̃ :| x̃ |≥ δ and | x̃ |≤ ∆} (20)



(see [10] for details). Then, notice that after each jump,
from the definition of G in (6) and from property (9) (in
Lemma 1), we have:

x̃T (Aq+x+Bq+Vin) ≤ −x̃TQq+ x̃ < −ηx̃TQq+ x̃, (21)

where we used the fact that η < 1 and that 0 /∈ Sδ,∆.
Therefore, if any solution to Hδ,∆ performs a jump, it ei-
ther jumps outside Sδ,∆ (and it terminates prematurely)
or, from (8), it jumps to the interior of the flow set
C ∩ Sδ,∆, Indeed, from (20) we have that x̃ is bounded
away from zero in Sδ,∆, so that, the right inequality in
(21) is strict from positive definiteness of Qi, i ∈ K. Then
all non terminating solutions must flow for some time and
since C ∩ Sδ,∆ is bounded, there is a uniform dwell-time
ρ(δ,∆) in between each pair of consecutive jumps. This
dwell-time ρ(δ,∆) clearly implies [10, equ. (4)] with the
class K∞ function γ(j) = ρ(δ,∆)j and N = 1. Then, all
the assumptions of [10, Theorem 1] hold and UGAS of
A is concluded. �

Below we give the proof of Theorem 2.
Proof of Theorem 2. To prove the optimality property
in (14), consider any solution ξ = (x, u) to H. Then for
each (t, j) ∈ domx and denoting t = tj+1 to simplify
notation, we have from (18)

V (x̃(t, j))− V (x̃(0, 0))

=

j∑
k=0

V (x̃(tk+1, k))− V (x̃(tk, k))

=

j∑
k=0

∫ tk+1

tk

〈∇V (x̃(τ, k)), f(x(τ, k), u(τ, k))〉dτ

≤
j∑

k=0

∫ tk+1

tk

−ηx̃T (τ, k)Qu(τ,k)x̃(τ, k)dτ

≤ −η
j∑

k=0

∫ tk+1

tk

x̃T (τ, k)CTu(τ,k)Cu(τ,k)x̃(τ, k)dτ,(22)

where the last inequality comes from applying (13). Now,
considering z̃(τ, k) = Cu(τ,k)x̃(t, k), taking the limit as
t + j → +∞ and using the fact that UGAS established
in Theorem 1 implies limt+j→+∞ V (x̃(t, j)) = 0, we get
from (22)

ηJ(ξ) ≤ V (x̃(0, 0)) = x̃(0, 0)TPx̃(0, 0),

as to be proven. �

VII. Conclusions and future work

In this article, a novel paradigm of controlling switched
affine systems, specifically DC-DC converters, is pro-
vided. The control scheme, which is based on an appro-
priate hybrid modeling, allows managing the switching
frequency with the knowledge of the state of the DC-
DC converters. This preliminary work finally shows the
potential of considering an hybrid representation for this
class of systems. For instance, we obtain a design pa-
rameter, η, that adjusts a trade-off between performance
and switching frequency. We show that η = 1 represents
the specific controlled case obtained from other methods,

as sliding-modes. An important direction for future re-
searches would be include in this control paradigm other
class of switched systems, as systems with non-Hurwitz
matrices.
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