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Abstract—In this paper we propose HOG-Dot, a method for
the direct computation of the polar image gradients coordinates
from the pixels values. The proposed algorithm, to be used as
the first step of the Histogram of Oriented Gradient (HOG)
pipeline, approximates the exact gradient with its projection
onto a versor chosen among the projection plane set. Instead of
non linear computations, the HOG-Dot method exploits linear
operations while introducing a bounded approximation error
with respect to other HOG approaches, thus resulting a more
suitable solution for embedded devices. Concerning the state of
the art, it also achieves improved accuracy with the mathematical
spatial gradient formulation.

I. INTRODUCTION

Embedded image processing devices, namely Smart Cam-
eras (SCs), are nowadays considered as a powerful solution
to extract complex information from the surrounding environ-
ment in which they are deployed. In designing SC one of the
biggest efforts is the porting of complex and computational
intensive computer vision pipelines to resource constrained
embedded devices able to reduce deployment costs. In such a
context, the Histogram of Oriented Gradient (HOG) algorithm
[1] represents the state of the art for the pedestrian detections,
allowing the classification of images windows represented by
using histograms of local spatial derivatives through machine
learning algorithms (i.e., Support Vector Machine [2]). The
HOG pipeline is composed by a gradient extraction followed
by a local spatial aggregation histogram. The resulting his-
togram is then normalised and compared to a model reference
within the classifier. In particular, the spatial gradient extrac-
tion is based on intensive pixel-wise operations usually ex-
ploited with non-linear operators [3]. Thus its deployment into
resource constrained embedded devices does not guarantee
real-time processing performance. Within the HOG algorithm,
spatial gradient extraction is usually computed with square
root and arctangent operators from the 1-D spatial derivatives.
In Eq. 1 the 1-D components are computed as:

Gx =
∂I

∂x
= I
(
x+ 1, y

)
− I
(
x− 1, y

)
(1)

Gy =
∂I

∂y
= I
(
x, y + 1

)
− I
(
x, y − 1

)
The gradient magnitude ‖∇I(x, y)‖ and orientation angle

θ are then computed for each pixel as follows:
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Gy
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The resulting gradient orientation θ is then sampled over a
set of discrete samples, called bin, to create a dense grid of
uniformly spaced histogram cells.

Since gradient extraction represents a common image pro-
cessing technique, hardware and software implementations,
especially for embedded devices, have been proposed in
literature. In [4] several VLSI gradient extraction implemen-
tations have been reviewed. Such solutions deploy gradient
magnitudes evaluations directly in a custom CMOS camera
focal plane as pre-processing step. In [5] a Look-Up table
(LUT) implementation has been proposed. It exploits a set
of precomputed Look-Up Tables (LUTs) to approximate both
the square-root and the arc-tangent. The results are used to
index a 2D LUT and to address the preloaded magnitude and
angle values. In such implementation the memory footprint
grows accordingly to the size of the 2D LUT, and consequently
to the gradient resolution. More recently, in [6] the polar
conversion is computed implementing both the arc-tangent and
the square-root functions with iterative hardware operations,
thus reducing significantly the data throughput.

In this paper we present HOG-Dot, a kernel-based gradient
extraction algorithm. It permits to compute directly the gradi-
ent polar components by deploying linear operations. Instead
of evaluating an approximation of the Eq. 2 or deploying a
custom circuitry as shown in [4], we rather propose a mathe-
matical reformulation which offers a bounded approximation
error with respect to the exact gradient. By modifying the
number of bins, the resulting error is then controllable and
deterministic.

The rest of this letter is organized as follows. First, in Sec. II
the proposed spatial gradient expression is mathematically
evaluated. In Sec. III our method is then compared with other
state of the art gradient extraction formulations and finally
Sec. IV concludes the paper.

II. METHODOLOGY

One of the main issue in developing the HOG feature
extraction for embedded SC is the polar coordinates com-
putations through non linear floating-point operations. Even
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though floating-point arithmetic could be exploited even in
resource constrained devices, as shown in [7] its implementa-
tion requires a non-negligible amount of time thus decreasing
the output throughput. Thus, in this paper we propose a linear
method capable of approximating the square-root and the arc-
tangent. It is based on a set of linear operations that can be
easily implemented within embedded device. Let us consider
a generic vector v, its module can be seen as a dot product
with its parallel versor:

‖ v ‖= v · îθ (3)

where θ is the angle and then the direction of the versor
parallel to v. By exploiting this property, we can state that
the exact gradient is equal to:

‖ ∇I(x, y) ‖= ∇I(x, y) · îθ (4)

where θ is the direction of the vector ∇I(x, y). Moreover,
considering a generic versor îk, the following relation is valid:

∂I

∂îk
(x, y) = ∇I(x, y) · îk (5)

Since the HOG algorithm considers a discrete angle domain
that consists of equidistant samples within the interval [0, π),
we consider a limited set of N directions, represented by the
following set of versors (illustrated in Fig. 1):

Bî = { îk(θk) | θk = kπ/N, k = 0, . . . , N − 1} (6)

where each versor can be represented in cartesian coordinates
as:

îk = x̂ cos θk + ŷ sin θk (7)

î0

îk

îk+1

îN−1

θk

Fig. 1. The versors beam used to compute the dot product.

According to the above reported equations, the intensity of
the gradient projection ∇I(x, y) onto each versor of the set
Bî can be evaluated as follows:

∇I(x, y) · îk =
∂I

∂îk
(x, y) = cos θk

∂I

∂x
+ sin θk

∂I

∂y
(8)

Since we consider the HOG case, the partial derivative func-
tions are expressed in terms of pixel intensity and position as
in Eq. 1.

Thus, by merging Eq. 8 and 1, the value of ∂I
∂îk

is then
derived as follows:

∂I

∂îk
(x, y) = cos θk

[
I(x+ 1, y)− I(x− 1, y)

]
+ sin θk

[
I(x, y + 1)− I(x, y − 1)

]
(9)

As in Eq. 9, the ∂I
∂îk

value represents the magnitude of the
gradient projection onto the versor îk. It can be computed by
convolving an image with a kernel matrix filled with constant
elements (θk are a-priori defined as well as the cos θk and
sin θk values).

Among the k computed projections, the argmax function
is used to extract the greatest gradient projection as results of
magnitude comparisons, as shown in Eq. 10. The extracted k̄
projection also represents the closest gradient approximation
provided by our method.

k̄ = argmax

{
∂I

∂îk
(x, y)|k = 0, ..., N − 1

}
(10)

as results of Eq. 10, the angle θ of the ∇I(x, y) vector belongs
to the following interval:

θ ∈
[
θk̄ −

π

2N
, θk̄ +

π

2N

)
(11)

Thus, the HOG-Dot method approximates the exact gradient
∇I(x, y) as follows:

∇IDot(x, y) =

(
∂I

∂îk̄
(x, y) , θk̄

)
(12)

where θk̄ = k̄π/N . According to the original HOG imple-
mentation [1] ∇IHOG(x, y) is expressed as:

∇IHOG(x, y) = (‖ ∇I(x, y) ‖, θk̄) (13)

Considering now Eq. 12 and Eq. 13, the vector obtained by
our method is overlaying the HOG one but their magnitude
differs. The Dot gradient is indeed representing the projection
of the exact gradient over the îk̄ versor (as in Eq. 14) while the
HOG version has the same magnitude as the exact gradient. In
Fig. 2 the geometric correspondences between both methods
are shown.
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Fig. 2. The dot-product between ∇I(x, y) and the ”closest” îk , compared
with Dalal et al. technique.
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As result of Eq. 4 and Eq. 12, the formal relation between
∇IHOG(x, y) and ∇IDot(x, y) modules is then expressed in
Eq. 14. In particular, the ∇IDot(x, y) represents a round down
approximation of the ∇IHOG(x, y) gradient.

‖ ∇IDot(x, y) ‖=‖ ∇I(x, y) ‖ cos(θ − θk̄) (14)

In the following Section, the proposed approximation is
quantitatively evaluated with respect to other HOG implemen-
tations.

III. ERROR EVALUATION

In this section the HOG-Dot gradient is first compared
with the original HOG algorithm (Sec. III-A). In Sec. III-B
an extended comparison is then shown with respect to the
exact gradient formulation. As assessment metric we selected
the Error Vector Magnitude (EVM) [8], an index commonly
used in telecommunications to measure the difference between
transmitted and received constellation points (distance between
reference and real points). In mathematical terms EVM can be
expressed as:

EVM =

√
Perror
Pref

(15)

where Perror is the power of the error vector and Pref is the
power of the reference measure. For our purposes the EVM
can be rewritten as:

EVM =

√
‖ e ‖2

‖ ∇Iref (x, y) ‖2
=

‖ e ‖
‖ ∇Iref (x, y) ‖

(16)

where e is ‖ ∇Iref (x, y) − ∇Ireal(x, y) ‖, the difference
vector between the reference and its approximated version.
In the following of the section, the notation EVMA B is used
to specify the reference (A) and the real (B) point considered
in the assessment, e.g., EVMHOG Dot is evaluated between
the HOG and the HOG-Dot approximations.

A. HOG-Dot versus HOG

As in Eq. 14 the difference vector between ∇IHOG(x, y)
and ∇IDot(x, y) is straightforward evaluated.

‖ eHOG Dot ‖=‖ ∇IHOG(x, y)−∇IDot(x, y) ‖=

=‖ ∇I(x, y) ‖
(

1− cos(θ − θk̄)

)
(17)

Thus, the EVMHOG Dot is a deterministic function of θ−θk̄,
and, consequently of N (θk̄ = k̄π/N ). The EVMHOG Dot is
then described as follows:

EVMHOG Dot = 1− cos(θ − (k̄π/N)) (18)

The EVMHOG Dot function is then bounded within the inter-
val
[
0, 1− cos( π

2N )
)
. It reaches the lower bound value when

θ = θk̄ and the maximum value when θ = π
2N (the border

of the interval). Moreover, since EVMHOG Dot is function
of N , the maximum approximation error can be controlled by
fixing an appropriate angle resolution as in Eq. 11. In Fig. 3 the
EVMHOG Dot as function of θ − θk̄ is depicted considering
two different values of N , 8 and 16.
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Fig. 3. The EVMHOG Dot evaluation as function of θ − θk̄ .

To complete the comparison, maximum and average
errors, respectively annotated max(EVMHOG Dot) and
avg(EVMHOG Dot), are reported as function of N in Fig. 4.
By increasing the angle sampling parameter N , the difference
between θ and θk̄ decreases, thus the maximum EVM de-
creases as well. Given all values on its period, the average
EVM is evaluated as follows:

avg(EVMHOG Dot) =
2

T

T/2∫
0

EVMHOG Dot dθ (19)

= 1− 2N

π
sin(

π

2N
)

where T is equivalent to the EVMHOG Dot period π
N . The

average value is clearly bounded by Eq. 18 and decreases
when N increases. Although we exploit the gradient extraction
with a linear kernel based method, our results are comparable
with those obtained by the HOG technique. As shown in
Fig. 4, by fixing N equal to 8 as Dalal et al. suggests, the
resulting average EVM is close to 0.5%. Whether an improved
accuracy is requested, the sampling factor N can be further
increased to match the output specifications. The higher is
N , the lower EVMHOG Dot results. As far as N increases,
the ∇I projections are closer to the reference ∇IHOG vector,
which asymptotically will coincide.
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Fig. 4. Maximum and average EVMHOG Dot as function of N .

B. HOG methods versus ∇I
In Sec. III-A, the HOG-Dot technique has been compared

with the original HOG gradient extraction. In this Section
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HOG-Dot and other state of the art gradient extraction tech-
niques are compared with the exact gradient formulation ∇I
through the EVM metric. To better understand the main
differences between the the HOG-Dot and HOG methods,
∇IDot and ∇IHOG are reported in Fig. 5, in which the exact
gradient ∇I is also shown.

θ −
θ
k̄ ∇IHOG

∇
I

∇IDot
îk̄

Fig. 5. ∇I , ∇IHOG and ∇IDot comparisons.

In order to compare the considered methods with respect to the
∇I , in this occasion the EVM has been evaluated with respect
to the exact ∇I . Thus, according to Eq. 12, ∇IDot represents
the projection of ∇I along the versor îk̄ and ∇IHOG overlies
the îk̄ versor with the same ∇I module. The resulting EVM
can be expressed as follows:

EVM∇I Dot = ‖sin(θ − θk̄)‖ (20)

where EVM∇I Dot is the magnitude of the difference vec-
tor between ∇I and ∇IDot. As shown in Fig. 5, the
EVM∇I ∇IHOG

is then:

EVM∇I HOG =

√(
1− cos(θ − θk̄)

)2
+ sin(θ − θk̄)

2

(21)
Thus, by applying Eq. 20 to Eq. 21 the final EVM∇I HOG
is then obtained.

EVM∇I HOG =

√(
1− cos(θ − θk̄)

)2
+ EVM∇I Dot

2

(22)
According to Eq. 21, the original HOG gradient approximation
proposed by Dalal et al. presents an EVM∇I HOG higher than
EVM∇I Dot. In Lee et al. [6] a gradient approximation has
been implemented within an hardware circuitry. In this case
the EVM∇I Lee can be expressed as:

EVM∇I Lee =
1

∇I

(
∇I − ‖Gx‖+ ‖Gy‖+

√
2Gmax

1 +
√

2

)
(23)

where Gx and Gy are the gradient 1-D components as in Eq. 1
and Gmax is the greater absolute value among them. Finally,
the Bhardwaj and al. [3] implementation is considered. In
this case, the gradient magnitude is approximated by directly
adding the Gx and Gy components. The EVM∇I Bhardwaj
is then straightforward evaluated as follows:

EVM∇I Bhardwaj = ‖cosθk‖+ ‖sinθk‖ − 1 (24)

where θk is the HOG binning angle as in Eq. 6.
The proposed algorithm is numerically evaluated with re-

spect to the other methods. Simulations have been performed

over different datasets (INRIA [9], CVC [10]) by calculating
the spatial gradient with the above presented techniques. The
maximum, the average and the variance of the EVM, respec-
tively reported as max(EVM), avg(EVM) and σ2(EVM)
in Table I, have been evaluated for each method. The com-
parison with the exact gradient shows a minimum EVM error
of 19,5% mainly due to the HOG binning operation which
introduces an angular error. With this respect, our proposed
solution outperforms the other state of the art techniques. As
a matter of comparison, the evaluation has been performed
with N equal to 8 for all the considered methods.

TABLE I
SPATIAL GRADIENT ALGORITHMS COMPARISON

max(EVM) avg(EVM) σ2(EVM)

Lee et al. [11] 21.11 % 3.14 24.69

Bhardwaj et al. [3] 45.06 % 7.52 146.27

Dalal et al. [1] 19.59 % 2.60 19.38

Our 19.50 % 2.59 19.26

Nonetheless our method involves only linear computation,
the resulting EVM∇I Dot is smaller than others with respect
to the ideal gradient. With respect to the method proposed
by Lee et al., HOG-Dot achieves better results in terms
of the maximum EVM and a reduced average error. With
respect to the Bhardwaj et al. method, the HOG-Dot performs
significantly better and reduces the maximum EVM by 25%.
Finally, the comparison between the Dalal et al. and our
technique essentially provides the same EVM performance,
with the limited improvement as expected by Eq. 22. Although
the proposed linear approximations, HOG-Dot shows better
results with respect to the other state of the art techniques.
By exploiting only linear computations, HOG-Dot is then
suitable for constrained embedded devices, where non-linear,
square root and arctan methods will be reducing the processing
performance.

IV. CONCLUSIONS

In the paper the HOG-Dot technique has been proposed.
The HOG-Dot is a kernel-based gradient extraction technique
capable to compute directly the polar coordinates of image
gradients by linear approximating the exact gradient. As
comparison with the other state of the art algorithms, HOG-
Dot shows a bounded and controllable approximation error.
Even though our method introduces an error with respect to
the exact mathematical formulation, it shows good accuracy
results, outperforming the other state of the art HOG methods.
Moreover, due to its internal parallel architecture, HOG-Dot
is suitable for hardware oriented implementations. As future
work the HOG-Dot will be implemented in a FPGA-based
SC to evaluate the latency performance and the impact on the
approximation error within the HOG pipeline.
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