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Identification of magnetic deposits in 2-D axisymmetric
eddy current models via shape optimization

Zixian Jiang® Houssem Haddar! Armin Lechleiter! Mabrouka El-Guedri®

Abstract

The non-destructive control of steam generators is an essential task for the safe and failure-free
operation of nuclear power plants. Due to magnetite particles in the cooling water of the plants,
a frequent source for failures are magnetic deposits in the cooling loop of steam generators. From
eddy current signals measured inside a U-tube in the steam generator, we propose and analyze
a regularized shape optimization algorithm to identify magnetic deposits outside the U-tube with
either known or unknown physical properties. Motivated by the cylindrical geometry of the U-tubes
we assume an axisymmetric problem setting, reducing Maxwell’s equations to a 2-D elliptic eddy
current problem. The feasibility of the proposed algorithms is illustrated via numerical examples

demonstrating in particular the stability of the method under noise.

Keywords: 2-D axisymmetric eddy current model, shape optimization, boundary regularization.

1 Introduction

Steam generators (SGs, see Figure[l)) are critical components in nuclear
power plants. The reactor’s core heats up water that flows through the
primary loop of a SG. This primary loop consists of many thin, U-
shaped tubes and serves to boil cooling water in a secondary loop on
the shell side of the U-tubes. The resulting steam is then delivered
to turbines generating electrical power. Due to magnetite particles
contained in the cooling water, after a certain time of exploitation,
conductive magnetic deposits are observed on the shell side of the U-
tubes. Most often, such deposits occur at the level of the support plates.
They reduce the efficiency of the energy transfer between the primary
and secondary loops and can harm the structure safety by clogging the
water circuit between the U-tubes and the support plates.

Without disassembling the SG, the lower part of the U-tubes is in-
accessible for normal inspections. Therefore, a non-destructive exami-
nation procedure, called eddy current testing (ECT), is widely used in
industry to detect the presence of deposits.

In an eddy current testing procedure, one introduces a probe con-
sisting of two coils of wire in the tube. Each of these coils is connected
to a current generator producing an alternating current and to a volt-
meter measuring the voltage change across the coil. One of the coils
is excited by its current generator to create a primary electromagnetic
field which in turn induces an eddy current in the conductive material
nearby. This flow is named eddy current. The presence of conductive
magnetic deposits distorts the eddy current flow and leads to a current
change in the two coils, which is measured by the linked voltmeters in
terms of impedance. This measurement is called ECT signal.
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Figure 1: Steam generator
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In the first and major part of the paper we aim to estimate the deposit shape given ECT signals
supposing that the physical nature of deposit is a priori known. We shall employ for that purpose
a shape optimization scheme based on evaluation of the shape derivative of the measured signal with
respect to the deposit shape. We may refer to Murat and Simon [I8][19], Delfour and Zolésio [10] and
Allaire [1] for a general introduction to shape optimization. The work of Pantz [21] on shape derivatives
of heat equation with jumps of conductivity inspires our derivation of material derivative of eddy current
equation. One can also think of other inversion strategies such as inversion methods based on topological
derivatives (Guzina and Bonnet [7[12]) or the level-set approach (Santosa [23], Dorn and Lesselier [11]).
Adapting these methods to the setting of our problem (for instance the backscattering measurements
configuration) would be indeed of interest. From the engineering point of view, an inversion approach
trying to find the linearized relationship between ECT signals and some shape parameters using finite
differences is widely applied in industry [3|516l824H26]. This approach generally applied to detect defects
characterized by limited parameters is nevertheless too restricted for general shape reconstructions.

The inversion scheme we propose combines shape derivatives with a standard gradient descent strategy
to minimize a least square cost functional. In order to stabilize the gradient we regularize the descent
direction by solving a Laplace-Beltrami problem on the deposit boundary. Similar regularization methods
are discussed and applied in the works of Nicolas [20] and Chaulet [9]. We validate our procedure through
some numerical experiments that clearly demonstrate that the ECT signals are capable to provide good
estimates on the deposit shapes.

In the second part of the paper we discuss inversion schemes to reconstruct both shape and mate-
rial parameters of magnetic deposits in SGs. While retrieving either the conductivity or the magnetic
permeability is possible given known deposit shape, accurate simultaneous reconstruction of both pa-
rameters requires a rather good initial guess. Reconstructing the shape and one of the parameters is still
rather sensitive to the initial guess. However we show that the sensitivity with respect to shape is much
more robust. Reasonably accurate estimates of shape can be obtained with a small error on material
parameters.

Let us briefly outline the content of the paper. Section 2] recalls the eddy current model for ax-
isymmetric configurations and explain different impedance measurement modes and their evalution from
axisymmetric eddy current models. Section [ is then dedicated to characterizing the shape derivative
of the solution and the impedance measurements with respect to the deposit shape. We also give a
representation of the impedance derivative using the adjoint state technique. The shape reconstruction
scheme together with numerical examples validating this scheme is given in Section @l We then analyze
in Section [B] the reconstruction of physical parameters for known geometries of the deposit. Finally, we
discuss the simultaneous reconstruction of both shape and physical parameters of a deposit in Section

2 Modeling ECT signals for axisymmetric configurations

Active coils generate an electric field E and a magnetic

I e field H that satisfy the Maxwell’s equations
AR curl H + (iwe —o)E = J in R3, )
Tube 1
| curl E —iwpH =0 in R?,
Coil 1 1| Br. . !
Cort2 where J is the applied electric current density (sat-
o isfying divJ = 0), and w, €, u, o respectively denote
Deposit o " the frequency, the electrical permittivity, the magnetic
o permeability and the conductivity.
e RS IR In an ECT experiment, the probe consisting of t-
B 3 wo coils moves along the axis of the SG tube from

(N

vertical position zmin t0 Zmax. At each position { €
Figure 2: 3-D and 2-D representations of eddy [z z...], we get an impedance measurement (ECT
current probe testing a tube covered by deposits. signal) Z,,cqs(¢). According to [4, (10a)], in the 3-D
case the impedance measured in the coil £ when the



electromagnetic field is induced by the coil [ writes

1
AZM =

= 3D(E? x Hy, — Ey x HY)-ndS,
993

where Q3P C R? is the deposit domain, (E?, H?) are the electric and magnetic fields in the deposit-free
case with corresponding permeability u° and conductivity o, while (Ejy, H}) are the fields in the case
with deposits. Using the divergence theorem and Maxwell’s equations () one has

1
NZy = ﬁ/ div (E} x Hy, — Ey x H})dx
Q3D

1
= ﬁ/ (curl EY - Hy — E} - curl Hy, — curl By, - HY 4 Ej, - curl HY) da
Qsp

1 1 1
=l /91;[) ((; - m)curlE;c ceurl B — (iw(o — 0°) + w?(e — €°)) By, Elo> dz.
The eddy current approximation corresponds to low frequency and high conductivity regimes, that is

we K 0. Hence we get the approximation

1 1 1 0 . 0 0
NZy ~ —— (= — =)curlEy - cwrl E} —iw(c — 0" )E), - E} | da. (2)
ICAJI2 an 1% MO

In an axisymmetric setting, for a vector field a we denote by a,, = a,e, + a,e, its meridian and
by ag = agey its azimuthal component. A vector field a is axisymmetric if dya vanishes. Then the
Maxwell’s equations () decouple into two systems, one for (Hp, E,,) and the other for (H,,, Fy). The

solution to the first system vanishes if J is axisymmetric. Substituting H,, in the second system yields
the second-order equation for Ey = Eyey,

010 0 (10Ey 2 . . .2
o (,ur 5 (TE9)> + P (M 9, > +w(e+io/w)Ey = —iwJy in R7,

with R% := {(r,z) : 7 > 0,z € R}. Under the eddy current approximation (we < o) one has

o (190 0 (10FE . . .
ar (EE(TEQ)) + P (;a—;)) +iwocEy = —iwJy in Rﬁ_, (3)

with a Dirichlet boundary condition at » = 0 due to symmetry: FEy|,—¢ = 0, and a decay condition
Eg — 0 as 72 + 22 — oo at infinity. We then obtain

2 1 1.1
ATy = il / ((— —);V(TEQJC) . V(rEg,l) —iw(o — O’O)EgﬁkEg,lT) drdz
Qq

iwl? w0
2 1 1 . 0 0

:%/ ((__O)MIW(O'O'O)U}]CMZ> deZ, (4)
iwl? Jo, \'pn  p r r

where we have set
w; :=1Eg ;. wl:=rEY i =1,2
j =Tl , Wi =Thy 4, ] = 1,2

We shall assume that p and o are in L°°(R2) such that 4 > p, > 0 on R? and that 0 > 0 and 0 = 0
for r > ro sufficiently large. Then problem (3) has a unique solution Ey € H(R?%) if one assumes for
instance that Jp € L?(R?%) with compact support where we used the notation for any Q C R%

H(Q) = {’U (1) Ve € LHQ), 1AV () € LQ(Q)}

where A can be any real > 1 and where V := (9,,0,)" (see [13, Proposition 2.2| for detailed proof of
the well-posedness of problem (B]), or more precisely, of its equivalent variational formulation). In the



following it will be more convenient to work with w := rEy € H(Q) := {v : rv € H(Q)}. This field
satisfies the variational formulation

a(w, @) = / (ivw Vo — %w@) drdz = / iwJpdrdz Voe HQ) ={v:rve HQ)} (5)
Q Q

with @ = R% and J = Jy. The solution to (B) satisfies (in the weak sense)

— div (@) —iwos =iwJ  in Q. (6)
ur r

Let us already indicate that for numerical purposes, the computational domain will be truncated in
radial direction at r» = r, where r, is sufficiently large and impose a Neumann boundary condition on
r = r, (see Figure ). Then the solution for the truncated problem would satisfy (&) with Q = B,., :=
{(r,2) € R? : 0 < r < r.}. This is why we shall use in the sequel the variational formulation (5] with
the generic notation for the variational space H (Q) with Q denoting R or B,_. We also recall that the
variational formulation with Q = B,., can be equivalently reduced to a variational formulation posed on
By, .. ={(r,z) € R?: 0 <r <r,,|z| < 2.} by introducing appropriate Dirichlet-to-Neumann operators
on z = £z,. This would be convenient for accelerating numerical evaluation of the solution (see [13]).

As a corollary of the well-posedness of the problem (3] for Fy we can state:

Corollary 2.1. Assume that i and o are in L°°(R%) such that p > p, > 0 on R3 and that o > 0 and
o =0 for r > ro sufficiently large. If the source J € L*(Q) with compact support, then the variational
formulation (Bl) has a unique solution w in H(Q).

Let us finally note that in practice, the impedances are measured either in the absolute mode, denoted
by Zpa, or in the differential mode, denoted by Zps. From [22], we have

Zpa = %(AZH + AZy) absolute mode,
Zpg = %(AZH — AZQQ) differential mode.

Notation: In the 2-D axisymmetric configuration in the Orz plan (Fig-
ure [3)), the tube is represented by Q; := {(r,2) € Q : 1y, <1 <71, } with
0 < 7y, < 14, the inner and outer radius of the tube wall. We denote by
), the domain inside the tube (r < r;, ) which contains the support of the
source: suppJ C Q. The deposit is at the shell side of the tube, that is
Qq C {(r,z) € Q:r > ry,}. We denote by 2, the vacuum domain outside
the tube Q, := {(r,z) € Q : 7 > r,} \ Q4. Then we have Q = U;ea;
where A = {s,t,d, v} is a set of index designating the above subdomains 0
of 2. We will also use the notation QS for the complement set of Q4 in ¢
Q@ =0\ =0, UQUQ,). Q,

[y A

I— —

Remark 2.2. If we assume that p and o are piecewise constant in each -

subdomain ;, i € A = {s,t,d,v}, then the solution w to problem ()

belongs to H*(Q) for any reqular open subset Q of Qg or §,. (Such T4, Tty

piecewise constant material parameters indeed meet the real setting of

ECT in steam generators.) This reqularity property is due to [16, Chap.2- Figure 3: Sketch of an EC-

Th.3.2], as QqUQ, = {(r,z) € Q : r > ry,} is bounded away from T problem of steam generator

{r=0} and J € L*(Q). deposit in 2-D axisymmetric
If we assume in addition that the boundaries 0Q; (i € {d,v}) have setting.

Ct1oregularity, then wlo, (i € {d,v}) has H?-regularity till 9S);, in par-

ticular till their interface T’ := 0QqNIQ, (see [17, Theorem 4.20]). Hence

the traces of Vw|q, (i € {d,v}) on T are well defined and belong to H'/*(T)?.




3 Shape derivative of the impedance measurements

The gradient descent for shape reconstruction with a least square cost functional in the next section is
based on the knowledge of the shape derivative of impedance measurements. Due to (@), we shall first
study the derivatives of the shape-dependent function w, solution to the eddy current problem (&]).

3.1 Shape and material derivatives of the solution

For Q a regular open subset of ) C R?, we define a domain deformation as a perturbation of the identity
Id + 0: Q — Qe = (Id+ H)Q, with 6 S Wl’OO(RQ,]R2) and ||9HW1,0¢(R2,R2) < 1.

Then Id + 6 is a diffeomorphism in R? (see [I, Lemme 6.13]). In our problem, an admissible deformation
should keep the domains €; and €, invariant, i.e., suppd N Q; = suppf N Q; = . Indeed we are mainly
interested in perturbation fields # with support located in vicinity of the interface I' = 99,109, between
the deposit and the vacuum region outside the tube. We denote by [-] the jump operator across T, i.e.
for any f(x) (z = (r,2)) defined in a vicinity of T and any zg = (r9,20) € T

(o) == f+(20) — f-(20),
with  fi(zo) = o lim f(z) and f_(x9)= lm f(z).

v DT —To Qgdr—x0
Following [1l, Section 6.3.3] we give the following definitions.

Definition 3.1. Let v = v(Q) be a shape-dependent function that belongs to some Banach space B (that
may depend on Q). If 5(0) := v(Qp) o (Id + ) € B, then the material (Lagrangian) derivative V(0) of v
is defined as a linear functional with respect to 0 with values in B such that

5(0) = 5(0) + V(0) +o(6) in Q,

where limg_, W%Lf = 0. The shape (Eulerian) derivative v'(0) of v is defined by

V(0) = V(0) — 0 Vu(Q). 8)

In the sequel we shall adopt the generic notation o(6) to design a function such that ||o(8)||/||6|
as  — 0 where the norm || - || for o(#) should be clear from the context.

l,oo_>0

Remark 3.2. Using the chain rule it is readily seen from Definition [31] that formally
v(Qy) =v(Q) +v'(0) +0(0) inwC QN Qy.

Proposition 3.3. Under the same assumptions as in Corollary[21l, for any admissible shape perturbation
0 € WLo°(R2 R?) with ||0||w1.~ < 1, the solution w(Q) of (B has the material derivative W (0) satisfying

a(W(0),6) = Lo(¢) Vo€ H(®), (9)
where Lg(¢) := /Q {% <div O0/r)I + w> Vw - Vo + iwadiv (0/r)we + iwdiv (J@)(E} drdz.

Proof. We consider the change of variables (Id +60)~! : Qp 3> y — x € Q, and in particular the fact that
(Vo) o (Id+0) = (I + V) "'V(vo (Id+0)) = (I + V) 'Vi(0) Yo € H(Qy),

where V0 is the Jacobian matrix of . Since w(2y) satisfies the variational problem (@) in Qg, one gets
after the change of variable,

/Q (1 +v%.9+o(0)) <%A(9)V1D(9)~(5iwaw(9)$|det(I+V9)|> drdz

,
= / iwJ o (Id + 0)¢| det(I + VO)|dr dz, (10)
Q

with  A(0) := |det(I + VO)|(I + VO (I +VO) ™),  ¢:=po(Id+0). (11)



Expanding the above formulation with respect to € and using the identities
det(I +6) =1+divd+o(0), (I+VO'=1I-V0+o0(0),

the terms of order zero with respect to 6 give exactly the variational formulation on (&), while the first
order terms with respect to 6 yield the formulation ([@). Since the sesquilinear form a(-,-) is continuous
and coercive, the variational formulation (@) has a unique solution. O

To simplify the variational formulation (@), we shall prove some preliminary technical results. For
any regular open subset Q C 2, we define a shape-dependent sesquilinear form
1 i ~
(—Vu Vo — £u5> drdz  Y(u,v) € H(Q) (12)
wur r

a(Q)(u(Q), v(Q)) := /

Q

On the boundary 9Q in the Orz plane, we denote by n = (n,,n,)" the unit out normal vector and
by 7 = (—n,,n,)! the tangential vector. The tangential gradient operator on 9Q is defined by V., :=
V —nd, = 7(7 - V). Then we have in particular Vu - Vv = 0,ud,v + V,u -V, v on 9Q

Lemma 3.4. Assume that p and o are constant in Q, that u(Q) € ﬁ(Q) satisfies in the weak sense
1 .
—div (—Vu) Y9 =0 o, (13)
ur r

that v(Q) € H(Q), and that their material derivatives (u'(0),v'(0)) and shape derivatives (U (0),V (6))
exist. Suppose in addition that the Hessians D*u and D?v are in L?(Q)?*2. Then the shape derivative
of a(Q)(u(Q),v(Q)) denoted by B(0) exists for all admissible perturbations 6 and is given by

B(0) =a(Q)(u'(0),v(Q)) + a(Q)(u(Q), V(0))
+ [99 {(9 -n) (ivfu -V, 0 — %u@) - (i@nu(ﬁ . Vfa))} ds. (14)

The proof of this lemma makes use of the shape derivative techniques which are extensively presented
in [IL10]. Readers may refer to [15, Chapter 2] for technical details.

Assumption 3.5. Under the same assumptions as in Proposition[3.3 for u, o, J and 6, we assume in
addition that (u,0) are piecewise constant and equal to constants (p;,0;) on each subdomain Q; (i € A)
of Q, and that the boundaries 9S); (i € {d,v}) have C11-regularity.

Proposition 3.6. Under Assumption[3J, the material derivative W (0) of w satisfies
171 - i -

(6 n) ([—] 19w v.g— w¢) ds
wlr r

+ / (iV(H -Vw) -V — iw_a(e : Vw)(ﬁ) drdz Vo € H(R). (15)
QquQ% \ HT r

aW(o).0) = [

r

Remark 3.7. The notation deUQu means the integrals are evaluated separately on Qg and on Qg. This

is because (0 - Vw) is not in the function space I;(Q) In fact, the jump of u through the interface T
yields the transmission condition [p~'0,w] =0 on T'. Thus (0 - Vw) is discontinuous on T

((0-Vw)] = [(0- )duw + (0 V)] = (0-1)[dw] = (0-n) ] (1 ). (16)

However, from Remark[2Z.2, we have (§-Vw)|q, € IA{V(QZ) fori € {s,t,d,v}. In consequence, the gradients
in the right-hand-side of ([I3) are well-defined and the right-hand-side of (I3) defines a bounded anti-
linear form on H(S).

The assumption of Ct1-regularity of 0Q; (i € {d,v}) does not meet the real setting of the ECT
problem, since the deposit is attached to the shell side of the tube (see Figure[3). However, singularities
that could occur at the points where T' touches the outer tube wall {r = ry,} do not show up in numerical
tests in Section [{.]] Actually, the regularization method introduced in Section [{.2 reduces the singular
effect of these problematic zones all the less.



Proof. We write the sesquilinear form a(-,-) in (&) as the sum of forms on subdomains where p and o
are constant

a(wa 50) = Z al(QZ)(wa 50)7
ieA

where «;(Q)(+,-) is defined as a(Q)(+,-) in (I2) with u = p; and 0 = o;. We will also denote by §;(6) the
shape derivative associated with o;. We choose the test function ¢ on g such that ¢ = ¢ o (Id + ) on
Q. Thus, the material derivative of ¢ vanishes. Note that the support of 8 is contained in Q4 U €, that
the relation w’(¢) = W(0) — 6 - Vw holds on Q4 and QS respectively, and that the solution w satisfies
the transmission conditions [w] = [1~*d,,w] = 0 on I'. Under the assumptions on y, o and T, we have in
particular that the Hessian D?w is in L?(£2;)?*2 for i € {d,v} due to [17, Theorem 4.20] (or see Remark
22). By using a density argument, we can assume the test function ¢|q, € C*°(£;) without losing the
generality, such that D2¢ € L%(€;)?*? (i € {d,v}). Then we apply Lemma (3.4) to each subdomain and
get shape derivative of a(w, ¢)

B0 = Y i) (0).0) - [

00 (250 9.5-2205) - (L0,00-9.6) | as

i€A i€A r
=a(W (), 6) —/Q - (ivw-w)w— %(9-Vw)¢) drdz

7/11(941) <H %vfw-vfa_sf @w&) ds.

On the other hand, since the support of the source J is contained in g, the shape derivative of the
right-hand-side of the variational formulation (B vanishes. Hence, we get the result (I3). O

3.2 Shape derivative of the impedance

Now that we have the shape and material derivatives of the solution, we can compute the shape derivative
of the measured impedances. Let w be the solution of problem (F) with coefficients (i, o) and w° the
solution in a deposit free-case, i.e. with coefficients (u,0) = (u°,0%). We shall denote by ag(Q) the
sesquilinear form a(Q) for (u, o) = (u°, o). Following (@) we define the impedance measurement as

2 1 1 Vw-Vu® . 0 w wO
AZ(Q) = W/Qd <(p — E)T 71(&)(0—70— ) , > deZ (].7)

Proposition 3.8. Under Assumption[Z3], the shape derivative of AZ () is well defined and is given by

us iw(o —o®
AZ'(0) = 137/9 <(% - %)%V(W(@) —0.Vw) -V — %(W(@) _9. Vw)w0> drdz
™ iw(o — o®
+ 13? /1‘(9 -n) <(% — %)%Vw -V — %wwo) ds. (18)

where w' () and W (0) are respectively the shape and material derivative of w.

Proof. Since p, o, u° and o are constant in €4, from (@) and the definition of « in (I2) we have
iwl?
2m

The field w® for the deposit-free case is invariant under the shape deformation (Id + 6) (since u° and o°

are invariant under the shape deformation (Id + #)). Thus its shape derivative is zero and consequently

its material derivative is W9(0) = - Vw? due to the relation (8). In Qg4 the field w satisfies equation (I3)

with material parameters p, o, while w® satisfies ([3) with u° and ¢°. We note that w, w® € H? (Qq)
due to Remark Applying Lemma B4 and after some computations (c.f. [I5] for details) one gets

AZ = a(Qq)(w, w°) — a(Qq)(w®, T).

iwl? — — 11 i iole — o0
1‘;T AZ'(0) = a(Qq)(w', w0) — ag(Qa)(w', w) +/F(9-n) <(p - m)V“’ TV“’ - “"("T 7 )ww0> ds.
This is exactly expression (8] considering (8). O



3.3 Expression of the shape derivative using the adjoint state

The expression of the gradient AZ’(#) shown in (I8) contains not only a boundary integral on I' whose
integrand depends explicitly on the shape perturbation 6, but also a volume integral on Q4 with the
shape or material derivative of w in the integrand which depends implicitly on 6 via the variational
problem (I5). We shall consider here the Hadamard representation of cost functional derivatives using
an appropriately defined adjoint state which allows to have an expression of AZ’(f) as a boundary
integral on I with integrand explicitly dependent on 6. This expression is much more appropriate for
the numerical scheme that we shall use for the inverse problem.
We define the sesquilinear form

a”(u,v) := a(v,u) V(u,v) € H(Q) (19)

and we introduce the adjoint problem associated with w° as finding p € H (Q) such that

1 1 .1_— i — 00— ~
a*(p,q) = / <(— — =)-Val - Vg + Mwo(y) drdz Vqe H(Q). (20)
Qe \ H  por
In particular, p satisfies the jump conditions
1 1 —
[p) =0 and [u '0.p] = —(— — —5)0nw® onT'. (21)
noop

Problem (20) has the same structure as (B since its right-hand-side defines a bounded anti-linear form
on H(Q). Therefore one can conclude:

Proposition 3.9. Let w° € fI(Q) be the solution to the eddy current problem (@) in a deposit-free case,
i.e. with (u°,0°) instead of (u, o). Then, under the same assumptions as in Corollary 21 for u and o,
the variational formulation 20) has a unique solution p in H(Q).

Proposition 3.10. Under Assumption [3.3, if p is the solution to the adjoint problem (20), then the
shape derivative of the impedance NZ given by [{l) writes

AZ/(0) =T /F(e'”){ H Vow: V(5 —w)

iwl? T

() (<u°>1<anm+ - <u0>1anw°) ~ wlow(@ - w0>} &, (22)

where w (resp. w®) is the solution to the weighted eddy current problem (B) with (resp. without) deposits.

Remark 3.11. With the same argument presented in Remark[2.2, one observes that the adjoint state p
has also H?-regularity in Qg and Q, since w® € H?(Qq). In particular, the tangential and normal traces
of Vpla, (i € {d,v}) on T are well-defined and have H'?-reqularity. Therefore the boundary integration
in formula 22)) is well-defined.

Proof. Tt is sufficient on one hand to evaluate (20) with test function ¢ = W () € H(Q) or ¢ = (6 - Vw)
with the jump condition (I6]), and on the other hand to set ¢ = p in the formulaton(IH)) and consider
the jump condition for p (21)). O

4 Shape reconstruction of deposits using a gradient method

4.1 Cost functional

We denote by Z the impedance measurement either in absolute mode (Zp4) or in differential mode
(ZFs). Giving the ECT signals Z,,cqs(¢) for ¢ € [zmin, Zmax), the inverse problem aims to approximate
the real deposit domain by an estimate 4 in simulation so that the ETC signals Z (g4, () reproduced
with Q4 approach Z,,cqs(¢). This naturally motivates us to define a least square cost functional

T(Qu) = / T 2(04:0) — Zumean( O A (23)

Zmin



and apply shape optimization using gradient descent. One computes its shape derivative

70 = [ 2R(Z 0T~ Zea D) .

Zmin

where Z'(0) (either Z} 4(0) or Zj5(0)) is a linear combination of AZ;,. According to (22))

27 (0-n)
CiwI? Jp o7

—ww*@w(w%%@m+4wr%wﬂ—wmm@—wﬁm.

AZy(0)

{ H ow - V(7 — uf)

The shape derivative of the cost functional 7 can be written as

T@)0) = 2= [ (n-0)gds,

2
wl r

where g = gpa = g11 + g21 Or ¢ = gr3 = g11 — g22 according to the measuring mode with

o= [ @O 2O [3] T o)

Zmin

—mm1mw($@@n—$@w)awmwmﬂmﬂjx.

We remark in particular that if one choose 6 such that
0=—ygn on T (24)

where v is a positive constant, then 6 is a minimizing direction of J for ~ sufficiently small.

4.2 Regularization of the descent direction

For an arbitrary parametrization of {24, a regularization of the descent direction is in general needed since
the shape increment given by (24) may cause a singularity on I" (see the numerical experiments below).
We propose to use the H!(I") boundary regularization by solving the following problem for A € H'(T")%:

A—alArA=gn on T, (25)

where Ar is the boundary Laplace-Beltrami operator applied element-wise to A and « > 0 is a regular-
ization parameter. The equivalent variational formulation of (25) is,

Vi € HY(T)? / A +aV - V,h) ds = / gn - ds. (26)

r r

Therefore, A is two orders more regular than gn. If we take 6 such that
0=—v\ on T, (27)

one verifies that it is also a descent direction
, 27T 2 2
T Q)0 = —=55 | (NP +alVAP) ds <. (28)
r

4.3 Inversion algorithm
The inversion procedure is done as follows:

e Initialize with a deposit domain 9. Choose § > 0 as a threshold in the stopping rule according to
the noise level of the data, and € > 0 as an upper bound for the size of the descent gradient.



e Step k:

1. Solve the direct problems (&) for the different positions ¢ of the coils using the deposit shape
QF and test the stopping rule

(k) < 5 / " | Zimeas ()2 dC.

Zmin

2. Solve the adjoint problems (20) for the different coil positions and for the deposit shape Q%
then evaluate the corresponding g.

3. Get a regularized descent direction 6% (see ([23) and (Z7))). The parameter « in ([24) is evaluated
at the first step (k = 1) such that ymax |g| < e.

4. Go to step k + 1 with a deposit domain

QL = (1d + 0F)Qk.

4.4 Numerical tests

We shall consider here some numerical inversion tests for deposits for geometrical configurations depicted
in Figure[2l The numerical values of physical parameters are chosen according to the materials (e.g. tube
and magnetite) and the setting used for non-destructive eddy current testing of steam generators:

e The tube is defined by Q; = {(r,2) : 1y, < r < ry,} with ry, = 9.84mm, r, = 11.11mm. Its
conductivity is o; = 9.7 x 10°S/m and its magnetic permeability is j; = 1.01,, where p, is the
permeability of vacuum.

e The deposit has in general a relatively low conductivity: o4 = 1 x 104S/m. It can be magnetic:
permeability pqg = 10, or non-magnetic: pqg = (.

e The operating frequency for the coils is w = 100kH z, the dimensions of one coil are 0.67mm
in length (radial direction) and 2mm in height (axial direction). Both the two coils are located
7.83mm away from the z-axis and there is a distance of 0.5mm between them.

We remark that the above-described test
setting (low frequency and high conductivity
regime) allows to apply eddy current approxi-
mation to the full model (see for example [2]).

The numerical forward problem is set on a
bounded domain B, ., with r, = 30mm and
ze = 41lmm. It is solved using FreeFem-++
[14] with P1 finite elements and an adapted
mesh (using the command adaptmesh). The
mesh is adapted according to the solution at
each step of the iteration such that the relative
interpolation error is less than 1%. The num-
ber of degrees of freedom is around 1000 (see
Figure . To avoid committing an inverse
crime when generating synthetic data for the
inversion process, we use a refined mesh to
generate the impedance measurements as giv- (a) (b)
en observation data (see Figure . The
number of degrees of freedom of P1 finite ele-
ment on this mesh is about 6000. Validation
of the numerical forward model can be found
in [13].

For the inversion we use impedance mea-
surements either in the pseudo-absolute mode

Figure 4: Examples of meshes used for inversion and
generation of data. (a) Adapted mesh for solving the
forward problem in the inversion process. (b) Refined
mesh for generating the observation data.
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(FA) or in the differential mode (F3). The number of vertical measurement points involved in the re-
construction will be specified for each experiment. The vertical measurement positions chosen for the
inversion are localized around the vertical center of the target deposit. This is justified by the fact that
in practice, one can immediately determine the vertical location of the deposit from observed signal
variations while performing the vertical scan of the tube. The algorithm parameters for the stopping
rule is set to § = 1%, 2% or 3% in different cases and the increment magnitude is set to e = 5 x 107%.

Finally let us note that in all subsequent figures, the target deposit shape is shown in green while the
reconstructed shape using the inverse algorithm is in red.

4.4.1 Parametrized shape reconstruction

We consider a non-magnetic deposit. We assume that the deposit is rectangular in the semi-plan Ri.
Then its shape can be parametrized by its thickness in the r-direction and the positions in the z-direction
of its two horizontal sides. The target shape has 5mm in thickness, and its horizontal sides are at +5mm.

To reconstruct both the thickness and the two vertical positions of the horizontal sides of the rect-
angular deposit, we use either FA or F3 signals at 41 probe positions with a distance of 1mm between
two neighboring positions. Figure Bl and Table Il show the results. We initialize the inverse algorithm
with either a small guess (Figure or a large one (Figure [5(d)). The result from the small guess
using FA signal after 71 iterations is shown in Figure and that using F3 signal after 43 iterations
is shown in Figure From a large guess, we get the reconstruction result in Figure using FA
signal after 24 iterations, and that in Figure using F3 signal after 112 iterations. In Figures -
5(j)| we observe the decrease of the relative error of signals during iterations. However, the decrease of
the shape relative error (the difference of the characteristic functions of the target deposit domain and
the reconstructed domain measured in the L? norm) may stagnate around 10%, which means that the
information from the impedance measurements is no longer sufficient to distinguish the reconstructed
shape from the target shape.

thickness vertical position 1 vertical position 2
target shape 5mm 5mm —5mm
from small guess, FA 5.236mm 4.872mm —4.870mm
from small guess, F3 4.882mm 5.017mm —5.017mm
from large guess, FA 5.015mm 5.041mm —5.039mm
from large guess, F3 5.123mm 4.983mm —4.982mm

Table 1: Parameter reconstructions of a rectangular non-magnetic deposit.

4.4.2 Reconstruction of deposits with arbitrary shapes

In this section we consider the reconstruction of the deposit without a priori knowledge on its shape.

In Figure[@lthe target non-magnetic deposit shape is a rectangle. Since we do not have any information
of the shape, we take a small semi-disc as the initial guess in the inversion algorithm. We use either FA
or F3 signals for inversion at 41 probe positions with a distance of 1mm between each two neighboring
positions. The algorithm without boundary regularization using FA signal is blocked due to singularities
on the interface between the deposit and the vacuum (Figure [6(b)).

To regularize the gradient using the method in Section B2, we take o = 1 x 1075 as the regularization
parameter in the boundary regularization problem (25). This is an ad hoc choice. Our numerical
tests suggest that relatively moderate variations of this parameter does not affect the final result. The
regularized algorithm using FA signals ends after 201 iterations with a good estimate (Figure
and that using F3 signals gives the result shown in Figure after 412 iterations. We also show in
Figures and the decrease of the cost functional, the absolute value of gradient and the relative
error on the shape during iterations.

In Figure [ we show the reconstructions of a non-magnetic semi-disc issued from different initial
shapes (Figures [7(a)] or[7(c))) using FA signals. The corresponding reconstruction results shown in Figure

11
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Figure 5: Parameter reconstructions of a rectangular non-magnetic deposit. 6 = 1%. (a) Initialization
with a small guess. (b) Reconstruction from small initial guess using FA signals. (c) Reconstruction
from small initial guess using F3 signals. (d) Initialization with a large guess. (e) Reconstruction from
large initial guess using FA signals. (f) Reconstruction from large initial guess using F3 signals. (g)-to-(j)
Relative errors on signal and shape during iterations.

[7(b)] (37 iterations) and in Figure[7(d)| (52 iterations) for the non-magnetic deposits are satisfying, as we
can observe the decrease of the relative errors of signals and deposit shapes in Figures and

Finally Figure 8 shows the reconstruction of a non convex deposit shape using differential mode (F3)
impedance signals. For the non-magnetic deposit (Figures [8(a)]-[8(b)), we choose the stopping threshold
§ = 2% and the algorithm ends after 139 iterations. For the magnetic deposit (Figures[8(c)|-[B(d)), with
0 = 3%, the algorithm ends after 786 iterations.

4.4.3 Stability to noisy data

In this section we test the robustness of the above shape reconstruction method with regard to the given
data noise (FA or F3 signals). Supposing that the relative artificial noise level equals 7, we choose for
the inversion algorithm a stopping rule such that the relative signal error is below 1 + § where 4 is the
stopping rule for the case without data noise that we used in the previous tests.

Figure @ and Table 2] show parameter reconstructions of a non-magnetic rectangular deposit after
artificially adding a random noise vector to the simulated signal data. We recall that the stopping rule is
0 = 1% for the case without artificial noise. So here we choose the stopping rules such that the relative
signal error is inferior to the artificial noise level plus 6 = 1%. We observe that when the artificial noise
level is under 5%, the results are quite satisfying even compared to the reconstruction results from data
without artificial noise. (Figure Bl and Table ).

Figure 10 shows the shape reconstruction results of a general non-magnetic deposit from artificially
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Figure 6: Reconstruct a rectangular non-magnetic deposit. § = 1%. (a) Initialization with a small
semi-disc. (b) Blocked non-regularized inversion algorithm. (c) Regularized reconstruction using FA

signals. (d) Regularized reconstruction using F3 signals. (e) — (f) Signal and shape relative errors during
regularized reconstruction iterations.
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Figure 7: Reconstruct a non-magnetic semi-disc shaped deposit. § = 1%. (a) Initialization with a small
rectangle. (b) Reconstruction from initial small rectangle. (c) Initialization with a small semi-disc. (d)
Reconstruction from initial small semi-disc. (e) — (f) Relative signal and shape errors during iterations.

noised F3 signals. The stopping rule of the inversion algorithm for the case without artificial noise was
0 = 2%. So here the algorithm is stopped once the relative error of F3 signals is below the artificial noise
level plus § = 2%. The reconstruction results are also satisfying.

5 On the reconstruction of deposit conductivity and permeability

The conductivity and the permeability are the two critical physical parameters which characterize the
material nature of the deposit. The exact values of these parameters, crucial for the modeling, the
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Figure 8: Reconstruct a deposit with a non-convex shape. § = 2% for the non-magnetic case, § = 3% for
the magnetic case. (a) Initialization of a non-magnetic deposit with a thin line. (b) Reconstruction of
the non-magnetic deposit. (c) Initialization of a magnetic deposit with a large shape. (d) Reconstruction
of the magnetic deposit. (e) — (f) Relative signal and shape errors during iterations.
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Figure 9: Parameter reconstructions of a rectangular non-magnetic deposit from artificially noised FA
signals.

noise level thickness vertical position 1 vertical position 2
target shape omm omm —5dmm

1% 5.336mm 4.788mm —4.766mm
5% 5.286mm 4.746mm —4.645mm
10% 5.232mm 4.719mm —4.527mm
20% 5.138mm 4.682mm —4.325mm

Table 2: Parameter reconstructions of a rectangular non-magnetic deposit from artificially noised FA
signals.

simulation and the reconstruction of the deposit is usually not known with a high precision in the
industrial context. In this section we discuss the reconstruction of these parameters for known shapes.
The simultaneous reconstruction of the parameters and the shape is discussed in the last section.
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Figure 10: Reconstruct a deposit with a non-convex shape from artificially noised F3 signals. (a) -to-
(c) Reconstructed shapes from signals of different artificial noise level. (d) -ro- (f) Relative signal and
shape errors during iterations.

5.1 The cost functional derivative with respect to the conductivity

We consider the eddy current problem (@). We denote by dw the variation of w due to a small increment
of the conductivity o4 — o4 + dog that is assumed to be constant. Therefore,

1 i ~
/ (—V(w—i—éw)-V(p—M(w—i—&w)@) drdz:/in@drdz Vo € H(Q)
Q \Hr r Q

where g, is the index function of the domain 4. After developing this formulation, the terms of order
zero of the variation give the original problem (B). The derivative of w with respect to o4 writes:

O := 52}30 ow/dog

where the limit holds in H(€2). Then the terms of first order of the variation in the above formulation
as dog goes to zero imply

1 : .
/ (—V(agw) -V — E(&,741)(,0) drdz = / Ewt,Za drdz. (29)
Q \Hr r Q4 T

Now we consider the impedance measurement given by ). If 9,(AZy;) is its derivative with respect to
o4, then

27 1 1 V(0swg) - Vu® . 0 (Opwi)w® . wrpw®
0,(NZyy) = e /Qd <(M - MO) " —iw(e —0”) . —iw— drdz.  (30)

Similarly, we denote by 0,7 the derivative of the cost functional J given by (23)) with respect to the
variation of 4. We get

Zmax

aaj - 2R {ao'Z(Qd; C) (Z(Qdy C) - Zmeas (C))} dCa (31)

Zmin

where according to the impedance measuring mode,

i
0o ZFa = 5(80'(A211) + 05 (AN Z21)),
aaZ(Qd; C) = i
O0g L3 = 5(80(AZ11) — 05 (AZ32)).
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To minimize the cost functional with respect to o4 we shall use a descent gradient method based of a
numerical evaluation of the derivative provided by (B1I).

5.2 Derivative with respect to the magnetic permeability

Similarly to the previous section, we consider here a small increment of the deposit magnetic permeability
ld = fq + Opg which leads to a small variation of the field w — dw. Then from (B we derive

1 iwo
— V(w+déw) - Vo — —(w + dw _) drdz:/in_dez.
/Q((u+5udxad)7’ ( ) Ve = e 0 ¥

If we denote by

Oyw = 1im0 ow/dug,

Spig—

where the limit is understood with respect to the H (©) norm, then one verifies that d,,w satisfies

1 i 1 _
/ (—V(@Hw) V- E(auw)tp) drdz = / ——Vw-Vedrd: Ve e H(Q). (32)
Q \HT r Qq KT

Then the derivative of the impedance measurement AZy; with regard to the deposit magnetic perme-
ability, is given by the following expression:

27 1 1, V(0uwg) - Vuw) . or (Opwrp)w?  Vwy - V)
0 (NZy) = e /Qd <(,u ,uO) . iw(e —0”) . e drdz. (33)

If 0,,J represents the derivative of the cost functional J with respect to the variation of 114, then

Zmax

0T = [ 2R{0.200 ) (20~ Zimeas D)} c, (34)

Zmin

due to (23), where according to the impedance measurement mode,

i
OuZra = E(GM(AZH) + 0, (AZ21)),
OuZrs = 50u(BZ11) = Ou(DZ22)).
To minimize the cost functional with respect to pug we shall also use a descent gradient method based of

a numerical evaluation of the derivative provided by (34]).

5.3 Numerical tests
5.3.1 Reconstruction of the conductivity or of the magnetic permeability

We first consider the reconstruction of the conductivity of a non-magnetic deposit (ug = ) with
o4 = 1x10%S/m in a known shape (a 5mm x 10mm rectangle). We initialize the inversion algorithm with
either a small guess of the conductivity (5 x 103S/m) or a large guess (3 x 104S/m). The reconstruction
results using FA signals at one probe position are given in Figures|11(a)|—|[11(b)|

We then want to reconstruct the magnetic permeability of a magnetic deposit with o4 = 1 x 1045/m,
1qg = 10, and in a known shape (a 2mm x 10mm rectangle) at the shell side of the tube. We initialize
the inversion algorithm with either a small guess of the magnetic permeability (2u,) or a large guess
(1541,). Results are given in Figure [11(c)|—[1L1(d)}

One observes that the reconstruction results for conductivity are satisfying (relative error of conduc-
tivity is less than 1% when the cost functional is under 107%, i.e. when relative difference of FA signals
between given data and simulation is less than 1%), while the proposed methods are not satisfactory for
permeability reconstruction. In fact, these results show that eddy current signals are more sensitive to
conductivity changes than to permeability changes.
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Figure 11: Reconstruction of the conductivity or of the magnetic permeability using FA signals. (a)
— (b) Conductivity reconstruction for a non-magnetic deposit with fixed pg = p,. (a) Initial guess
08" = 5 x 103S/m, result o4 = 99015/m after 18 iterations. (b) Initial guess 0§"** = 3 x 101S/m,
result oq = 100795/m after 17 iterations. (c) — (d) Permeability reconstruction for a magnetic deposit
with fixed oq = 10*S/m. (c) Initial guess u8"*® = 2pu,, result pg = 9.69u, after 364 iterations. (d)

guess

Initial guess p5™" = 154, result p1g = 10.2, after 24 iterations.

5.3.2 Simultaneous reconstruction of conductivity and the magnetic permeability

We try to reconstruct here both the conductivity and the magnetic permeability with FA signals at
one probe position. The conductivity and the magnetic permeability of the target rectangular deposit
(2mm x 10mm) are respectively o; = 1 x 10%S/m, p; = 10u,,. The initialization of these two parameters
can be either small or large. The results are shown in Figure [2 and Table Bl

initial guess reconstructed number of iterations
target deposit (10000, 10)
test 1 (5000, 5) (9309,9.65) 44
test 2 (5000, 20) (10666, 10.37) 12
test 3 (20000, 5) (10649, 9.78) 42
test 4 (20000, 20) (10921, 10.24) 13

Table 3: Reconstruction of the conductivity and the relative magnetic permeability (o4(S/m), pq) using
FA signals.

We observe that the simultaneous reconstruction results are not accurate even if the normalized cost
functional is under 10~%. This is explained by the extremely low dependence of the cost functional with
repect to simultaneous variations of the two parameters. This is clearly indicated by Figure We
hence conclude that the these eddy-current measurements are not really suited to determine physical
parameters.
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Figure 12: Reconstruction of both the conductivity and the magnetic permeability using FA signals.
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Figure 13: Interference between physical parameters and shape parameter. (a) Between conductivity and
magnetic permeability. (b) Between conductivity and thickness. (c) Between permeability and thickness.

6 On the reconstruction of the shape and physical parameters

We would like to discuss here the possibility of reconstructing simultaneously the conductivity (or the
magnetic permeability) and the shape of the deposit by coupling the inversion algorithm for shape
reconstruction in Section and that for conductivity (magnetic permeability) reconstruction. We
consider the simplest cases in which the deposit shape is a rectangle with unknown thickness but with
fixed horizontal sides.

In the first case with unknown conductivity and thickness, the target deposit is a 5mm x 10mm
rectangle with the o4 = 10*S/m and pgq = p,. For rectangular deposits with the range of thickness from
4mm to 6mm and the range of conductivity from 8 x 1035/m to 1.2 x 10*S/m, we show in Figure [13(D)]
the value (in log;) of the cost functional of the absolute mode impedance measurements (FA) normalized
with regard to the FA impedance measurement of the target deposit.

In the second case where the magnetic permeability and the thickness are to reconstruct, the target
deposit is a 2mm x 10mm rectangle with o4 = 10*S/m and pg = 10u,. For rectangular deposits with
the range of thickness from 1mm to 3mm and the range of relative magnetic permeability from 8 to 12,
we show similarly the normalized cost functional for FA signals in Figure

In both two cases the interferences between the physical parameters and the geometrical parameter
(the thickness) are too important to hope obtaining a precise reconstruction. For instance, o = 0.95 x
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10*S/m and a thickness = 5.6mm would lead to a relative magnitude of the cost functional of order 10~4
which reaches the stopping threshold of the inversion algorithm. Similarly, u = 0.95u, and a thickness
=2.2mm would lead to a relative magnitude of the cost functional of order 1074,

a(S/m) 1/ oy initial guess reconstruction
target deposit 1 x 10% 10 2mm
test 1 0.98 x 10% 10 0.0mm 1.91mm
test 2 0.98 x 10% 10 4dmm 2.08mm
test 3 1 x 10* 9.8 0.5mm 1.96mm
test 4 1x 104 9.8 4dmm 2.13mm

Table 4: Reconstruction of thickness of a rectangular deposit with wrong values of the conductivity or
the magnetic permeability using FA signals.

However, with a good initial guess of the conductivity and the permeability, shape reconstruction of
deposits yields reasonable results. We observe in Table[d that a small error in o or in p (2%) would still
lead to accurate reconstruction of rectangular deposit shape. In Figure 4] we show the reconstruction
results of general shapes for non-magnetic deposits (magnetic permeability equals to u,) with a good
guess of the conductivity — either o1 = 0.98 x 10*S/m or o3 = 1.02 x 10%5/m against the exact value of
the conductivity which is 10*S/m. With the threshold in the stopping rule § = 10~ and an initialization
with small semi-disc (see Figure[7(c)]) for the reconstruction of a semi-disc (Figures[14(a)] [L4(b)|and [14(e))
or § = 2% and an initialization with a thin line (see Figure for the reconstruction of a curved shape
(Figures [14(c)} |14(d)| and [14(f)]), we observe that the reconstructed shapes are good approximations of
the target shapes.

(a) (b) (c) (d)

initialization small semi-disc initialization thin layer

___CcostFA 0, costF3, o,

_. shape relative error, . - shape relative error, o,

- - .COStFA T, - - COStF3, 0,

shape relative error, o, shape relative error, ,

0 20 80 100 o 150

40 60 100
iteration iteration

(e) semi-disc (f) curved shape

Figure 14: Reconstruction with inexact but good guess of conductivity (o3 = 0.98 x 10*S/m or oo =
1.02 x 10%4S/m) against exact value o4 = 10*S/m for non-magnetic deposits. (a) Reconstruction of a
semi-disc using FA signals with conductivity guess o1 after 53 iterations. (b) Reconstruction of a semi-
disc using FA signals with conductivity guess oo after 96 iterations. (c) Reconstruction of a curved shape
using F3 signals with conductivity guess oy after 155 iterations. (d) Reconstruction of a curved shape
using F3 signals with conductivity guess o after 133 iterations. (e) — (f) Relative signal and shape errors
during iterations.
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