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Identi�ation of magneti deposits in 2-D axisymmetrieddy urrent models via shape optimizationZixian Jiang∗, Houssem Haddar†, Armin Lehleiter‡, Mabrouka El-Guedri§AbstratThe non-destrutive ontrol of steam generators is an essential task for the safe and failure-freeoperation of nulear power plants. Due to magnetite partiles in the ooling water of the plants,a frequent soure for failures are magneti deposits in the ooling loop of steam generators. Fromeddy urrent signals measured inside a U-tube in the steam generator, we propose and analyzea regularized shape optimization algorithm to identify magneti deposits outside the U-tube witheither known or unknown physial properties. Motivated by the ylindrial geometry of the U-tubeswe assume an axisymmetri problem setting, reduing Maxwell's equations to a 2-D ellipti eddyurrent problem. The feasibility of the proposed algorithms is illustrated via numerial examplesdemonstrating in partiular the stability of the method under noise.Keywords: 2-D axisymmetri eddy urrent model, shape optimization, boundary regularization.1 Introdution

Figure 1: Steam generator

Steam generators (SGs, see Figure 1) are ritial omponents in nulearpower plants. The reator's ore heats up water that �ows through theprimary loop of a SG. This primary loop onsists of many thin, U-shaped tubes and serves to boil ooling water in a seondary loop onthe shell side of the U-tubes. The resulting steam is then deliveredto turbines generating eletrial power. Due to magnetite partilesontained in the ooling water, after a ertain time of exploitation,ondutive magneti deposits are observed on the shell side of the U-tubes. Most often, suh deposits our at the level of the support plates.They redue the e�ieny of the energy transfer between the primaryand seondary loops and an harm the struture safety by logging thewater iruit between the U-tubes and the support plates.Without disassembling the SG, the lower part of the U-tubes is in-aessible for normal inspetions. Therefore, a non-destrutive exami-nation proedure, alled eddy urrent testing (ECT), is widely used inindustry to detet the presene of deposits.In an eddy urrent testing proedure, one introdues a probe on-sisting of two oils of wire in the tube. Eah of these oils is onnetedto a urrent generator produing an alternating urrent and to a volt-meter measuring the voltage hange aross the oil. One of the oilsis exited by its urrent generator to reate a primary eletromagneti�eld whih in turn indues an eddy urrent in the ondutive materialnearby. This �ow is named eddy urrent. The presene of ondutivemagneti deposits distorts the eddy urrent �ow and leads to a urrenthange in the two oils, whih is measured by the linked voltmeters interms of impedane. This measurement is alled ECT signal.
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In the �rst and major part of the paper we aim to estimate the deposit shape given ECT signalssupposing that the physial nature of deposit is a priori known. We shall employ for that purposea shape optimization sheme based on evaluation of the shape derivative of the measured signal withrespet to the deposit shape. We may refer to Murat and Simon [18, 19℄, Delfour and Zolésio [10℄ andAllaire [1℄ for a general introdution to shape optimization. The work of Pantz [21℄ on shape derivativesof heat equation with jumps of ondutivity inspires our derivation of material derivative of eddy urrentequation. One an also think of other inversion strategies suh as inversion methods based on topologialderivatives (Guzina and Bonnet [7,12℄) or the level-set approah (Santosa [23℄, Dorn and Lesselier [11℄).Adapting these methods to the setting of our problem (for instane the baksattering measurementson�guration) would be indeed of interest. From the engineering point of view, an inversion approahtrying to �nd the linearized relationship between ECT signals and some shape parameters using �nitedi�erenes is widely applied in industry [3,5,6,8,24�26℄. This approah generally applied to detet defetsharaterized by limited parameters is nevertheless too restrited for general shape reonstrutions.The inversion sheme we propose ombines shape derivatives with a standard gradient desent strategyto minimize a least square ost funtional. In order to stabilize the gradient we regularize the desentdiretion by solving a Laplae-Beltrami problem on the deposit boundary. Similar regularization methodsare disussed and applied in the works of Niolas [20℄ and Chaulet [9℄. We validate our proedure throughsome numerial experiments that learly demonstrate that the ECT signals are apable to provide goodestimates on the deposit shapes.In the seond part of the paper we disuss inversion shemes to reonstrut both shape and mate-rial parameters of magneti deposits in SGs. While retrieving either the ondutivity or the magnetipermeability is possible given known deposit shape, aurate simultaneous reonstrution of both pa-rameters requires a rather good initial guess. Reonstruting the shape and one of the parameters is stillrather sensitive to the initial guess. However we show that the sensitivity with respet to shape is muhmore robust. Reasonably aurate estimates of shape an be obtained with a small error on materialparameters.Let us brie�y outline the ontent of the paper. Setion 2 realls the eddy urrent model for ax-isymmetri on�gurations and explain di�erent impedane measurement modes and their evalution fromaxisymmetri eddy urrent models. Setion 3 is then dediated to haraterizing the shape derivativeof the solution and the impedane measurements with respet to the deposit shape. We also give arepresentation of the impedane derivative using the adjoint state tehnique. The shape reonstrutionsheme together with numerial examples validating this sheme is given in Setion 4. We then analyzein Setion 5 the reonstrution of physial parameters for known geometries of the deposit. Finally, wedisuss the simultaneous reonstrution of both shape and physial parameters of a deposit in Setion 6.2 Modeling ECT signals for axisymmetri on�gurations
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Ative oils generate an eletri �eldE and a magneti�eld H that satisfy the Maxwell's equations
{
curlH + (iωǫ− σ)E = J in R

3,

curlE − iωµH = 0 in R
3,

(1)where J is the applied eletri urrent density (sat-isfying divJ = 0), and ω, ǫ, µ, σ respetively denotethe frequeny, the eletrial permittivity, the magnetipermeability and the ondutivity.In an ECT experiment, the probe onsisting of t-wo oils moves along the axis of the SG tube fromvertial position zmin to zmax. At eah position ζ ∈
[zmin, zmax], we get an impedane measurement (ECTsignal) Zmeas(ζ). Aording to [4, (10a)℄, in the 3-Dase the impedane measured in the oil k when the2



eletromagneti �eld is indued by the oil l writes
△Zkl =

1

I2

∫

∂Ω3D
d

(E0
l ×Hk −Ek ×H

0
l ) · n dS,where Ω3D

d ⊂ R
3 is the deposit domain, (E0

l ,H
0
l ) are the eletri and magneti �elds in the deposit-freease with orresponding permeability µ0 and ondutivity σ0, while (Ek,Hk) are the �elds in the asewith deposits. Using the divergene theorem and Maxwell's equations (1) one has

△Zkl =
1

I2

∫

Ω3D
d

div (E0
l ×Hk −Ek ×H

0
l ) dx

=
1

I2

∫

Ω3D
d

(curlE0
l ·Hk −E

0
l · curlHk − curlEk ·H0

l +Ek · curlH
0
l ) dx

=
1

iωI2

∫

Ω3D
d

(
(
1

µ
−

1

µ0
) curlEk · curlE0

l −
(
iω(σ − σ0) + ω2(ǫ − ǫ0)

)
Ek ·E0

l

)
dx.The eddy urrent approximation orresponds to low frequeny and high ondutivity regimes, that is

ωǫ≪ σ. Hene we get the approximation
△Zkl ≃

1

iωI2

∫

Ω3D
d

(
(
1

µ
−

1

µ0
) curlEk · curlE0

l − iω(σ − σ0)Ek ·E0
l

)
dx. (2)In an axisymmetri setting, for a vetor �eld a we denote by am = arer + azez its meridian andby aθ = aθeθ its azimuthal omponent. A vetor �eld a is axisymmetri if ∂θa vanishes. Then theMaxwell's equations (1) deouple into two systems, one for (Hθ,Em) and the other for (Hm,Eθ). Thesolution to the �rst system vanishes if J is axisymmetri. Substituting Hm in the seond system yieldsthe seond-order equation for Eθ = Eθeθ,

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ ω2(ǫ+ iσ/ω)Eθ = −iωJθ in R

2
+,with R

2
+ := {(r, z) : r > 0, z ∈ R}. Under the eddy urrent approximation (ωǫ≪ σ) one has

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ iωσEθ = −iωJθ in R

2
+, (3)with a Dirihlet boundary ondition at r = 0 due to symmetry: Eθ|r=0 = 0, and a deay ondition

Eθ → 0 as r2 + z2 → ∞ at in�nity. We then obtain
△Zkl =

2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇(rEθ,k) · ∇(rE0

θ,l)− iω(σ − σ0)Eθ,kE
0
θ,lr

)
dr dz

=
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇wk · ∇w0

l

r
− iω(σ − σ0)

wkw
0
l

r

)
dr dz, (4)where we have set

wj := rEθ,j , w
0
j := rE0

θ,j , j = 1, 2.We shall assume that µ and σ are in L∞(R2
+) suh that µ ≥ µv > 0 on R

2
+ and that σ ≥ 0 and σ = 0for r ≥ r0 su�iently large. Then problem (3) has a unique solution Eθ ∈ H(R2

+) if one assumes forinstane that Jθ ∈ L2(R2
+) with ompat support where we used the notation for any Ω ⊂ R

2
+

H(Ω) :=
{
v : r

1/2(1 + r2)−
λ/2v ∈ L2(Ω), r−

1/2∇(rv) ∈ L2(Ω)
}where λ an be any real > 1 and where ∇ := (∂r, ∂z)

t (see [13, Proposition 2.2℄ for detailed proof ofthe well-posedness of problem (3), or more preisely, of its equivalent variational formulation). In the3



following it will be more onvenient to work with w := rEθ ∈ H̃(Ω) := {v : rv ∈ H(Ω)}. This �eldsatis�es the variational formulation
a(w,ϕ) :=

∫

Ω

(
1

µr
∇w · ∇ϕ̄−

iωσ

r
wϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz ∀ϕ ∈ H̃(Ω) = {v : rv ∈ H(Ω)} (5)with Ω = R
2
+ and J = Jθ. The solution to (5) satis�es (in the weak sense)

− div

(
∇w

µr

)
− iωσ

w

r
= iωJ in Ω. (6)Let us already indiate that for numerial purposes, the omputational domain will be trunated inradial diretion at r = r∗ where r∗ is su�iently large and impose a Neumann boundary ondition on

r = r∗ (see Figure 2). Then the solution for the trunated problem would satisfy (5) with Ω = Br∗ :=
{(r, z) ∈ R

2 : 0 ≤ r ≤ r∗}. This is why we shall use in the sequel the variational formulation (5) withthe generi notation for the variational spae H̃(Ω) with Ω denoting R
2
+ or Br∗ . We also reall that thevariational formulation with Ω = Br∗ an be equivalently redued to a variational formulation posed on

Br∗,z∗ = {(r, z) ∈ R
2 : 0 ≤ r ≤ r∗, |z| < z∗} by introduing appropriate Dirihlet-to-Neumann operatorson z = ±z∗. This would be onvenient for aelerating numerial evaluation of the solution (see [13℄).As a orollary of the well-posedness of the problem (3) for Eθ we an state:Corollary 2.1. Assume that µ and σ are in L∞(R2

+) suh that µ ≥ µv > 0 on R
2
+ and that σ ≥ 0 and

σ = 0 for r ≥ r0 su�iently large. If the soure J ∈ L2(Ω) with ompat support, then the variationalformulation (5) has a unique solution w in H̃(Ω).Let us �nally note that in pratie, the impedanes are measured either in the absolute mode, denotedby ZFA, or in the di�erential mode, denoted by ZF3. From [22℄, we have




ZFA =
i

2
(△Z11 +△Z21) absolute mode,

ZF3 =
i

2
(△Z11 −△Z22) di�erential mode. (7)
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rFigure 3: Sketh of an EC-T problem of steam generatordeposit in 2-D axisymmetrisetting.

Notation: In the 2-D axisymmetri on�guration in the Orz plan (Fig-ure 3), the tube is represented by Ωt := {(r, z) ∈ Ω : rt1 < r < rt2} with
0 < rt1 < rt2 the inner and outer radius of the tube wall. We denote by
Ωs the domain inside the tube (r < rt1) whih ontains the support of thesoure: suppJ ⊂ Ωs. The deposit is at the shell side of the tube, that is
Ωd ⊂ {(r, z) ∈ Ω : r > rt2}. We denote by Ωv the vauum domain outsidethe tube Ωv := {(r, z) ∈ Ω : r > rt2} \ Ωd. Then we have Ω = ∪i∈ΛΩiwhere Λ = {s, t, d, v} is a set of index designating the above subdomainsof Ω. We will also use the notation Ω∁

d for the omplement set of Ωd in
Ω (Ω∁

d = Ω \ Ωd = Ωs ∪ Ωt ∪ Ωv).Remark 2.2. If we assume that µ and σ are pieewise onstant in eahsubdomain Ωi, i ∈ Λ = {s, t, d, v}, then the solution w to problem (5)belongs to H2(Q) for any regular open subset Q of Ωd or Ωv. (Suhpieewise onstant material parameters indeed meet the real setting ofECT in steam generators.) This regularity property is due to [16, Chap.2-Th.3.2℄, as Ωd ∪ Ωv = {(r, z) ∈ Ω : r ≥ rt2} is bounded away from
{r = 0} and J ∈ L2(Ω).If we assume in addition that the boundaries ∂Ωi (i ∈ {d, v}) have
C1,1-regularity, then w|Ωi

(i ∈ {d, v}) has H2-regularity till ∂Ωi, in par-tiular till their interfae Γ := ∂Ωd∩∂Ωv (see [17, Theorem 4.20℄). Henethe traes of ∇w|Ωi
(i ∈ {d, v}) on Γ are well de�ned and belong to H1/2(Γ)2.

4



3 Shape derivative of the impedane measurementsThe gradient desent for shape reonstrution with a least square ost funtional in the next setion isbased on the knowledge of the shape derivative of impedane measurements. Due to (4), we shall �rststudy the derivatives of the shape-dependent funtion w, solution to the eddy urrent problem (5).3.1 Shape and material derivatives of the solutionFor Q a regular open subset of Ω ⊂ R
2, we de�ne a domain deformation as a perturbation of the identity

Id + θ : Q → Qθ = (Id + θ)Q, with θ ∈W 1,∞(R2,R2) and ‖θ‖W 1,∞(R2,R2) < 1.Then Id+ θ is a di�eomorphism in R
2 (see [1, Lemme 6.13℄). In our problem, an admissible deformationshould keep the domains Ωt and Ωs invariant, i.e., suppθ ∩ Ωs = suppθ ∩ Ωt = ∅. Indeed we are mainlyinterested in perturbation �elds θ with support loated in viinity of the interfae Γ = ∂Ωd∩∂Ωv betweenthe deposit and the vauum region outside the tube. We denote by [·] the jump operator aross Γ, i.e.for any f(x) (x = (r, z)) de�ned in a viinity of Γ and any x0 = (r0, z0) ∈ Γ

[f ](x0) := f+(x0)− f−(x0),with f+(x0) = lim
Ωv∋x→x0

f(x) and f−(x0) = lim
Ωd∋x→x0

f(x).Following [1, Setion 6.3.3℄ we give the following de�nitions.De�nition 3.1. Let v = v(Q) be a shape-dependent funtion that belongs to some Banah spae B (thatmay depend on Q). If ṽ(θ) := v(Qθ) ◦ (Id + θ) ∈ B, then the material (Lagrangian) derivative V (θ) of vis de�ned as a linear funtional with respet to θ with values in B suh that
ṽ(θ) = ṽ(0) + V (θ) + o(θ) in Q,where limθ→0

‖o(θ)‖B

‖θ‖1,∞
= 0. The shape (Eulerian) derivative v′(θ) of v is de�ned by

v′(θ) = V (θ)− θ · ∇v(Q). (8)In the sequel we shall adopt the generi notation o(θ) to design a funtion suh that ‖o(θ)‖/‖θ‖1,∞ → 0as θ → 0 where the norm ‖ · ‖ for o(θ) should be lear from the ontext.Remark 3.2. Using the hain rule it is readily seen from De�nition 3.1 that formally
v(Qθ) = v(Q) + v′(θ) + o(θ) in ω ⊂ Q ∩Qθ.Proposition 3.3. Under the same assumptions as in Corollary 2.1, for any admissible shape perturbation

θ ∈ W 1,∞(R2,R2) with ‖θ‖W 1,∞ < 1, the solution w(Ω) of (5) has the material derivative W (θ) satisfying
a(W (θ), φ) = Lθ(φ) ∀φ ∈ H̃(Ω), (9)where Lθ(φ) :=

∫

Ω

{
1

µ

(
−div (θ/r)I +

∇θ +∇θt

r

)
∇w · ∇φ̄+ iωσdiv (θ/r)wφ̄ + iωdiv (Jθ)φ̄

}
dr dz.Proof. We onsider the hange of variables (Id + θ)−1 : Ωθ ∋ y 7→ x ∈ Ω, and in partiular the fat that

(∇v) ◦ (Id + θ) = (I +∇θ)−t∇(v ◦ (Id + θ)) = (I +∇θ)−t∇ṽ(θ) ∀v ∈ H̃(Ωθ),where ∇θ is the Jaobian matrix of θ. Sine w(Ωθ) satis�es the variational problem (5) in Ωθ, one getsafter the hange of variable,
∫

Ω

(
1

r
+∇

1

r
· θ + o(θ)

)(
1

µ
A(θ)∇w̃(θ) · φ̄− iωσw̃(θ)φ̄| det(I +∇θ)|

)
dr dz

=

∫

Ω

iωJ ◦ (Id + θ)φ̄| det(I +∇θ)| dr dz, (10)with A(θ) := | det(I +∇θ)|(I +∇θ)−1((I +∇θ)−1)t, φ := ϕ ◦ (Id + θ). (11)5



Expanding the above formulation with respet to θ and using the identities
det(I + θ) = 1 + div θ + o(θ), (I +∇θ)−1 = I −∇θ + o(θ),the terms of order zero with respet to θ give exatly the variational formulation on Ω (5), while the �rstorder terms with respet to θ yield the formulation (9). Sine the sesquilinear form a(·, ·) is ontinuousand oerive, the variational formulation (9) has a unique solution.To simplify the variational formulation (9), we shall prove some preliminary tehnial results. Forany regular open subset Q ⊂ Ω, we de�ne a shape-dependent sesquilinear form

α(Q)(u(Q), v(Q)) :=

∫

Q

(
1

µr
∇u · ∇v̄ −

iωσ

r
uv̄

)
dr dz ∀(u, v) ∈ H̃(Q)2. (12)On the boundary ∂Q in the Orz plane, we denote by n = (nr, nz)

t the unit out normal vetor andby τ = (−nz, nr)
t the tangential vetor. The tangential gradient operator on ∂Q is de�ned by ∇τ :=

∇− n∂n = τ(τ · ∇). Then we have in partiular ∇u · ∇v = ∂nu∂nv +∇τu · ∇τv on ∂QLemma 3.4. Assume that µ and σ are onstant in Q, that u(Q) ∈ H̃(Q) satis�es in the weak sense
−div

(
1

µr
∇u

)
−

iωσ

r
u = 0 in Q, (13)that v(Q) ∈ H̃(Q), and that their material derivatives (u′(θ), v′(θ)) and shape derivatives (U(θ), V (θ))exist. Suppose in addition that the Hessians D2u and D2v are in L2(Q)2×2. Then the shape derivativeof α(Q)(u(Q), v(Q)) denoted by β(θ) exists for all admissible perturbations θ and is given by

β(θ) =α(Q)(u′(θ), v(Q)) + α(Q)(u(Q), V (θ))

+

∫

∂Q

{
(θ · n)

(
1

µr
∇τu · ∇τ v̄ −

iωσ

r
uv̄

)
−

(
1

µr
∂nu(θ · ∇τ v̄)

)}
ds. (14)The proof of this lemma makes use of the shape derivative tehniques whih are extensively presentedin [1, 10℄. Readers may refer to [15, Chapter 2℄ for tehnial details.Assumption 3.5. Under the same assumptions as in Proposition 3.3 for µ, σ, J and θ, we assume inaddition that (µ, σ) are pieewise onstant and equal to onstants (µi, σi) on eah subdomain Ωi (i ∈ Λ)of Ω, and that the boundaries ∂Ωi (i ∈ {d, v}) have C1,1-regularity.Proposition 3.6. Under Assumption 3.5, the material derivative W (θ) of w satis�es

a(W (θ), φ) =

∫

Γ

(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ φ̄−

iω[σ]

r
wφ̄

)
ds

+

∫

Ωd∪Ω∁
d

(
1

µr
∇(θ · ∇w) · ∇φ̄−

iωσ

r
(θ · ∇w)φ̄

)
dr dz ∀φ ∈ H̃(Ω). (15)Remark 3.7. The notation ∫

Ωd∪Ωv
means the integrals are evaluated separately on Ωd and on Ω∁

d. Thisis beause (θ · ∇w) is not in the funtion spae H̃(Ω). In fat, the jump of µ through the interfae Γyields the transmission ondition [µ−1∂nw] = 0 on Γ. Thus (θ · ∇w) is disontinuous on Γ

[(θ · ∇w)] = [(θ · n)∂nw + (θ · ∇τw)] = (θ · n)[∂nw] = (θ · n)[µ](µ−1∂nw). (16)However, from Remark 2.2, we have (θ ·∇w)|Ωi
∈ H̃(Ωi) for i ∈ {s, t, d, v}. In onsequene, the gradientsin the right-hand-side of (15) are well-de�ned and the right-hand-side of (15) de�nes a bounded anti-linear form on H̃(Ω).The assumption of C1,1-regularity of ∂Ωi (i ∈ {d, v}) does not meet the real setting of the ECTproblem, sine the deposit is attahed to the shell side of the tube (see Figure 3). However, singularitiesthat ould our at the points where Γ touhes the outer tube wall {r = rt2} do not show up in numerialtests in Setion 4.4. Atually, the regularization method introdued in Setion 4.2 redues the singulare�et of these problemati zones all the less. 6



Proof. We write the sesquilinear form a(·, ·) in (5) as the sum of forms on subdomains where µ and σare onstant
a(w,ϕ) =

∑

i∈Λ

αi(Ωi)(w,ϕ),where αi(Q)(·, ·) is de�ned as α(Q)(·, ·) in (12) with µ = µi and σ = σi. We will also denote by βi(θ) theshape derivative assoiated with αi. We hoose the test funtion ϕ on Ωθ suh that φ = ϕ ◦ (Id + θ) on
Ω. Thus, the material derivative of ϕ vanishes. Note that the support of θ is ontained in Ωd ∪Ωv, thatthe relation w′(θ) = W (θ) − θ · ∇w holds on Ωd and Ω∁

d respetively, and that the solution w satis�esthe transmission onditions [w] = [µ−1∂nw] = 0 on Γ. Under the assumptions on µ, σ and Γ, we have inpartiular that the Hessian D2w is in L2(Ωi)
2×2 for i ∈ {d, v} due to [17, Theorem 4.20℄ (or see Remark2.2). By using a density argument, we an assume the test funtion ϕ|Ωi

∈ C∞(Ωi) without losing thegenerality, suh that D2φ ∈ L2(Ωi)
2×2 (i ∈ {d, v}). Then we apply Lemma (3.4) to eah subdomain andget shape derivative of a(w,ϕ)

∑

i∈Λ

βi(θ) =
∑

i∈Λ

αi(Ωi)(w
′(θ), φ) −

∫

Γ

[
(θ · n)

(
1

µr
∇τw · ∇τ φ̄−

iωσ

r
wφ̄

)
−

(
1

µr
∂nw(θ · ∇τ φ̄)

)]
ds

=a(W (θ), φ) −

∫

Ωd∪Ω∁
d

(
1

µr
∇(θ · ∇w) · ∇φ̄−

iωσ

r
(θ · ∇w)φ̄

)
dr dz

−

∫

Γ

(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ φ̄−

iω[σ]

r
wφ̄

)
ds.On the other hand, sine the support of the soure J is ontained in Ωs, the shape derivative of theright-hand-side of the variational formulation (5) vanishes. Hene, we get the result (15).3.2 Shape derivative of the impedaneNow that we have the shape and material derivatives of the solution, we an ompute the shape derivativeof the measured impedanes. Let w be the solution of problem (5) with oe�ients (µ, σ) and w0 thesolution in a deposit free-ase, i.e. with oe�ients (µ, σ) = (µ0, σ0). We shall denote by α0(Q) thesesquilinear form α(Q) for (µ, σ) = (µ0, σ0). Following (4) we de�ne the impedane measurement as

△Z(Ω) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇w · ∇w0

r
− iω(σ − σ0)

ww0

r

)
dr dz. (17)Proposition 3.8. Under Assumption 3.5, the shape derivative of △Z(Ω) is well de�ned and is given by

△Z ′(θ) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇(W (θ) − θ · ∇w) · ∇w0 −

iω(σ − σ0)

r
(W (θ)− θ · ∇w)w0

)
dr dz

+
2π

iωI2

∫

Γ

(θ · n)

(
(
1

µ
−

1

µ0
)
1

r
∇w · ∇w0 −

iω(σ − σ0)

r
ww0

)
ds. (18)where w′(θ) and W (θ) are respetively the shape and material derivative of w.Proof. Sine µ, σ, µ0 and σ0 are onstant in Ωd, from (4) and the de�nition of α in (12) we have

iωI2

2π
△Z = α(Ωd)(w,w0)− α(Ωd)(w

0, w).The �eld w0 for the deposit-free ase is invariant under the shape deformation (Id + θ) (sine µ0 and σ0are invariant under the shape deformation (Id + θ)). Thus its shape derivative is zero and onsequentlyits material derivative isW 0(θ) = θ ·∇w0 due to the relation (8). In Ωd the �eld w satis�es equation (13)with material parameters µ, σ, while w0 satis�es (13) with µ0 and σ0. We note that w, w0 ∈ H2
loc(Ωd)due to Remark 2.2. Applying Lemma 3.4 and after some omputations (.f. [15℄ for details) one gets

iωI2

2π
△Z ′(θ) = α(Ωd)(w

′, w0)− α0(Ωd)(w
′, w0) +

∫

Γ

(θ · n)

(
(
1

µ
−

1

µ0
)
∇w · ∇w0

r
−

iω(σ − σ0)

r
ww0

)
ds.This is exatly expression (18) onsidering (8). 7



3.3 Expression of the shape derivative using the adjoint stateThe expression of the gradient △Z ′(θ) shown in (18) ontains not only a boundary integral on Γ whoseintegrand depends expliitly on the shape perturbation θ, but also a volume integral on Ωd with theshape or material derivative of w in the integrand whih depends impliitly on θ via the variationalproblem (15). We shall onsider here the Hadamard representation of ost funtional derivatives usingan appropriately de�ned adjoint state whih allows to have an expression of △Z ′(θ) as a boundaryintegral on Γ with integrand expliitly dependent on θ. This expression is muh more appropriate forthe numerial sheme that we shall use for the inverse problem.We de�ne the sesquilinear form
a∗(u, v) := a(v, u) ∀(u, v) ∈ H̃(Ω)2. (19)and we introdue the adjoint problem assoiated with w0 as �nding p ∈ H̃(Ω) suh that

a∗(p, q) =

∫

Ωd

(
(
1

µ
−

1

µ0
)
1

r
∇w0 · ∇q̄ +

iω(σ − σ0)

r
w0q̄

)
dr dz ∀q ∈ H̃(Ω). (20)In partiular, p satis�es the jump onditions

[p] = 0 and [µ−1∂np] = −(
1

µ
−

1

µ0
)∂nw0 on Γ. (21)Problem (20) has the same struture as (5) sine its right-hand-side de�nes a bounded anti-linear formon H̃(Ω). Therefore one an onlude:Proposition 3.9. Let w0 ∈ H̃(Ω) be the solution to the eddy urrent problem (5) in a deposit-free ase,i.e. with (µ0, σ0) instead of (µ, σ). Then, under the same assumptions as in Corollary 2.1 for µ and σ,the variational formulation (20) has a unique solution p in H̃(Ω).Proposition 3.10. Under Assumption 3.5, if p is the solution to the adjoint problem (20), then theshape derivative of the impedane △Z given by (4) writes

△Z ′(θ) =
2π

iωI2

∫

Γ

(θ · n)

r

{[
1

µ

]
∇τw · ∇τ (p− w0)

− [µ](µ−1∂nw)

(
(µ0)−1(∂np)+ − (µ0)−1∂nw

0

)
− iω[σ]w(p − w0)

}
ds, (22)where w (resp. w0) is the solution to the weighted eddy urrent problem (5) with (resp. without) deposits.Remark 3.11. With the same argument presented in Remark 2.2, one observes that the adjoint state phas also H2-regularity in Ωd and Ωv sine w0 ∈ H2(Ωd). In partiular, the tangential and normal traesof ∇p|Ωi

(i ∈ {d, v}) on Γ are well-de�ned and have H1/2-regularity. Therefore the boundary integrationin formula (22) is well-de�ned.Proof. It is su�ient on one hand to evaluate (20) with test funtion q =W (θ) ∈ H̃(Ω) or q = (θ · ∇w)with the jump ondition (16), and on the other hand to set φ = p in the formulaton(15) and onsiderthe jump ondition for p (21).4 Shape reonstrution of deposits using a gradient method4.1 Cost funtionalWe denote by Z the impedane measurement either in absolute mode (ZFA) or in di�erential mode(ZF3). Giving the ECT signals Zmeas(ζ) for ζ ∈ [zmin, zmax], the inverse problem aims to approximatethe real deposit domain by an estimate Ωd in simulation so that the ETC signals Z(Ωd, ζ) reproduedwith Ωd approah Zmeas(ζ). This naturally motivates us to de�ne a least square ost funtional
J (Ωd) =

∫ zmax

zmin

|Z(Ωd; ζ)− Zmeas(ζ)|
2 dζ (23)8



and apply shape optimization using gradient desent. One omputes its shape derivative
J ′(θ) =

∫ zmax

zmin

2ℜ
(
Z ′(θ)(Z(Ωd; ζ)− Zmeas(ζ))

)
dζ,where Z ′(θ) (either Z ′

FA(θ) or Z ′
F3(θ)) is a linear ombination of △Z ′

kl. Aording to (22)
△Z ′

kl(θ) =
2π

iωI2

∫

Γ

(θ · n)

r

{[
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
(µ0)−1(∂npl)+ − (µ0)−1∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

}
ds.The shape derivative of the ost funtional J an be written as

J ′(Ωd)(θ) =
2π

ωI2

∫

Γ

(n · θ)g ds,where g = gFA = g11 + g21 or g = gF3 = g11 − g22 aording to the measuring mode with
gkl =

∫ zmax

zmin

ℜ

{
(Z(Ωd; ζ)− Zmes(ζ))

1

r

([
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
1

µ0
(∂npl)+ −

1

µ0
∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

)∣∣∣∣
ζ

}
dζ.We remark in partiular that if one hoose θ suh that

θ = −γ g n on Γ, (24)where γ is a positive onstant, then θ is a minimizing diretion of J for γ su�iently small.4.2 Regularization of the desent diretionFor an arbitrary parametrization of Ωd, a regularization of the desent diretion is in general needed sinethe shape inrement given by (24) may ause a singularity on Γ (see the numerial experiments below).We propose to use the H1(Γ) boundary regularization by solving the following problem for λ ∈ H1(Γ)2:
λ− α△Γλ = gn on Γ, (25)where △Γ is the boundary Laplae-Beltrami operator applied element-wise to λ and α > 0 is a regular-ization parameter. The equivalent variational formulation of (25) is,

∀ψ ∈ H1(Γ)2
∫

Γ

(λ · ψ + α∇τλ · ∇τψ) ds =

∫

Γ

gn · ψ ds. (26)Therefore, λ is two orders more regular than gn. If we take θ suh that
θ = −γλ on Γ, (27)one veri�es that it is also a desent diretion

J ′(Ωd)(θ) = −γ
2π

ωI2

∫

Γ

(
|λ|2 + α |∇τλ|

2
)
ds ≤ 0. (28)4.3 Inversion algorithmThe inversion proedure is done as follows:

• Initialize with a deposit domain Ω0
d. Choose δ > 0 as a threshold in the stopping rule aording tothe noise level of the data, and ǫ > 0 as an upper bound for the size of the desent gradient.9



• Step k :1. Solve the diret problems (5) for the di�erent positions ζ of the oils using the deposit shape
Ωk

d and test the stopping rule
J (Ωk

d) ≤ δ2
∫ zmax

zmin

|Zmeas(ζ)|
2 dζ.2. Solve the adjoint problems (20) for the di�erent oil positions and for the deposit shape Ωk

dthen evaluate the orresponding g.3. Get a regularized desent diretion θk (see (25) and (27)). The parameter γ in (24) is evaluatedat the �rst step (k = 1) suh that γmax |g| ≤ ǫ.4. Go to step k + 1 with a deposit domain
Ωk+1

d = (Id + θk)Ωk
d.4.4 Numerial testsWe shall onsider here some numerial inversion tests for deposits for geometrial on�gurations depitedin Figure 2. The numerial values of physial parameters are hosen aording to the materials (e.g. tubeand magnetite) and the setting used for non-destrutive eddy urrent testing of steam generators:

• The tube is de�ned by Ωt = {(r, z) : rt1 ≤ r ≤ rt2} with rt1 = 9.84mm, rt2 = 11.11mm. Itsondutivity is σt = 9.7 × 105S/m and its magneti permeability is µt = 1.01µv, where µv is thepermeability of vauum.
• The deposit has in general a relatively low ondutivity: σd = 1 × 104S/m. It an be magneti:permeability µd = 10µv or non-magneti: µd = µv.
• The operating frequeny for the oils is ω = 100kHz, the dimensions of one oil are 0.67mmin length (radial diretion) and 2mm in height (axial diretion). Both the two oils are loated
7.83mm away from the z-axis and there is a distane of 0.5mm between them.

PSfrag replaements (a) (b)Figure 4: Examples of meshes used for inversion andgeneration of data. (a) Adapted mesh for solving theforward problem in the inversion proess. (b) Re�nedmesh for generating the observation data.

We remark that the above-desribed testsetting (low frequeny and high ondutivityregime) allows to apply eddy urrent approxi-mation to the full model (see for example [2℄).The numerial forward problem is set on abounded domain Br∗,z∗ with r∗ = 30mm and
z∗ = 41mm. It is solved using FreeFem++[14℄ with P1 �nite elements and an adaptedmesh (using the ommand adaptmesh). Themesh is adapted aording to the solution ateah step of the iteration suh that the relativeinterpolation error is less than 1%. The num-ber of degrees of freedom is around 1000 (seeFigure 4(a)). To avoid ommitting an inverserime when generating syntheti data for theinversion proess, we use a re�ned mesh togenerate the impedane measurements as giv-en observation data (see Figure 4(b)). Thenumber of degrees of freedom of P1 �nite ele-ment on this mesh is about 6000. Validationof the numerial forward model an be foundin [13℄.For the inversion we use impedane mea-surements either in the pseudo-absolute mode 10



(FA) or in the di�erential mode (F3). The number of vertial measurement points involved in the re-onstrution will be spei�ed for eah experiment. The vertial measurement positions hosen for theinversion are loalized around the vertial enter of the target deposit. This is justi�ed by the fat thatin pratie, one an immediately determine the vertial loation of the deposit from observed signalvariations while performing the vertial san of the tube. The algorithm parameters for the stoppingrule is set to δ = 1%, 2% or 3% in di�erent ases and the inrement magnitude is set to ǫ = 5× 10−4.Finally let us note that in all subsequent �gures, the target deposit shape is shown in green while thereonstruted shape using the inverse algorithm is in red.4.4.1 Parametrized shape reonstrutionWe onsider a non-magneti deposit. We assume that the deposit is retangular in the semi-plan R
2
+.Then its shape an be parametrized by its thikness in the r-diretion and the positions in the z-diretionof its two horizontal sides. The target shape has 5mm in thikness, and its horizontal sides are at ±5mm.To reonstrut both the thikness and the two vertial positions of the horizontal sides of the ret-angular deposit, we use either FA or F3 signals at 41 probe positions with a distane of 1mm betweentwo neighboring positions. Figure 5 and Table 1 show the results. We initialize the inverse algorithmwith either a small guess (Figure 5(a)) or a large one (Figure 5(d)). The result from the small guessusing FA signal after 71 iterations is shown in Figure 5(b), and that using F3 signal after 43 iterationsis shown in Figure 5(). From a large guess, we get the reonstrution result in Figure 5(e) using FAsignal after 24 iterations, and that in Figure 5(e) using F3 signal after 112 iterations. In Figures 5(g) �5(j) we observe the derease of the relative error of signals during iterations. However, the derease ofthe shape relative error (the di�erene of the harateristi funtions of the target deposit domain andthe reonstruted domain measured in the L2 norm) may stagnate around 10%, whih means that theinformation from the impedane measurements is no longer su�ient to distinguish the reonstrutedshape from the target shape. thikness vertial position 1 vertial position 2target shape 5mm 5mm −5mmfrom small guess, FA 5.236mm 4.872mm −4.870mmfrom small guess, F3 4.882mm 5.017mm −5.017mmfrom large guess, FA 5.015mm 5.041mm −5.039mmfrom large guess, F3 5.123mm 4.983mm −4.982mmTable 1: Parameter reonstrutions of a retangular non-magneti deposit.4.4.2 Reonstrution of deposits with arbitrary shapesIn this setion we onsider the reonstrution of the deposit without a priori knowledge on its shape.In Figure 6 the target non-magneti deposit shape is a retangle. Sine we do not have any informationof the shape, we take a small semi-dis as the initial guess in the inversion algorithm. We use either FAor F3 signals for inversion at 41 probe positions with a distane of 1mm between eah two neighboringpositions. The algorithm without boundary regularization using FA signal is bloked due to singularitieson the interfae between the deposit and the vauum (Figure 6(b)).To regularize the gradient using the method in Setion 4.2, we take α = 1×10−5 as the regularizationparameter in the boundary regularization problem (25). This is an ad ho hoie. Our numerialtests suggest that relatively moderate variations of this parameter does not a�et the �nal result. Theregularized algorithm using FA signals ends after 201 iterations with a good estimate (Figure 6())and that using F3 signals gives the result shown in Figure 6(d) after 412 iterations. We also show inFigures 6(e) and 6(f) the derease of the ost funtional, the absolute value of gradient and the relativeerror on the shape during iterations.In Figure 7 we show the reonstrutions of a non-magneti semi-dis issued from di�erent initialshapes (Figures 7(a) or 7()) using FA signals. The orresponding reonstrution results shown in Figure11
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(j) F3Figure 5: Parameter reonstrutions of a retangular non-magneti deposit. δ = 1%. (a) Initializationwith a small guess. (b) Reonstrution from small initial guess using FA signals. () Reonstrutionfrom small initial guess using F3 signals. (d) Initialization with a large guess. (e) Reonstrution fromlarge initial guess using FA signals. (f) Reonstrution from large initial guess using F3 signals. (g)-to-(j)Relative errors on signal and shape during iterations.7(b) (37 iterations) and in Figure 7(d) (52 iterations) for the non-magneti deposits are satisfying, as wean observe the derease of the relative errors of signals and deposit shapes in Figures 7(e) and 7(f).Finally Figure 8 shows the reonstrution of a non onvex deposit shape using di�erential mode (F3)impedane signals. For the non-magneti deposit (Figures 8(a) � 8(b)), we hoose the stopping threshold
δ = 2% and the algorithm ends after 139 iterations. For the magneti deposit (Figures 8() � 8(d)), with
δ = 3%, the algorithm ends after 786 iterations.4.4.3 Stability to noisy dataIn this setion we test the robustness of the above shape reonstrution method with regard to the givendata noise (FA or F3 signals). Supposing that the relative arti�ial noise level equals η, we hoose forthe inversion algorithm a stopping rule suh that the relative signal error is below η + δ where δ is thestopping rule for the ase without data noise that we used in the previous tests.Figure 9 and Table 2 show parameter reonstrutions of a non-magneti retangular deposit afterarti�ially adding a random noise vetor to the simulated signal data. We reall that the stopping rule is
δ = 1% for the ase without arti�ial noise. So here we hoose the stopping rules suh that the relativesignal error is inferior to the arti�ial noise level plus δ = 1%. We observe that when the arti�ial noiselevel is under 5%, the results are quite satisfying even ompared to the reonstrution results from datawithout arti�ial noise. (Figure 5 and Table 1).Figure 10 shows the shape reonstrution results of a general non-magneti deposit from arti�ially12
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(f) F3Figure 6: Reonstrut a retangular non-magneti deposit. δ = 1%. (a) Initialization with a smallsemi-dis. (b) Bloked non-regularized inversion algorithm. () Regularized reonstrution using FAsignals. (d) Regularized reonstrution using F3 signals. (e) � (f) Signal and shape relative errors duringregularized reonstrution iterations.
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(f) initial: small semi-disFigure 7: Reonstrut a non-magneti semi-dis shaped deposit. δ = 1%. (a) Initialization with a smallretangle. (b) Reonstrution from initial small retangle. () Initialization with a small semi-dis. (d)Reonstrution from initial small semi-dis. (e) � (f) Relative signal and shape errors during iterations.noised F3 signals. The stopping rule of the inversion algorithm for the ase without arti�ial noise was
δ = 2%. So here the algorithm is stopped one the relative error of F3 signals is below the arti�ial noiselevel plus δ = 2%. The reonstrution results are also satisfying.5 On the reonstrution of deposit ondutivity and permeabilityThe ondutivity and the permeability are the two ritial physial parameters whih haraterize thematerial nature of the deposit. The exat values of these parameters, ruial for the modeling, the13
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(f) magnetiFigure 8: Reonstrut a deposit with a non-onvex shape. δ = 2% for the non-magneti ase, δ = 3% forthe magneti ase. (a) Initialization of a non-magneti deposit with a thin line. (b) Reonstrution ofthe non-magneti deposit. () Initialization of a magneti deposit with a large shape. (d) Reonstrutionof the magneti deposit. (e) � (f) Relative signal and shape errors during iterations.
(a) 1% noise (b) 5% noise () 10% noise (d) 20% noiseFigure 9: Parameter reonstrutions of a retangular non-magneti deposit from arti�ially noised FAsignals. noise level thikness vertial position 1 vertial position 2target shape 5mm 5mm −5mm

1% 5.336mm 4.788mm −4.766mm
5% 5.286mm 4.746mm −4.645mm
10% 5.232mm 4.719mm −4.527mm
20% 5.138mm 4.682mm −4.325mmTable 2: Parameter reonstrutions of a retangular non-magneti deposit from arti�ially noised FAsignals.simulation and the reonstrution of the deposit is usually not known with a high preision in theindustrial ontext. In this setion we disuss the reonstrution of these parameters for known shapes.The simultaneous reonstrution of the parameters and the shape is disussed in the last setion.
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(f) 10% noiseFigure 10: Reonstrut a deposit with a non-onvex shape from arti�ially noised F3 signals. (a) -to-() Reonstruted shapes from signals of di�erent arti�ial noise level. (d) -ro- (f) Relative signal andshape errors during iterations.5.1 The ost funtional derivative with respet to the ondutivityWe onsider the eddy urrent problem (5). We denote by δw the variation of w due to a small inrementof the ondutivity σd → σd + δσd that is assumed to be onstant. Therefore,
∫

Ω

(
1

µr
∇(w + δw) · ∇ϕ̄−

iω(σ + δσdχΩd
)

r
(w + δw)ϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz ∀ϕ ∈ H̃(Ω)where χΩd
is the index funtion of the domain Ωd. After developing this formulation, the terms of orderzero of the variation give the original problem (5). The derivative of w with respet to σd writes:

∂σw := lim
δσd→0

δw/δσdwhere the limit holds in H̃(Ω). Then the terms of �rst order of the variation in the above formulationas δσd goes to zero imply
∫

Ω

(
1

µr
∇(∂σw) · ∇ϕ̄−

iωσ

r
(∂σw)ϕ̄

)
dr dz =

∫

Ωd

iω

r
wϕ̄ dr dz. (29)Now we onsider the impedane measurement given by (4). If ∂σ(△Zkl) is its derivative with respet to

σd, then
∂σ(△Zkl) =

2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇(∂σwk) · ∇w0

r
− iω(σ − σ0)

(∂σwk)w
0

r
− iω

wkw
0

r

)
dr dz. (30)Similarly, we denote by ∂σJ the derivative of the ost funtional J given by (23) with respet to thevariation of σd. We get

∂σJ =

∫ zmax

zmin

2ℜ
{
∂σZ(Ωd; ζ)(Z(Ωd; ζ) − Zmeas(ζ))

}
dζ, (31)where aording to the impedane measuring mode,

∂σZ(Ωd; ζ) =





∂σZFA =
i

2
(∂σ(△Z11) + ∂σ(△Z21)),

∂σZF3 =
i

2
(∂σ(△Z11)− ∂σ(△Z22)).15



To minimize the ost funtional with respet to σd we shall use a desent gradient method based of anumerial evaluation of the derivative provided by (31).5.2 Derivative with respet to the magneti permeabilitySimilarly to the previous setion, we onsider here a small inrement of the deposit magneti permeability
µd → µd + δµd whih leads to a small variation of the �eld w → δw. Then from (5) we derive

∫

Ω

(
1

(µ+ δµdχΩd
)r
∇(w + δw) · ∇ϕ̄−

iωσ

r
(w + δw)ϕ̄

)
dr dz =

∫

Ω

iωJϕ̄dr dz.If we denote by
∂µw := lim

δµd→0
δw/δµd,where the limit is understood with respet to the H̃(Ω) norm, then one veri�es that ∂µw satis�es

∫

Ω

(
1

µr
∇(∂µw) · ∇ϕ̄−

iωσ

r
(∂µw)ϕ̄

)
dr dz =

∫

Ωd

1

µ2r
∇w · ∇ϕ̄dr dz ∀ϕ ∈ H̃(Ω). (32)Then the derivative of the impedane measurement △Zkl with regard to the deposit magneti perme-ability, is given by the following expression:

∂µ(△Zkl) =
2π

iωI2

∫

Ωd

(
(
1

µ
−

1

µ0
)
∇(∂µwk) · ∇w0

l

r
− iω(σ − σ0)

(∂µwk)w
0
l

r
−

∇wk · ∇w0
l

µ2r

)
dr dz. (33)If ∂µJ represents the derivative of the ost funtional J with respet to the variation of µd, then

∂µJ =

∫ zmax

zmin

2ℜ
{
∂µZ(Ωd; ζ)(Z(Ωd; ζ)− Zmeas(ζ))

}
dζ, (34)due to (23), where aording to the impedane measurement mode,

∂µZ(Ωd; ζ) =






∂µZFA =
i

2
(∂µ(△Z11) + ∂µ(△Z21)),

∂µZF3 =
i

2
(∂µ(△Z11)− ∂µ(△Z22)).To minimize the ost funtional with respet to µd we shall also use a desent gradient method based ofa numerial evaluation of the derivative provided by (34).5.3 Numerial tests5.3.1 Reonstrution of the ondutivity or of the magneti permeabilityWe �rst onsider the reonstrution of the ondutivity of a non-magneti deposit (µd = µv) with

σd = 1×104S/m in a known shape (a 5mm×10mm retangle). We initialize the inversion algorithm witheither a small guess of the ondutivity (5× 103S/m) or a large guess (3× 104S/m). The reonstrutionresults using FA signals at one probe position are given in Figures 11(a) � 11(b).We then want to reonstrut the magneti permeability of a magneti deposit with σd = 1×104S/m,
µd = 10µv and in a known shape (a 2mm× 10mm retangle) at the shell side of the tube. We initializethe inversion algorithm with either a small guess of the magneti permeability (2µv) or a large guess(15µv). Results are given in Figure 11() � 11(d).One observes that the reonstrution results for ondutivity are satisfying (relative error of ondu-tivity is less than 1% when the ost funtional is under 10−4, i.e. when relative di�erene of FA signalsbetween given data and simulation is less than 1%), while the proposed methods are not satisfatory forpermeability reonstrution. In fat, these results show that eddy urrent signals are more sensitive toondutivity hanges than to permeability hanges.16
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σguessd = 5 × 103S/m, result σd = 9901S/m after 18 iterations. (b) Initial guess σguessd = 3 × 104S/m,result σd = 10079S/m after 17 iterations. () � (d) Permeability reonstrution for a magneti depositwith �xed σd = 104S/m. () Initial guess µguessd = 2µv, result µd = 9.69µv after 364 iterations. (d)Initial guess µguessd = 15µv, result µd = 10.2µv after 24 iterations.5.3.2 Simultaneous reonstrution of ondutivity and the magneti permeabilityWe try to reonstrut here both the ondutivity and the magneti permeability with FA signals atone probe position. The ondutivity and the magneti permeability of the target retangular deposit(2mm× 10mm) are respetively σt = 1× 104S/m, µt = 10µv. The initialization of these two parametersan be either small or large. The results are shown in Figure 12 and Table 3.initial guess reonstruted number of iterationstarget deposit (10000, 10)test 1 (5000, 5) (9309, 9.65) 44test 2 (5000, 20) (10666, 10.37) 12test 3 (20000, 5) (10649, 9.78) 42test 4 (20000, 20) (10921, 10.24) 13Table 3: Reonstrution of the ondutivity and the relative magneti permeability (σd(S/m), µd) usingFA signals.We observe that the simultaneous reonstrution results are not aurate even if the normalized ostfuntional is under 10−4. This is explained by the extremely low dependene of the ost funtional withrepet to simultaneous variations of the two parameters. This is learly indiated by Figure 13(a). Wehene onlude that the these eddy-urrent measurements are not really suited to determine physialparameters.
17



0 10 20 30 40 50
−5

−4

−3

−2

−1

0

iteration

lo
g1

0

reconstruction of µ and σ, small−small initialization

 

 

µ relative error
σ relative error
cost FA (a) test 1 0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

iteration

lo
g1

0

reconstruction of µ and σ, large−small initialization

 

 

µ relative error
σ relative error
cost FA (b) test 2

0 10 20 30 40 50
−5

−4

−3

−2

−1

0

iteration

lo
g1

0

reconstruction of µ and σ, small−large initialization

 

 

µ relative error
σ relative error
cost FA () test 3 0 2 4 6 8 10 12 14

−5

−4

−3

−2

−1

0

1

iteration
lo

g1
0

reconstruction of µ and σ, large−large initialization

 

 

µ relative error
σ relative error
cost FA (d) test 4Figure 12: Reonstrution of both the ondutivity and the magneti permeability using FA signals.
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104S/m and a thikness = 5.6mm would lead to a relative magnitude of the ost funtional of order 10−4whih reahes the stopping threshold of the inversion algorithm. Similarly, µ = 0.95µv and a thikness=2.2mm would lead to a relative magnitude of the ost funtional of order 10−4.
σ(S/m) µ/µv initial guess reonstrutiontarget deposit 1× 104 10 2mmtest 1 0.98× 104 10 0.5mm 1.91mmtest 2 0.98× 104 10 4mm 2.08mmtest 3 1× 104 9.8 0.5mm 1.96mmtest 4 1× 104 9.8 4mm 2.13mmTable 4: Reonstrution of thikness of a retangular deposit with wrong values of the ondutivity orthe magneti permeability using FA signals.However, with a good initial guess of the ondutivity and the permeability, shape reonstrution ofdeposits yields reasonable results. We observe in Table 4 that a small error in σ or in µ (2%) would stilllead to aurate reonstrution of retangular deposit shape. In Figure 14, we show the reonstrutionresults of general shapes for non-magneti deposits (magneti permeability equals to µv) with a goodguess of the ondutivity � either σ1 = 0.98× 104S/m or σ2 = 1.02× 104S/m against the exat value ofthe ondutivity whih is 104S/m. With the threshold in the stopping rule δ = 10−4 and an initializationwith small semi-dis (see Figure 7()) for the reonstrution of a semi-dis (Figures 14(a), 14(b) and 14(e))or δ = 2% and an initialization with a thin line (see Figure 8(a)) for the reonstrution of a urved shape(Figures 14(), 14(d) and 14(f)), we observe that the reonstruted shapes are good approximations ofthe target shapes.
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