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Identi�
ation of magneti
 deposits in 2-D axisymmetri
eddy 
urrent models via shape optimizationZixian Jiang∗, Houssem Haddar†, Armin Le
hleiter‡, Mabrouka El-Guedri§Abstra
tThe non-destru
tive 
ontrol of steam generators is an essential task for the safe and failure-freeoperation of nu
lear power plants. Due to magnetite parti
les in the 
ooling water of the plants,a frequent sour
e for failures are magneti
 deposits in the 
ooling loop of steam generators. Fromeddy 
urrent signals measured inside a U-tube in the steam generator, we propose and analyzea regularized shape optimization algorithm to identify magneti
 deposits outside the U-tube witheither known or unknown physi
al properties. Motivated by the 
ylindri
al geometry of the U-tubeswe assume an axisymmetri
 problem setting, redu
ing Maxwell's equations to a 2-D ellipti
 eddy
urrent problem. The feasibility of the proposed algorithms is illustrated via numeri
al examplesdemonstrating in parti
ular the stability of the method under noise.Keywords: 2-D axisymmetri
 eddy 
urrent model, shape optimization, boundary regularization.1 Introdu
tion

Figure 1: Steam generator

Steam generators (SGs, see Figure 1) are 
riti
al 
omponents in nu
learpower plants. The rea
tor's 
ore heats up water that �ows through theprimary loop of a SG. This primary loop 
onsists of many thin, U-shaped tubes and serves to boil 
ooling water in a se
ondary loop onthe shell side of the U-tubes. The resulting steam is then deliveredto turbines generating ele
tri
al power. Due to magnetite parti
les
ontained in the 
ooling water, after a 
ertain time of exploitation,
ondu
tive magneti
 deposits are observed on the shell side of the U-tubes. Most often, su
h deposits o

ur at the level of the support plates.They redu
e the e�
ien
y of the energy transfer between the primaryand se
ondary loops and 
an harm the stru
ture safety by 
logging thewater 
ir
uit between the U-tubes and the support plates.Without disassembling the SG, the lower part of the U-tubes is in-a

essible for normal inspe
tions. Therefore, a non-destru
tive exami-nation pro
edure, 
alled eddy 
urrent testing (ECT), is widely used inindustry to dete
t the presen
e of deposits.In an eddy 
urrent testing pro
edure, one introdu
es a probe 
on-sisting of two 
oils of wire in the tube. Ea
h of these 
oils is 
onne
tedto a 
urrent generator produ
ing an alternating 
urrent and to a volt-meter measuring the voltage 
hange a
ross the 
oil. One of the 
oilsis ex
ited by its 
urrent generator to 
reate a primary ele
tromagneti
�eld whi
h in turn indu
es an eddy 
urrent in the 
ondu
tive materialnearby. This �ow is named eddy 
urrent. The presen
e of 
ondu
tivemagneti
 deposits distorts the eddy 
urrent �ow and leads to a 
urrent
hange in the two 
oils, whi
h is measured by the linked voltmeters interms of impedan
e. This measurement is 
alled ECT signal.
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In the �rst and major part of the paper we aim to estimate the deposit shape given ECT signalssupposing that the physi
al nature of deposit is a priori known. We shall employ for that purposea shape optimization s
heme based on evaluation of the shape derivative of the measured signal withrespe
t to the deposit shape. We may refer to Murat and Simon [18, 19℄, Delfour and Zolésio [10℄ andAllaire [1℄ for a general introdu
tion to shape optimization. The work of Pantz [21℄ on shape derivativesof heat equation with jumps of 
ondu
tivity inspires our derivation of material derivative of eddy 
urrentequation. One 
an also think of other inversion strategies su
h as inversion methods based on topologi
alderivatives (Guzina and Bonnet [7,12℄) or the level-set approa
h (Santosa [23℄, Dorn and Lesselier [11℄).Adapting these methods to the setting of our problem (for instan
e the ba
ks
attering measurements
on�guration) would be indeed of interest. From the engineering point of view, an inversion approa
htrying to �nd the linearized relationship between ECT signals and some shape parameters using �nitedi�eren
es is widely applied in industry [3,5,6,8,24�26℄. This approa
h generally applied to dete
t defe
ts
hara
terized by limited parameters is nevertheless too restri
ted for general shape re
onstru
tions.The inversion s
heme we propose 
ombines shape derivatives with a standard gradient des
ent strategyto minimize a least square 
ost fun
tional. In order to stabilize the gradient we regularize the des
entdire
tion by solving a Lapla
e-Beltrami problem on the deposit boundary. Similar regularization methodsare dis
ussed and applied in the works of Ni
olas [20℄ and Chaulet [9℄. We validate our pro
edure throughsome numeri
al experiments that 
learly demonstrate that the ECT signals are 
apable to provide goodestimates on the deposit shapes.In the se
ond part of the paper we dis
uss inversion s
hemes to re
onstru
t both shape and mate-rial parameters of magneti
 deposits in SGs. While retrieving either the 
ondu
tivity or the magneti
permeability is possible given known deposit shape, a

urate simultaneous re
onstru
tion of both pa-rameters requires a rather good initial guess. Re
onstru
ting the shape and one of the parameters is stillrather sensitive to the initial guess. However we show that the sensitivity with respe
t to shape is mu
hmore robust. Reasonably a

urate estimates of shape 
an be obtained with a small error on materialparameters.Let us brie�y outline the 
ontent of the paper. Se
tion 2 re
alls the eddy 
urrent model for ax-isymmetri
 
on�gurations and explain di�erent impedan
e measurement modes and their evalution fromaxisymmetri
 eddy 
urrent models. Se
tion 3 is then dedi
ated to 
hara
terizing the shape derivativeof the solution and the impedan
e measurements with respe
t to the deposit shape. We also give arepresentation of the impedan
e derivative using the adjoint state te
hnique. The shape re
onstru
tions
heme together with numeri
al examples validating this s
heme is given in Se
tion 4. We then analyzein Se
tion 5 the re
onstru
tion of physi
al parameters for known geometries of the deposit. Finally, wedis
uss the simultaneous re
onstru
tion of both shape and physi
al parameters of a deposit in Se
tion 6.2 Modeling ECT signals for axisymmetri
 
on�gurations
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r∗,z∗Figure 2: 3-D and 2-D representations of eddy
urrent probe testing a tube 
overed by deposits.

A
tive 
oils generate an ele
tri
 �eldE and a magneti
�eld H that satisfy the Maxwell's equations
{
curlH + (iωǫ− σ)E = J in R

3,

curlE − iωµH = 0 in R
3,

(1)where J is the applied ele
tri
 
urrent density (sat-isfying divJ = 0), and ω, ǫ, µ, σ respe
tively denotethe frequen
y, the ele
tri
al permittivity, the magneti
permeability and the 
ondu
tivity.In an ECT experiment, the probe 
onsisting of t-wo 
oils moves along the axis of the SG tube fromverti
al position zmin to zmax. At ea
h position ζ ∈
[zmin, zmax], we get an impedan
e measurement (ECTsignal) Zmeas(ζ). A

ording to [4, (10a)℄, in the 3-D
ase the impedan
e measured in the 
oil k when the2



ele
tromagneti
 �eld is indu
ed by the 
oil l writes
△Zkl =

1

I2

∫

∂Ω3D
d

(E0
l ×Hk −Ek ×H

0
l ) · n dS,where Ω3D

d ⊂ R
3 is the deposit domain, (E0

l ,H
0
l ) are the ele
tri
 and magneti
 �elds in the deposit-free
ase with 
orresponding permeability µ0 and 
ondu
tivity σ0, while (Ek,Hk) are the �elds in the 
asewith deposits. Using the divergen
e theorem and Maxwell's equations (1) one has

△Zkl =
1

I2

∫

Ω3D
d

div (E0
l ×Hk −Ek ×H

0
l ) dx

=
1

I2

∫

Ω3D
d

(curlE0
l ·Hk −E

0
l · curlHk − curlEk ·H0

l +Ek · curlH
0
l ) dx

=
1

iωI2

∫

Ω3D
d

(
(
1

µ
−

1

µ0
) curlEk · curlE0

l −
(
iω(σ − σ0) + ω2(ǫ − ǫ0)

)
Ek ·E0

l

)
dx.The eddy 
urrent approximation 
orresponds to low frequen
y and high 
ondu
tivity regimes, that is

ωǫ≪ σ. Hen
e we get the approximation
△Zkl ≃

1

iωI2

∫

Ω3D
d

(
(
1

µ
−

1

µ0
) curlEk · curlE0

l − iω(σ − σ0)Ek ·E0
l

)
dx. (2)In an axisymmetri
 setting, for a ve
tor �eld a we denote by am = arer + azez its meridian andby aθ = aθeθ its azimuthal 
omponent. A ve
tor �eld a is axisymmetri
 if ∂θa vanishes. Then theMaxwell's equations (1) de
ouple into two systems, one for (Hθ,Em) and the other for (Hm,Eθ). Thesolution to the �rst system vanishes if J is axisymmetri
. Substituting Hm in the se
ond system yieldsthe se
ond-order equation for Eθ = Eθeθ,

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ ω2(ǫ+ iσ/ω)Eθ = −iωJθ in R

2
+,with R

2
+ := {(r, z) : r > 0, z ∈ R}. Under the eddy 
urrent approximation (ωǫ≪ σ) one has

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ iωσEθ = −iωJθ in R

2
+, (3)with a Diri
hlet boundary 
ondition at r = 0 due to symmetry: Eθ|r=0 = 0, and a de
ay 
ondition

Eθ → 0 as r2 + z2 → ∞ at in�nity. We then obtain
△Zkl =

2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇(rEθ,k) · ∇(rE0

θ,l)− iω(σ − σ0)Eθ,kE
0
θ,lr

)
dr dz

=
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇wk · ∇w0

l

r
− iω(σ − σ0)

wkw
0
l

r

)
dr dz, (4)where we have set

wj := rEθ,j , w
0
j := rE0

θ,j , j = 1, 2.We shall assume that µ and σ are in L∞(R2
+) su
h that µ ≥ µv > 0 on R

2
+ and that σ ≥ 0 and σ = 0for r ≥ r0 su�
iently large. Then problem (3) has a unique solution Eθ ∈ H(R2

+) if one assumes forinstan
e that Jθ ∈ L2(R2
+) with 
ompa
t support where we used the notation for any Ω ⊂ R

2
+

H(Ω) :=
{
v : r

1/2(1 + r2)−
λ/2v ∈ L2(Ω), r−

1/2∇(rv) ∈ L2(Ω)
}where λ 
an be any real > 1 and where ∇ := (∂r, ∂z)

t (see [13, Proposition 2.2℄ for detailed proof ofthe well-posedness of problem (3), or more pre
isely, of its equivalent variational formulation). In the3



following it will be more 
onvenient to work with w := rEθ ∈ H̃(Ω) := {v : rv ∈ H(Ω)}. This �eldsatis�es the variational formulation
a(w,ϕ) :=

∫

Ω

(
1

µr
∇w · ∇ϕ̄−

iωσ

r
wϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz ∀ϕ ∈ H̃(Ω) = {v : rv ∈ H(Ω)} (5)with Ω = R
2
+ and J = Jθ. The solution to (5) satis�es (in the weak sense)

− div

(
∇w

µr

)
− iωσ

w

r
= iωJ in Ω. (6)Let us already indi
ate that for numeri
al purposes, the 
omputational domain will be trun
ated inradial dire
tion at r = r∗ where r∗ is su�
iently large and impose a Neumann boundary 
ondition on

r = r∗ (see Figure 2). Then the solution for the trun
ated problem would satisfy (5) with Ω = Br∗ :=
{(r, z) ∈ R

2 : 0 ≤ r ≤ r∗}. This is why we shall use in the sequel the variational formulation (5) withthe generi
 notation for the variational spa
e H̃(Ω) with Ω denoting R
2
+ or Br∗ . We also re
all that thevariational formulation with Ω = Br∗ 
an be equivalently redu
ed to a variational formulation posed on

Br∗,z∗ = {(r, z) ∈ R
2 : 0 ≤ r ≤ r∗, |z| < z∗} by introdu
ing appropriate Diri
hlet-to-Neumann operatorson z = ±z∗. This would be 
onvenient for a

elerating numeri
al evaluation of the solution (see [13℄).As a 
orollary of the well-posedness of the problem (3) for Eθ we 
an state:Corollary 2.1. Assume that µ and σ are in L∞(R2

+) su
h that µ ≥ µv > 0 on R
2
+ and that σ ≥ 0 and

σ = 0 for r ≥ r0 su�
iently large. If the sour
e J ∈ L2(Ω) with 
ompa
t support, then the variationalformulation (5) has a unique solution w in H̃(Ω).Let us �nally note that in pra
ti
e, the impedan
es are measured either in the absolute mode, denotedby ZFA, or in the di�erential mode, denoted by ZF3. From [22℄, we have




ZFA =
i

2
(△Z11 +△Z21) absolute mode,

ZF3 =
i

2
(△Z11 −△Z22) di�erential mode. (7)

Ωv

Γ

Ωd

Ωt

rt1rt2

Ωs

z

rFigure 3: Sket
h of an EC-T problem of steam generatordeposit in 2-D axisymmetri
setting.

Notation: In the 2-D axisymmetri
 
on�guration in the Orz plan (Fig-ure 3), the tube is represented by Ωt := {(r, z) ∈ Ω : rt1 < r < rt2} with
0 < rt1 < rt2 the inner and outer radius of the tube wall. We denote by
Ωs the domain inside the tube (r < rt1) whi
h 
ontains the support of thesour
e: suppJ ⊂ Ωs. The deposit is at the shell side of the tube, that is
Ωd ⊂ {(r, z) ∈ Ω : r > rt2}. We denote by Ωv the va
uum domain outsidethe tube Ωv := {(r, z) ∈ Ω : r > rt2} \ Ωd. Then we have Ω = ∪i∈ΛΩiwhere Λ = {s, t, d, v} is a set of index designating the above subdomainsof Ω. We will also use the notation Ω∁

d for the 
omplement set of Ωd in
Ω (Ω∁

d = Ω \ Ωd = Ωs ∪ Ωt ∪ Ωv).Remark 2.2. If we assume that µ and σ are pie
ewise 
onstant in ea
hsubdomain Ωi, i ∈ Λ = {s, t, d, v}, then the solution w to problem (5)belongs to H2(Q) for any regular open subset Q of Ωd or Ωv. (Su
hpie
ewise 
onstant material parameters indeed meet the real setting ofECT in steam generators.) This regularity property is due to [16, Chap.2-Th.3.2℄, as Ωd ∪ Ωv = {(r, z) ∈ Ω : r ≥ rt2} is bounded away from
{r = 0} and J ∈ L2(Ω).If we assume in addition that the boundaries ∂Ωi (i ∈ {d, v}) have
C1,1-regularity, then w|Ωi

(i ∈ {d, v}) has H2-regularity till ∂Ωi, in par-ti
ular till their interfa
e Γ := ∂Ωd∩∂Ωv (see [17, Theorem 4.20℄). Hen
ethe tra
es of ∇w|Ωi
(i ∈ {d, v}) on Γ are well de�ned and belong to H1/2(Γ)2.

4



3 Shape derivative of the impedan
e measurementsThe gradient des
ent for shape re
onstru
tion with a least square 
ost fun
tional in the next se
tion isbased on the knowledge of the shape derivative of impedan
e measurements. Due to (4), we shall �rststudy the derivatives of the shape-dependent fun
tion w, solution to the eddy 
urrent problem (5).3.1 Shape and material derivatives of the solutionFor Q a regular open subset of Ω ⊂ R
2, we de�ne a domain deformation as a perturbation of the identity

Id + θ : Q → Qθ = (Id + θ)Q, with θ ∈W 1,∞(R2,R2) and ‖θ‖W 1,∞(R2,R2) < 1.Then Id+ θ is a di�eomorphism in R
2 (see [1, Lemme 6.13℄). In our problem, an admissible deformationshould keep the domains Ωt and Ωs invariant, i.e., suppθ ∩ Ωs = suppθ ∩ Ωt = ∅. Indeed we are mainlyinterested in perturbation �elds θ with support lo
ated in vi
inity of the interfa
e Γ = ∂Ωd∩∂Ωv betweenthe deposit and the va
uum region outside the tube. We denote by [·] the jump operator a
ross Γ, i.e.for any f(x) (x = (r, z)) de�ned in a vi
inity of Γ and any x0 = (r0, z0) ∈ Γ

[f ](x0) := f+(x0)− f−(x0),with f+(x0) = lim
Ωv∋x→x0

f(x) and f−(x0) = lim
Ωd∋x→x0

f(x).Following [1, Se
tion 6.3.3℄ we give the following de�nitions.De�nition 3.1. Let v = v(Q) be a shape-dependent fun
tion that belongs to some Bana
h spa
e B (thatmay depend on Q). If ṽ(θ) := v(Qθ) ◦ (Id + θ) ∈ B, then the material (Lagrangian) derivative V (θ) of vis de�ned as a linear fun
tional with respe
t to θ with values in B su
h that
ṽ(θ) = ṽ(0) + V (θ) + o(θ) in Q,where limθ→0

‖o(θ)‖B

‖θ‖1,∞
= 0. The shape (Eulerian) derivative v′(θ) of v is de�ned by

v′(θ) = V (θ)− θ · ∇v(Q). (8)In the sequel we shall adopt the generi
 notation o(θ) to design a fun
tion su
h that ‖o(θ)‖/‖θ‖1,∞ → 0as θ → 0 where the norm ‖ · ‖ for o(θ) should be 
lear from the 
ontext.Remark 3.2. Using the 
hain rule it is readily seen from De�nition 3.1 that formally
v(Qθ) = v(Q) + v′(θ) + o(θ) in ω ⊂ Q ∩Qθ.Proposition 3.3. Under the same assumptions as in Corollary 2.1, for any admissible shape perturbation

θ ∈ W 1,∞(R2,R2) with ‖θ‖W 1,∞ < 1, the solution w(Ω) of (5) has the material derivative W (θ) satisfying
a(W (θ), φ) = Lθ(φ) ∀φ ∈ H̃(Ω), (9)where Lθ(φ) :=

∫

Ω

{
1

µ

(
−div (θ/r)I +

∇θ +∇θt

r

)
∇w · ∇φ̄+ iωσdiv (θ/r)wφ̄ + iωdiv (Jθ)φ̄

}
dr dz.Proof. We 
onsider the 
hange of variables (Id + θ)−1 : Ωθ ∋ y 7→ x ∈ Ω, and in parti
ular the fa
t that

(∇v) ◦ (Id + θ) = (I +∇θ)−t∇(v ◦ (Id + θ)) = (I +∇θ)−t∇ṽ(θ) ∀v ∈ H̃(Ωθ),where ∇θ is the Ja
obian matrix of θ. Sin
e w(Ωθ) satis�es the variational problem (5) in Ωθ, one getsafter the 
hange of variable,
∫

Ω

(
1

r
+∇

1

r
· θ + o(θ)

)(
1

µ
A(θ)∇w̃(θ) · φ̄− iωσw̃(θ)φ̄| det(I +∇θ)|

)
dr dz

=

∫

Ω

iωJ ◦ (Id + θ)φ̄| det(I +∇θ)| dr dz, (10)with A(θ) := | det(I +∇θ)|(I +∇θ)−1((I +∇θ)−1)t, φ := ϕ ◦ (Id + θ). (11)5



Expanding the above formulation with respe
t to θ and using the identities
det(I + θ) = 1 + div θ + o(θ), (I +∇θ)−1 = I −∇θ + o(θ),the terms of order zero with respe
t to θ give exa
tly the variational formulation on Ω (5), while the �rstorder terms with respe
t to θ yield the formulation (9). Sin
e the sesquilinear form a(·, ·) is 
ontinuousand 
oer
ive, the variational formulation (9) has a unique solution.To simplify the variational formulation (9), we shall prove some preliminary te
hni
al results. Forany regular open subset Q ⊂ Ω, we de�ne a shape-dependent sesquilinear form

α(Q)(u(Q), v(Q)) :=

∫

Q

(
1

µr
∇u · ∇v̄ −

iωσ

r
uv̄

)
dr dz ∀(u, v) ∈ H̃(Q)2. (12)On the boundary ∂Q in the Orz plane, we denote by n = (nr, nz)

t the unit out normal ve
tor andby τ = (−nz, nr)
t the tangential ve
tor. The tangential gradient operator on ∂Q is de�ned by ∇τ :=

∇− n∂n = τ(τ · ∇). Then we have in parti
ular ∇u · ∇v = ∂nu∂nv +∇τu · ∇τv on ∂QLemma 3.4. Assume that µ and σ are 
onstant in Q, that u(Q) ∈ H̃(Q) satis�es in the weak sense
−div

(
1

µr
∇u

)
−

iωσ

r
u = 0 in Q, (13)that v(Q) ∈ H̃(Q), and that their material derivatives (u′(θ), v′(θ)) and shape derivatives (U(θ), V (θ))exist. Suppose in addition that the Hessians D2u and D2v are in L2(Q)2×2. Then the shape derivativeof α(Q)(u(Q), v(Q)) denoted by β(θ) exists for all admissible perturbations θ and is given by

β(θ) =α(Q)(u′(θ), v(Q)) + α(Q)(u(Q), V (θ))

+

∫

∂Q

{
(θ · n)

(
1

µr
∇τu · ∇τ v̄ −

iωσ

r
uv̄

)
−

(
1

µr
∂nu(θ · ∇τ v̄)

)}
ds. (14)The proof of this lemma makes use of the shape derivative te
hniques whi
h are extensively presentedin [1, 10℄. Readers may refer to [15, Chapter 2℄ for te
hni
al details.Assumption 3.5. Under the same assumptions as in Proposition 3.3 for µ, σ, J and θ, we assume inaddition that (µ, σ) are pie
ewise 
onstant and equal to 
onstants (µi, σi) on ea
h subdomain Ωi (i ∈ Λ)of Ω, and that the boundaries ∂Ωi (i ∈ {d, v}) have C1,1-regularity.Proposition 3.6. Under Assumption 3.5, the material derivative W (θ) of w satis�es

a(W (θ), φ) =

∫

Γ

(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ φ̄−

iω[σ]

r
wφ̄

)
ds

+

∫

Ωd∪Ω∁
d

(
1

µr
∇(θ · ∇w) · ∇φ̄−

iωσ

r
(θ · ∇w)φ̄

)
dr dz ∀φ ∈ H̃(Ω). (15)Remark 3.7. The notation ∫

Ωd∪Ωv
means the integrals are evaluated separately on Ωd and on Ω∁

d. Thisis be
ause (θ · ∇w) is not in the fun
tion spa
e H̃(Ω). In fa
t, the jump of µ through the interfa
e Γyields the transmission 
ondition [µ−1∂nw] = 0 on Γ. Thus (θ · ∇w) is dis
ontinuous on Γ

[(θ · ∇w)] = [(θ · n)∂nw + (θ · ∇τw)] = (θ · n)[∂nw] = (θ · n)[µ](µ−1∂nw). (16)However, from Remark 2.2, we have (θ ·∇w)|Ωi
∈ H̃(Ωi) for i ∈ {s, t, d, v}. In 
onsequen
e, the gradientsin the right-hand-side of (15) are well-de�ned and the right-hand-side of (15) de�nes a bounded anti-linear form on H̃(Ω).The assumption of C1,1-regularity of ∂Ωi (i ∈ {d, v}) does not meet the real setting of the ECTproblem, sin
e the deposit is atta
hed to the shell side of the tube (see Figure 3). However, singularitiesthat 
ould o

ur at the points where Γ tou
hes the outer tube wall {r = rt2} do not show up in numeri
altests in Se
tion 4.4. A
tually, the regularization method introdu
ed in Se
tion 4.2 redu
es the singulare�e
t of these problemati
 zones all the less. 6



Proof. We write the sesquilinear form a(·, ·) in (5) as the sum of forms on subdomains where µ and σare 
onstant
a(w,ϕ) =

∑

i∈Λ

αi(Ωi)(w,ϕ),where αi(Q)(·, ·) is de�ned as α(Q)(·, ·) in (12) with µ = µi and σ = σi. We will also denote by βi(θ) theshape derivative asso
iated with αi. We 
hoose the test fun
tion ϕ on Ωθ su
h that φ = ϕ ◦ (Id + θ) on
Ω. Thus, the material derivative of ϕ vanishes. Note that the support of θ is 
ontained in Ωd ∪Ωv, thatthe relation w′(θ) = W (θ) − θ · ∇w holds on Ωd and Ω∁

d respe
tively, and that the solution w satis�esthe transmission 
onditions [w] = [µ−1∂nw] = 0 on Γ. Under the assumptions on µ, σ and Γ, we have inparti
ular that the Hessian D2w is in L2(Ωi)
2×2 for i ∈ {d, v} due to [17, Theorem 4.20℄ (or see Remark2.2). By using a density argument, we 
an assume the test fun
tion ϕ|Ωi

∈ C∞(Ωi) without losing thegenerality, su
h that D2φ ∈ L2(Ωi)
2×2 (i ∈ {d, v}). Then we apply Lemma (3.4) to ea
h subdomain andget shape derivative of a(w,ϕ)

∑

i∈Λ

βi(θ) =
∑

i∈Λ

αi(Ωi)(w
′(θ), φ) −

∫

Γ

[
(θ · n)

(
1

µr
∇τw · ∇τ φ̄−

iωσ

r
wφ̄

)
−

(
1

µr
∂nw(θ · ∇τ φ̄)

)]
ds

=a(W (θ), φ) −

∫

Ωd∪Ω∁
d

(
1

µr
∇(θ · ∇w) · ∇φ̄−

iωσ

r
(θ · ∇w)φ̄

)
dr dz

−

∫

Γ

(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ φ̄−

iω[σ]

r
wφ̄

)
ds.On the other hand, sin
e the support of the sour
e J is 
ontained in Ωs, the shape derivative of theright-hand-side of the variational formulation (5) vanishes. Hen
e, we get the result (15).3.2 Shape derivative of the impedan
eNow that we have the shape and material derivatives of the solution, we 
an 
ompute the shape derivativeof the measured impedan
es. Let w be the solution of problem (5) with 
oe�
ients (µ, σ) and w0 thesolution in a deposit free-
ase, i.e. with 
oe�
ients (µ, σ) = (µ0, σ0). We shall denote by α0(Q) thesesquilinear form α(Q) for (µ, σ) = (µ0, σ0). Following (4) we de�ne the impedan
e measurement as

△Z(Ω) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇w · ∇w0

r
− iω(σ − σ0)

ww0

r

)
dr dz. (17)Proposition 3.8. Under Assumption 3.5, the shape derivative of △Z(Ω) is well de�ned and is given by

△Z ′(θ) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇(W (θ) − θ · ∇w) · ∇w0 −

iω(σ − σ0)

r
(W (θ)− θ · ∇w)w0

)
dr dz

+
2π

iωI2

∫

Γ

(θ · n)

(
(
1

µ
−

1

µ0
)
1

r
∇w · ∇w0 −

iω(σ − σ0)

r
ww0

)
ds. (18)where w′(θ) and W (θ) are respe
tively the shape and material derivative of w.Proof. Sin
e µ, σ, µ0 and σ0 are 
onstant in Ωd, from (4) and the de�nition of α in (12) we have

iωI2

2π
△Z = α(Ωd)(w,w0)− α(Ωd)(w

0, w).The �eld w0 for the deposit-free 
ase is invariant under the shape deformation (Id + θ) (sin
e µ0 and σ0are invariant under the shape deformation (Id + θ)). Thus its shape derivative is zero and 
onsequentlyits material derivative isW 0(θ) = θ ·∇w0 due to the relation (8). In Ωd the �eld w satis�es equation (13)with material parameters µ, σ, while w0 satis�es (13) with µ0 and σ0. We note that w, w0 ∈ H2
loc(Ωd)due to Remark 2.2. Applying Lemma 3.4 and after some 
omputations (
.f. [15℄ for details) one gets

iωI2

2π
△Z ′(θ) = α(Ωd)(w

′, w0)− α0(Ωd)(w
′, w0) +

∫

Γ

(θ · n)

(
(
1

µ
−

1

µ0
)
∇w · ∇w0

r
−

iω(σ − σ0)

r
ww0

)
ds.This is exa
tly expression (18) 
onsidering (8). 7



3.3 Expression of the shape derivative using the adjoint stateThe expression of the gradient △Z ′(θ) shown in (18) 
ontains not only a boundary integral on Γ whoseintegrand depends expli
itly on the shape perturbation θ, but also a volume integral on Ωd with theshape or material derivative of w in the integrand whi
h depends impli
itly on θ via the variationalproblem (15). We shall 
onsider here the Hadamard representation of 
ost fun
tional derivatives usingan appropriately de�ned adjoint state whi
h allows to have an expression of △Z ′(θ) as a boundaryintegral on Γ with integrand expli
itly dependent on θ. This expression is mu
h more appropriate forthe numeri
al s
heme that we shall use for the inverse problem.We de�ne the sesquilinear form
a∗(u, v) := a(v, u) ∀(u, v) ∈ H̃(Ω)2. (19)and we introdu
e the adjoint problem asso
iated with w0 as �nding p ∈ H̃(Ω) su
h that

a∗(p, q) =

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇w0 · ∇q̄ +

iω(σ − σ0)

r
w0q̄

)
dr dz ∀q ∈ H̃(Ω). (20)In parti
ular, p satis�es the jump 
onditions

[p] = 0 and [µ−1∂np] = −(
1

µ
−

1

µ0
)∂nw0 on Γ. (21)Problem (20) has the same stru
ture as (5) sin
e its right-hand-side de�nes a bounded anti-linear formon H̃(Ω). Therefore one 
an 
on
lude:Proposition 3.9. Let w0 ∈ H̃(Ω) be the solution to the eddy 
urrent problem (5) in a deposit-free 
ase,i.e. with (µ0, σ0) instead of (µ, σ). Then, under the same assumptions as in Corollary 2.1 for µ and σ,the variational formulation (20) has a unique solution p in H̃(Ω).Proposition 3.10. Under Assumption 3.5, if p is the solution to the adjoint problem (20), then theshape derivative of the impedan
e △Z given by (4) writes

△Z ′(θ) =
2π

iωI2

∫

Γ

(θ · n)

r

{[
1

µ

]
∇τw · ∇τ (p− w0)

− [µ](µ−1∂nw)

(
(µ0)−1(∂np)+ − (µ0)−1∂nw

0

)
− iω[σ]w(p − w0)

}
ds, (22)where w (resp. w0) is the solution to the weighted eddy 
urrent problem (5) with (resp. without) deposits.Remark 3.11. With the same argument presented in Remark 2.2, one observes that the adjoint state phas also H2-regularity in Ωd and Ωv sin
e w0 ∈ H2(Ωd). In parti
ular, the tangential and normal tra
esof ∇p|Ωi

(i ∈ {d, v}) on Γ are well-de�ned and have H1/2-regularity. Therefore the boundary integrationin formula (22) is well-de�ned.Proof. It is su�
ient on one hand to evaluate (20) with test fun
tion q =W (θ) ∈ H̃(Ω) or q = (θ · ∇w)with the jump 
ondition (16), and on the other hand to set φ = p in the formulaton(15) and 
onsiderthe jump 
ondition for p (21).4 Shape re
onstru
tion of deposits using a gradient method4.1 Cost fun
tionalWe denote by Z the impedan
e measurement either in absolute mode (ZFA) or in di�erential mode(ZF3). Giving the ECT signals Zmeas(ζ) for ζ ∈ [zmin, zmax], the inverse problem aims to approximatethe real deposit domain by an estimate Ωd in simulation so that the ETC signals Z(Ωd, ζ) reprodu
edwith Ωd approa
h Zmeas(ζ). This naturally motivates us to de�ne a least square 
ost fun
tional
J (Ωd) =

∫ zmax

zmin

|Z(Ωd; ζ)− Zmeas(ζ)|
2 dζ (23)8



and apply shape optimization using gradient des
ent. One 
omputes its shape derivative
J ′(θ) =

∫ zmax

zmin

2ℜ
(
Z ′(θ)(Z(Ωd; ζ)− Zmeas(ζ))

)
dζ,where Z ′(θ) (either Z ′

FA(θ) or Z ′
F3(θ)) is a linear 
ombination of △Z ′

kl. A

ording to (22)
△Z ′

kl(θ) =
2π

iωI2

∫

Γ

(θ · n)

r

{[
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
(µ0)−1(∂npl)+ − (µ0)−1∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

}
ds.The shape derivative of the 
ost fun
tional J 
an be written as

J ′(Ωd)(θ) =
2π

ωI2

∫

Γ

(n · θ)g ds,where g = gFA = g11 + g21 or g = gF3 = g11 − g22 a

ording to the measuring mode with
gkl =

∫ zmax

zmin

ℜ

{
(Z(Ωd; ζ)− Zmes(ζ))

1

r

([
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
1

µ0
(∂npl)+ −

1

µ0
∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

)∣∣∣∣
ζ

}
dζ.We remark in parti
ular that if one 
hoose θ su
h that

θ = −γ g n on Γ, (24)where γ is a positive 
onstant, then θ is a minimizing dire
tion of J for γ su�
iently small.4.2 Regularization of the des
ent dire
tionFor an arbitrary parametrization of Ωd, a regularization of the des
ent dire
tion is in general needed sin
ethe shape in
rement given by (24) may 
ause a singularity on Γ (see the numeri
al experiments below).We propose to use the H1(Γ) boundary regularization by solving the following problem for λ ∈ H1(Γ)2:
λ− α△Γλ = gn on Γ, (25)where △Γ is the boundary Lapla
e-Beltrami operator applied element-wise to λ and α > 0 is a regular-ization parameter. The equivalent variational formulation of (25) is,

∀ψ ∈ H1(Γ)2
∫

Γ

(λ · ψ + α∇τλ · ∇τψ) ds =

∫

Γ

gn · ψ ds. (26)Therefore, λ is two orders more regular than gn. If we take θ su
h that
θ = −γλ on Γ, (27)one veri�es that it is also a des
ent dire
tion

J ′(Ωd)(θ) = −γ
2π

ωI2

∫

Γ

(
|λ|2 + α |∇τλ|

2
)
ds ≤ 0. (28)4.3 Inversion algorithmThe inversion pro
edure is done as follows:

• Initialize with a deposit domain Ω0
d. Choose δ > 0 as a threshold in the stopping rule a

ording tothe noise level of the data, and ǫ > 0 as an upper bound for the size of the des
ent gradient.9



• Step k :1. Solve the dire
t problems (5) for the di�erent positions ζ of the 
oils using the deposit shape
Ωk

d and test the stopping rule
J (Ωk

d) ≤ δ2
∫ zmax

zmin

|Zmeas(ζ)|
2 dζ.2. Solve the adjoint problems (20) for the di�erent 
oil positions and for the deposit shape Ωk

dthen evaluate the 
orresponding g.3. Get a regularized des
ent dire
tion θk (see (25) and (27)). The parameter γ in (24) is evaluatedat the �rst step (k = 1) su
h that γmax |g| ≤ ǫ.4. Go to step k + 1 with a deposit domain
Ωk+1

d = (Id + θk)Ωk
d.4.4 Numeri
al testsWe shall 
onsider here some numeri
al inversion tests for deposits for geometri
al 
on�gurations depi
tedin Figure 2. The numeri
al values of physi
al parameters are 
hosen a

ording to the materials (e.g. tubeand magnetite) and the setting used for non-destru
tive eddy 
urrent testing of steam generators:

• The tube is de�ned by Ωt = {(r, z) : rt1 ≤ r ≤ rt2} with rt1 = 9.84mm, rt2 = 11.11mm. Its
ondu
tivity is σt = 9.7 × 105S/m and its magneti
 permeability is µt = 1.01µv, where µv is thepermeability of va
uum.
• The deposit has in general a relatively low 
ondu
tivity: σd = 1 × 104S/m. It 
an be magneti
:permeability µd = 10µv or non-magneti
: µd = µv.
• The operating frequen
y for the 
oils is ω = 100kHz, the dimensions of one 
oil are 0.67mmin length (radial dire
tion) and 2mm in height (axial dire
tion). Both the two 
oils are lo
ated
7.83mm away from the z-axis and there is a distan
e of 0.5mm between them.

PSfrag repla
ements (a) (b)Figure 4: Examples of meshes used for inversion andgeneration of data. (a) Adapted mesh for solving theforward problem in the inversion pro
ess. (b) Re�nedmesh for generating the observation data.

We remark that the above-des
ribed testsetting (low frequen
y and high 
ondu
tivityregime) allows to apply eddy 
urrent approxi-mation to the full model (see for example [2℄).The numeri
al forward problem is set on abounded domain Br∗,z∗ with r∗ = 30mm and
z∗ = 41mm. It is solved using FreeFem++[14℄ with P1 �nite elements and an adaptedmesh (using the 
ommand adaptmesh). Themesh is adapted a

ording to the solution atea
h step of the iteration su
h that the relativeinterpolation error is less than 1%. The num-ber of degrees of freedom is around 1000 (seeFigure 4(a)). To avoid 
ommitting an inverse
rime when generating syntheti
 data for theinversion pro
ess, we use a re�ned mesh togenerate the impedan
e measurements as giv-en observation data (see Figure 4(b)). Thenumber of degrees of freedom of P1 �nite ele-ment on this mesh is about 6000. Validationof the numeri
al forward model 
an be foundin [13℄.For the inversion we use impedan
e mea-surements either in the pseudo-absolute mode 10



(FA) or in the di�erential mode (F3). The number of verti
al measurement points involved in the re-
onstru
tion will be spe
i�ed for ea
h experiment. The verti
al measurement positions 
hosen for theinversion are lo
alized around the verti
al 
enter of the target deposit. This is justi�ed by the fa
t thatin pra
ti
e, one 
an immediately determine the verti
al lo
ation of the deposit from observed signalvariations while performing the verti
al s
an of the tube. The algorithm parameters for the stoppingrule is set to δ = 1%, 2% or 3% in di�erent 
ases and the in
rement magnitude is set to ǫ = 5× 10−4.Finally let us note that in all subsequent �gures, the target deposit shape is shown in green while there
onstru
ted shape using the inverse algorithm is in red.4.4.1 Parametrized shape re
onstru
tionWe 
onsider a non-magneti
 deposit. We assume that the deposit is re
tangular in the semi-plan R
2
+.Then its shape 
an be parametrized by its thi
kness in the r-dire
tion and the positions in the z-dire
tionof its two horizontal sides. The target shape has 5mm in thi
kness, and its horizontal sides are at ±5mm.To re
onstru
t both the thi
kness and the two verti
al positions of the horizontal sides of the re
t-angular deposit, we use either FA or F3 signals at 41 probe positions with a distan
e of 1mm betweentwo neighboring positions. Figure 5 and Table 1 show the results. We initialize the inverse algorithmwith either a small guess (Figure 5(a)) or a large one (Figure 5(d)). The result from the small guessusing FA signal after 71 iterations is shown in Figure 5(b), and that using F3 signal after 43 iterationsis shown in Figure 5(
). From a large guess, we get the re
onstru
tion result in Figure 5(e) using FAsignal after 24 iterations, and that in Figure 5(e) using F3 signal after 112 iterations. In Figures 5(g) �5(j) we observe the de
rease of the relative error of signals during iterations. However, the de
rease ofthe shape relative error (the di�eren
e of the 
hara
teristi
 fun
tions of the target deposit domain andthe re
onstru
ted domain measured in the L2 norm) may stagnate around 10%, whi
h means that theinformation from the impedan
e measurements is no longer su�
ient to distinguish the re
onstru
tedshape from the target shape. thi
kness verti
al position 1 verti
al position 2target shape 5mm 5mm −5mmfrom small guess, FA 5.236mm 4.872mm −4.870mmfrom small guess, F3 4.882mm 5.017mm −5.017mmfrom large guess, FA 5.015mm 5.041mm −5.039mmfrom large guess, F3 5.123mm 4.983mm −4.982mmTable 1: Parameter re
onstru
tions of a re
tangular non-magneti
 deposit.4.4.2 Re
onstru
tion of deposits with arbitrary shapesIn this se
tion we 
onsider the re
onstru
tion of the deposit without a priori knowledge on its shape.In Figure 6 the target non-magneti
 deposit shape is a re
tangle. Sin
e we do not have any informationof the shape, we take a small semi-dis
 as the initial guess in the inversion algorithm. We use either FAor F3 signals for inversion at 41 probe positions with a distan
e of 1mm between ea
h two neighboringpositions. The algorithm without boundary regularization using FA signal is blo
ked due to singularitieson the interfa
e between the deposit and the va
uum (Figure 6(b)).To regularize the gradient using the method in Se
tion 4.2, we take α = 1×10−5 as the regularizationparameter in the boundary regularization problem (25). This is an ad ho
 
hoi
e. Our numeri
altests suggest that relatively moderate variations of this parameter does not a�e
t the �nal result. Theregularized algorithm using FA signals ends after 201 iterations with a good estimate (Figure 6(
))and that using F3 signals gives the result shown in Figure 6(d) after 412 iterations. We also show inFigures 6(e) and 6(f) the de
rease of the 
ost fun
tional, the absolute value of gradient and the relativeerror on the shape during iterations.In Figure 7 we show the re
onstru
tions of a non-magneti
 semi-dis
 issued from di�erent initialshapes (Figures 7(a) or 7(
)) using FA signals. The 
orresponding re
onstru
tion results shown in Figure11
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(j) F3Figure 5: Parameter re
onstru
tions of a re
tangular non-magneti
 deposit. δ = 1%. (a) Initializationwith a small guess. (b) Re
onstru
tion from small initial guess using FA signals. (
) Re
onstru
tionfrom small initial guess using F3 signals. (d) Initialization with a large guess. (e) Re
onstru
tion fromlarge initial guess using FA signals. (f) Re
onstru
tion from large initial guess using F3 signals. (g)-to-(j)Relative errors on signal and shape during iterations.7(b) (37 iterations) and in Figure 7(d) (52 iterations) for the non-magneti
 deposits are satisfying, as we
an observe the de
rease of the relative errors of signals and deposit shapes in Figures 7(e) and 7(f).Finally Figure 8 shows the re
onstru
tion of a non 
onvex deposit shape using di�erential mode (F3)impedan
e signals. For the non-magneti
 deposit (Figures 8(a) � 8(b)), we 
hoose the stopping threshold
δ = 2% and the algorithm ends after 139 iterations. For the magneti
 deposit (Figures 8(
) � 8(d)), with
δ = 3%, the algorithm ends after 786 iterations.4.4.3 Stability to noisy dataIn this se
tion we test the robustness of the above shape re
onstru
tion method with regard to the givendata noise (FA or F3 signals). Supposing that the relative arti�
ial noise level equals η, we 
hoose forthe inversion algorithm a stopping rule su
h that the relative signal error is below η + δ where δ is thestopping rule for the 
ase without data noise that we used in the previous tests.Figure 9 and Table 2 show parameter re
onstru
tions of a non-magneti
 re
tangular deposit afterarti�
ially adding a random noise ve
tor to the simulated signal data. We re
all that the stopping rule is
δ = 1% for the 
ase without arti�
ial noise. So here we 
hoose the stopping rules su
h that the relativesignal error is inferior to the arti�
ial noise level plus δ = 1%. We observe that when the arti�
ial noiselevel is under 5%, the results are quite satisfying even 
ompared to the re
onstru
tion results from datawithout arti�
ial noise. (Figure 5 and Table 1).Figure 10 shows the shape re
onstru
tion results of a general non-magneti
 deposit from arti�
ially12
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(f) F3Figure 6: Re
onstru
t a re
tangular non-magneti
 deposit. δ = 1%. (a) Initialization with a smallsemi-dis
. (b) Blo
ked non-regularized inversion algorithm. (
) Regularized re
onstru
tion using FAsignals. (d) Regularized re
onstru
tion using F3 signals. (e) � (f) Signal and shape relative errors duringregularized re
onstru
tion iterations.
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(f) initial: small semi-dis
Figure 7: Re
onstru
t a non-magneti
 semi-dis
 shaped deposit. δ = 1%. (a) Initialization with a smallre
tangle. (b) Re
onstru
tion from initial small re
tangle. (
) Initialization with a small semi-dis
. (d)Re
onstru
tion from initial small semi-dis
. (e) � (f) Relative signal and shape errors during iterations.noised F3 signals. The stopping rule of the inversion algorithm for the 
ase without arti�
ial noise was
δ = 2%. So here the algorithm is stopped on
e the relative error of F3 signals is below the arti�
ial noiselevel plus δ = 2%. The re
onstru
tion results are also satisfying.5 On the re
onstru
tion of deposit 
ondu
tivity and permeabilityThe 
ondu
tivity and the permeability are the two 
riti
al physi
al parameters whi
h 
hara
terize thematerial nature of the deposit. The exa
t values of these parameters, 
ru
ial for the modeling, the13
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(f) magneti
Figure 8: Re
onstru
t a deposit with a non-
onvex shape. δ = 2% for the non-magneti
 
ase, δ = 3% forthe magneti
 
ase. (a) Initialization of a non-magneti
 deposit with a thin line. (b) Re
onstru
tion ofthe non-magneti
 deposit. (
) Initialization of a magneti
 deposit with a large shape. (d) Re
onstru
tionof the magneti
 deposit. (e) � (f) Relative signal and shape errors during iterations.
(a) 1% noise (b) 5% noise (
) 10% noise (d) 20% noiseFigure 9: Parameter re
onstru
tions of a re
tangular non-magneti
 deposit from arti�
ially noised FAsignals. noise level thi
kness verti
al position 1 verti
al position 2target shape 5mm 5mm −5mm

1% 5.336mm 4.788mm −4.766mm
5% 5.286mm 4.746mm −4.645mm
10% 5.232mm 4.719mm −4.527mm
20% 5.138mm 4.682mm −4.325mmTable 2: Parameter re
onstru
tions of a re
tangular non-magneti
 deposit from arti�
ially noised FAsignals.simulation and the re
onstru
tion of the deposit is usually not known with a high pre
ision in theindustrial 
ontext. In this se
tion we dis
uss the re
onstru
tion of these parameters for known shapes.The simultaneous re
onstru
tion of the parameters and the shape is dis
ussed in the last se
tion.

14



(a) 1% noise (b) 5% noise (
) 10% noise
0 20 40 60 80 100

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

iteration

lo
g1

0

noise 1%

 

 

F3 signal relative error
shape relative error
stopping criteria 3%

(d) 1% noise 0 5 10 15 20 25 30 35 40 45
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

iteration

lo
g1

0

noise 5%

 

 

F3 signal relative error
shape relative error
stopping criteria 7%

(e) 5% noise 0 2 4 6 8 10 12 14 16
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

iteration

lo
g1

0

noise 10%

 

 

F3 signal relative error
shape relative error
stopping criteria 12%

(f) 10% noiseFigure 10: Re
onstru
t a deposit with a non-
onvex shape from arti�
ially noised F3 signals. (a) -to-(
) Re
onstru
ted shapes from signals of di�erent arti�
ial noise level. (d) -ro- (f) Relative signal andshape errors during iterations.5.1 The 
ost fun
tional derivative with respe
t to the 
ondu
tivityWe 
onsider the eddy 
urrent problem (5). We denote by δw the variation of w due to a small in
rementof the 
ondu
tivity σd → σd + δσd that is assumed to be 
onstant. Therefore,
∫

Ω

(
1

µr
∇(w + δw) · ∇ϕ̄−

iω(σ + δσdχΩd
)

r
(w + δw)ϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz ∀ϕ ∈ H̃(Ω)where χΩd
is the index fun
tion of the domain Ωd. After developing this formulation, the terms of orderzero of the variation give the original problem (5). The derivative of w with respe
t to σd writes:

∂σw := lim
δσd→0

δw/δσdwhere the limit holds in H̃(Ω). Then the terms of �rst order of the variation in the above formulationas δσd goes to zero imply
∫

Ω

(
1

µr
∇(∂σw) · ∇ϕ̄−

iωσ

r
(∂σw)ϕ̄

)
dr dz =

∫

Ωd

iω

r
wϕ̄ dr dz. (29)Now we 
onsider the impedan
e measurement given by (4). If ∂σ(△Zkl) is its derivative with respe
t to

σd, then
∂σ(△Zkl) =

2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇(∂σwk) · ∇w0

r
− iω(σ − σ0)

(∂σwk)w
0

r
− iω

wkw
0

r

)
dr dz. (30)Similarly, we denote by ∂σJ the derivative of the 
ost fun
tional J given by (23) with respe
t to thevariation of σd. We get

∂σJ =

∫ zmax

zmin

2ℜ
{
∂σZ(Ωd; ζ)(Z(Ωd; ζ) − Zmeas(ζ))

}
dζ, (31)where a

ording to the impedan
e measuring mode,

∂σZ(Ωd; ζ) =





∂σZFA =
i

2
(∂σ(△Z11) + ∂σ(△Z21)),

∂σZF3 =
i

2
(∂σ(△Z11)− ∂σ(△Z22)).15



To minimize the 
ost fun
tional with respe
t to σd we shall use a des
ent gradient method based of anumeri
al evaluation of the derivative provided by (31).5.2 Derivative with respe
t to the magneti
 permeabilitySimilarly to the previous se
tion, we 
onsider here a small in
rement of the deposit magneti
 permeability
µd → µd + δµd whi
h leads to a small variation of the �eld w → δw. Then from (5) we derive

∫

Ω

(
1

(µ+ δµdχΩd
)r
∇(w + δw) · ∇ϕ̄−

iωσ

r
(w + δw)ϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz.If we denote by
∂µw := lim

δµd→0
δw/δµd,where the limit is understood with respe
t to the H̃(Ω) norm, then one veri�es that ∂µw satis�es

∫

Ω

(
1

µr
∇(∂µw) · ∇ϕ̄−

iωσ

r
(∂µw)ϕ̄

)
dr dz =

∫

Ωd

1

µ2r
∇w · ∇ϕ̄dr dz ∀ϕ ∈ H̃(Ω). (32)Then the derivative of the impedan
e measurement △Zkl with regard to the deposit magneti
 perme-ability, is given by the following expression:

∂µ(△Zkl) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇(∂µwk) · ∇w0

l

r
− iω(σ − σ0)

(∂µwk)w
0
l

r
−

∇wk · ∇w0
l

µ2r

)
dr dz. (33)If ∂µJ represents the derivative of the 
ost fun
tional J with respe
t to the variation of µd, then

∂µJ =

∫ zmax

zmin

2ℜ
{
∂µZ(Ωd; ζ)(Z(Ωd; ζ)− Zmeas(ζ))

}
dζ, (34)due to (23), where a

ording to the impedan
e measurement mode,

∂µZ(Ωd; ζ) =






∂µZFA =
i

2
(∂µ(△Z11) + ∂µ(△Z21)),

∂µZF3 =
i

2
(∂µ(△Z11)− ∂µ(△Z22)).To minimize the 
ost fun
tional with respe
t to µd we shall also use a des
ent gradient method based ofa numeri
al evaluation of the derivative provided by (34).5.3 Numeri
al tests5.3.1 Re
onstru
tion of the 
ondu
tivity or of the magneti
 permeabilityWe �rst 
onsider the re
onstru
tion of the 
ondu
tivity of a non-magneti
 deposit (µd = µv) with

σd = 1×104S/m in a known shape (a 5mm×10mm re
tangle). We initialize the inversion algorithm witheither a small guess of the 
ondu
tivity (5× 103S/m) or a large guess (3× 104S/m). The re
onstru
tionresults using FA signals at one probe position are given in Figures 11(a) � 11(b).We then want to re
onstru
t the magneti
 permeability of a magneti
 deposit with σd = 1×104S/m,
µd = 10µv and in a known shape (a 2mm× 10mm re
tangle) at the shell side of the tube. We initializethe inversion algorithm with either a small guess of the magneti
 permeability (2µv) or a large guess(15µv). Results are given in Figure 11(
) � 11(d).One observes that the re
onstru
tion results for 
ondu
tivity are satisfying (relative error of 
ondu
-tivity is less than 1% when the 
ost fun
tional is under 10−4, i.e. when relative di�eren
e of FA signalsbetween given data and simulation is less than 1%), while the proposed methods are not satisfa
tory forpermeability re
onstru
tion. In fa
t, these results show that eddy 
urrent signals are more sensitive to
ondu
tivity 
hanges than to permeability 
hanges.16
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µ relative error
cost FA (d)Figure 11: Re
onstru
tion of the 
ondu
tivity or of the magneti
 permeability using FA signals. (a)� (b) Condu
tivity re
onstru
tion for a non-magneti
 deposit with �xed µd = µv. (a) Initial guess

σguessd = 5 × 103S/m, result σd = 9901S/m after 18 iterations. (b) Initial guess σguessd = 3 × 104S/m,result σd = 10079S/m after 17 iterations. (
) � (d) Permeability re
onstru
tion for a magneti
 depositwith �xed σd = 104S/m. (
) Initial guess µguessd = 2µv, result µd = 9.69µv after 364 iterations. (d)Initial guess µguessd = 15µv, result µd = 10.2µv after 24 iterations.5.3.2 Simultaneous re
onstru
tion of 
ondu
tivity and the magneti
 permeabilityWe try to re
onstru
t here both the 
ondu
tivity and the magneti
 permeability with FA signals atone probe position. The 
ondu
tivity and the magneti
 permeability of the target re
tangular deposit(2mm× 10mm) are respe
tively σt = 1× 104S/m, µt = 10µv. The initialization of these two parameters
an be either small or large. The results are shown in Figure 12 and Table 3.initial guess re
onstru
ted number of iterationstarget deposit (10000, 10)test 1 (5000, 5) (9309, 9.65) 44test 2 (5000, 20) (10666, 10.37) 12test 3 (20000, 5) (10649, 9.78) 42test 4 (20000, 20) (10921, 10.24) 13Table 3: Re
onstru
tion of the 
ondu
tivity and the relative magneti
 permeability (σd(S/m), µd) usingFA signals.We observe that the simultaneous re
onstru
tion results are not a

urate even if the normalized 
ostfun
tional is under 10−4. This is explained by the extremely low dependen
e of the 
ost fun
tional withrepe
t to simultaneous variations of the two parameters. This is 
learly indi
ated by Figure 13(a). Wehen
e 
on
lude that the these eddy-
urrent measurements are not really suited to determine physi
alparameters.
17
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onstru
tion of both the 
ondu
tivity and the magneti
 permeability using FA signals.
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(
) permeability and thi
knessFigure 13: Interferen
e between physi
al parameters and shape parameter. (a) Between 
ondu
tivity andmagneti
 permeability. (b) Between 
ondu
tivity and thi
kness. (
) Between permeability and thi
kness.6 On the re
onstru
tion of the shape and physi
al parametersWe would like to dis
uss here the possibility of re
onstru
ting simultaneously the 
ondu
tivity (or themagneti
 permeability) and the shape of the deposit by 
oupling the inversion algorithm for shapere
onstru
tion in Se
tion 4.3 and that for 
ondu
tivity (magneti
 permeability) re
onstru
tion. We
onsider the simplest 
ases in whi
h the deposit shape is a re
tangle with unknown thi
kness but with�xed horizontal sides.In the �rst 
ase with unknown 
ondu
tivity and thi
kness, the target deposit is a 5mm × 10mmre
tangle with the σd = 104S/m and µd = µv. For re
tangular deposits with the range of thi
kness from
4mm to 6mm and the range of 
ondu
tivity from 8× 103S/m to 1.2× 104S/m, we show in Figure 13(b)the value (in log10) of the 
ost fun
tional of the absolute mode impedan
e measurements (FA) normalizedwith regard to the FA impedan
e measurement of the target deposit.In the se
ond 
ase where the magneti
 permeability and the thi
kness are to re
onstru
t, the targetdeposit is a 2mm× 10mm re
tangle with σd = 104S/m and µd = 10µv. For re
tangular deposits withthe range of thi
kness from 1mm to 3mm and the range of relative magneti
 permeability from 8 to 12,we show similarly the normalized 
ost fun
tional for FA signals in Figure 13(
).In both two 
ases the interferen
es between the physi
al parameters and the geometri
al parameter(the thi
kness) are too important to hope obtaining a pre
ise re
onstru
tion. For instan
e, σ = 0.95 ×18



104S/m and a thi
kness = 5.6mm would lead to a relative magnitude of the 
ost fun
tional of order 10−4whi
h rea
hes the stopping threshold of the inversion algorithm. Similarly, µ = 0.95µv and a thi
kness=2.2mm would lead to a relative magnitude of the 
ost fun
tional of order 10−4.
σ(S/m) µ/µv initial guess re
onstru
tiontarget deposit 1× 104 10 2mmtest 1 0.98× 104 10 0.5mm 1.91mmtest 2 0.98× 104 10 4mm 2.08mmtest 3 1× 104 9.8 0.5mm 1.96mmtest 4 1× 104 9.8 4mm 2.13mmTable 4: Re
onstru
tion of thi
kness of a re
tangular deposit with wrong values of the 
ondu
tivity orthe magneti
 permeability using FA signals.However, with a good initial guess of the 
ondu
tivity and the permeability, shape re
onstru
tion ofdeposits yields reasonable results. We observe in Table 4 that a small error in σ or in µ (2%) would stilllead to a

urate re
onstru
tion of re
tangular deposit shape. In Figure 14, we show the re
onstru
tionresults of general shapes for non-magneti
 deposits (magneti
 permeability equals to µv) with a goodguess of the 
ondu
tivity � either σ1 = 0.98× 104S/m or σ2 = 1.02× 104S/m against the exa
t value ofthe 
ondu
tivity whi
h is 104S/m. With the threshold in the stopping rule δ = 10−4 and an initializationwith small semi-dis
 (see Figure 7(
)) for the re
onstru
tion of a semi-dis
 (Figures 14(a), 14(b) and 14(e))or δ = 2% and an initialization with a thin line (see Figure 8(a)) for the re
onstru
tion of a 
urved shape(Figures 14(
), 14(d) and 14(f)), we observe that the re
onstru
ted shapes are good approximations ofthe target shapes.
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urved shapeFigure 14: Re
onstru
tion with inexa
t but good guess of 
ondu
tivity (σ1 = 0.98 × 104S/m or σ2 =

1.02 × 104S/m) against exa
t value σd = 104S/m for non-magneti
 deposits. (a) Re
onstru
tion of asemi-dis
 using FA signals with 
ondu
tivity guess σ1 after 53 iterations. (b) Re
onstru
tion of a semi-dis
 using FA signals with 
ondu
tivity guess σ2 after 96 iterations. (
) Re
onstru
tion of a 
urved shapeusing F3 signals with 
ondu
tivity guess σ1 after 155 iterations. (d) Re
onstru
tion of a 
urved shapeusing F3 signals with 
ondu
tivity guess σ2 after 133 iterations. (e) � (f) Relative signal and shape errorsduring iterations.
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