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Kähler-Einstein metrics on group

compactifications

Thibaut Delcroix

Abstract

We obtain a necessary and sufficient condition of existence of a Kähler-

Einstein metric on a G×G-equivariant Fano compactification of a complex

connected reductive group G in terms of the associated polytope. This

condition is not equivalent to the vanishing of the Futaki invariant. The

proof relies on the continuity method and its translation into a real Monge-

Ampère equation, using the invariance under the action of a maximal

compact subgroup K ×K.

Introduction

The question of the existence of a Kähler-Einstein metric on a toric Fano man-
ifold, that is, a n-dimensional Fano manifold X acted upon by (C∗)n with an
open dense orbit isomorphic to (C∗)n, was fully settled by Wang and Zhu in
[WZ04]. They showed that there exists a Kähler-Einstein metric on X if and
only if the Futaki invariant of X vanishes. This invariant was known [Mab87]
to be linked with the barycenter of the polytope associated to X , so that the
condition is equivalent to the fact that this barycenter is the origin.

We consider the existence of Kähler-Einstein metrics on a natural general-
ization of toric Fano manifolds: the bi-equivariant Fano compactifications of
complex connected reductive groups. More precisely, given such a group G,
we consider the Fano manifolds X which admit a G × G-action with an open
dense orbit isomorphic to G as a G×G-homogeneous space under left and right
translations. We will call these, for simplicity, group compactifications. To such
a manifold is, as in the toric case, associated a polytope P+, that encodes the
information about the boundary X \G and the anticanonical line bundle.

Let G be a complex connected reductive group, choose T a maximal torus
in G. Let M denote the group of characters of T , and let Φ ⊂ M be the
root system of (G, T ). Choose a system of positive roots Φ+, denote by 2ρ
the sum of positive roots, and by Ξ the relative interior of the cone generated
by Φ+. The polytope P+ associated to X is in the positive Weyl chamber in
M⊗R. Let barDH(P+) denote the barycenter of P+ with respect to the measure
∏

α∈Φ+ 〈α, p〉
2
dp where dp is the Lebesgue measure on M⊗R normalized by the

lattice M . Our main result is the following characterization of Kähler-Einstein
Fano group compactifications in terms of the polytope P+.
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Theorem A. Let X be a Fano compactification of G, then X admits a Kähler-
Einstein metric if and only if barDH(P+) ∈ 2ρ+ Ξ.

Let us remark here that P+ is related to the moment polytope of X from
a symplectic point of view, and that barDH(P+) is the barycenter with respect
to the Duistermaat-Heckman measure on this moment polytope.

The condition obtained is computable given an explicit polytope, and we
provide in this article both a new example of Kähler-Einstein metric and an
example of group compactification without any Kähler-Einstein metric. We refer
to the author’s PhD thesis [Del15], or new preprint [Dela], for more examples.
The example that does not satisfy the condition is especially interesting because
its Futaki invariant vanishes. In light of the proof of the Yau-Tian-Donaldson
conjecture in the Fano case ([CDS15a, CDS15b, CDS15c] and [Tia15]), and the
recent work of Datar and Székelyhidi [DS], it means that there is a non-trivial
G×G-equivariant destabilizing test configuration.

In fact, in [Dela] we obtain through essentially algebraic methods a combi-
natorial criterion for equivariant K-stability of a Fano spherical variety. Com-
bined with [DS] it provides a combinatorial criterion for the existence of Kähler-
Einstein metrics on spherical manifolds. Group compactifications are examples
of spherical varieties and the criterion from [Dela] specializes to the criterion
from Theorem A in this case. Thus the main result of [Dela] provides a broad
generalization of Theorem A. On the other hand, the criterion obtained here
served as the guiding intuition for [Dela]. Furthermore, the combination of the
two articles provide an independent, and low tech, in the sense that no Gromov-
Hausdorff convergence result is needed, proof of the Yau-Tian-Donaldson con-
jecture for Fano group compactifications.

It should be noted that in [Dela] a criterion is also obtained for the existence
of Kähler-Ricci solitons on spherical manifolds, hence on group compactifica-
tions. The analytic methods from the present article could easily be extended
to the case of Kähler-Ricci solitons to provide another proof. For simplicity, we
do not provide details for this case.

It was mentioned to the author by Gábor Székelyhidi that the example with
no Kähler-Einstein is also interesting in the study of the Kähler-Ricci flow on
Fano manifolds. Indeed, it follows from the work of Chen, Sun and Wang in
[CSW] that the Kähler-Ricci flow on a Fano manifoldX with no Kähler-Einstein
metrics should converge to some Kähler-Ricci soliton on the central fiber of a
special test configuration forX . It is reasonable to expect, in the situation where
X admits an action of a compact group and the initial metric is invariant, that
the corresponding test configuration is equivariant. In our example, the possible
central fibers are known (see [AK05, AB04]), and are all singular. No example
of such a behavior for the Kähler-Ricci flow is known, so it would be interesting
to study this in detail.

Let us mention now a consequence of our result in the variational setting.
Darvas and Rubinstein proved in [DR] the equivalence between the existence
of Kähler-Einstein metrics and various notions of properness of functionals on
spaces of Kähler potentials, allowing to take into account automorphisms of
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the manifold. Our result provides a combinatorial criterion for these notions
of properness. More precisely, though we refer to [DR] for details, let ω be
a reference Kähler form in 2πc1(X), and let H denote the space of Kähler
potentials, i.e. functions ψ on X such that ω + i∂∂ψ is still a Kähler form.
Assume X is Kähler-Einstein and G = Aut0(X) is the neutral component of
the automorphism group of X . Let K be a maximal compact subgroup of G,
assume that ω is K-invariant and let HK be the space of K-invariant Kähler
potentials. Then Darvas and Rubinstein prove that the Mabuchi functional is
proper on H modulo the action of G, and that it is proper on HK provided the
center of G is finite. In the case of group compactifications, the automorphism
group may very well have a center that is not finite, as it is the case for many
toric manifolds. It is interesting to note that the methods from [DR] should allow
to prove a statement combining the two statements recalled above, valid with
no hypotheses on the automorphism group, namely that the Mabuchi functional
is proper on HK modulo the action of the normalizer NG(K) of K in G.

Let us now describe our methods. The guiding ideas are to restrict to the
open dense orbit G, and consider only K ×K-invariant metrics. The last part
is possible because of Matsushima’s theorem [Mat57] asserting that the isom-
etry group of a Kähler-Einstein metric is a maximal compact subgroup of the
connected group of automorphisms of X . We can then combine the two by us-
ing the classical KAK decomposition of reductive groups. This decomposition
identifies the quotient of G by K ×K with the closed positive Weyl chamber.
Another point of view is that it translates K ×K-invariant geometry on G to
W -invariant geometry on M ⊗ R, where W is the Weyl group of Φ.

We used this fact in [Delb] to associate to any positively curved hermitian
metric on the anticanonical line bundle −KX a W -invariant convex function,
whose asymptotic behavior is controlled by the polytope P+. We use this here to
translate the Kähler-Einstein equation into a real Monge-Ampère equation on a
real vector space. A key point in this process is to compute the complex Hessian
of a K ×K-invariant function ϕ on G in terms of the function it determines on
the positive Weyl chamber. This computation then provides an expression of
the complex Monge-Ampère MAC(ϕ), which is the determinant of the complex
Hessian.

Proposition B. Let ϕ be a K × K-invariant smooth function G −→ R, and
let u denote the corresponding W -invariant function on M ⊗ R. Then for any
x in the interior of the positive Weyl chamber,

MAC(ϕ)(exp x) = MAR(u)(x)
∏

α∈Φ+

〈α,∇u(x)〉
2

sinh2 〈α, x〉
,

where MAR(u) denotes the determinant of the real Hessian of u.

We use this result to obtain an expression of the potential, with respect to a
Haar measure on G, of the restriction to G of a volume form on X determined by
a hermitian metric on −KX , in terms of the convex potential of the hermitian
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metric. This allows to translate the restriction of the Kähler-Einstein equation
to G as a real Monge-Ampère equation in a convex function u reading:

MAR(u)
∏

α∈Φ+

〈α,∇u〉2 = e−uJ,

where J is the function defined by J(x) =
∏

α∈Φ+ sinh2 〈α, x〉.
Another consequence of our computation of the complex Hessian is an ana-

lytic derivation of a formula due to Brion [Bri89] and Kazarnovskii [Kaz87] for
the degree of an ample line bundle on a group compactification, however up to
a multiplicative constant, which does not matter for our barycenters considera-
tions.

Let us digress here to mention that the translation of the Kähler-Einstein
equation into a real Monge-Ampère equation was already a key step in the toric
case, but also in the case of the horospherical manifolds studied by Podestà
and Spiro [PS10]. These manifolds, along with the group compactifications
belong to the large family of spherical manifolds, which was highlighted by
Donaldson in his survey [Don08] as an interesting family on which to study the
existence of Kähler-Einstein metrics. We believe that methods similar to ours
can be used for even more spherical manifolds. On another direction, Donaldson
suggests not only to study the existence of Kähler-Einstein metrics, but more
generally of canonical metrics such as constant scalar curvature. We expect
that our computation of the full complex Hessian can be used in relation with
this problem. Note that Abreu obtained a formula for the scalar curvature of
torus invariant Kähler metrics on toric manifolds [Abr98] which led to important
advances in the study of canonical metrics on toric manifolds.

The main difference between the case of toric or horospherical manifolds and
the case of group compactifications here is the term J , which is independent on
the function u. Indeed, the toric Monge-Ampère equation is just MAR(u) = e−u

and the horospherical case only adds well controlled gradient terms. We thus
have to rework in depth the proof of Wang and Zhu to deal with the term J
and the walls of the Weyl chamber. This is how we obtained our condition, to
replace the information given by the Futaki invariant in the toric case.

The common part with Wang and Zhu is the use of the classical results on
the continuity method, and the study of a well chosen proper and strictly convex
function νt defined in terms of the solutions of the continuity method equation.
In our case this function involves the term J . The key is then to interpret the
absence of a priori estimates along the continuity method as the fact that the
point at which the minimum of the function νt is attained is unbounded as t
increases along the continuity method, then to interpret this as a condition on
the polytope.

The precise analysis of this behavior further allows to determine the maximal
time of existence of solutions along the continuity method. This is called the
greatest Ricci lower bound as Székelyhidi [Szé11] proved that it is also the
supremum of all t < 1 such that there exists a Kähler form in c1(X) with
Ric(ω) ≥ tω where Ric(ω) is the Ricci form of ω.
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Figure 1: Greatest Ricci lower bound

Theorem C. Assume there are no Kähler-Einstein metrics on the group com-
pactification X and let R(X) be the greatest Ricci lower bound of X. Then

R(X) = sup

{

t < 1 ;
1

1− t

(

2ρ− t · barDH(P+)
)

∈ −Ξ + P+

}

.

The particular case of toric manifolds was obtained by Li [Li11]. Indeed,
in the case of a Fano toric manifold X , the polytope P+ is the usual moment
polytope, the root system Φ is trivial, so that 2ρ = 0, Ξ is restricted to the
origin {0} and the Duistermaat-Heckman barycenter barDH(P+) is just the
barycenter of P+ with respect to the Lebesgue measure. The condition in
Theorem A thus translates as Wang and Zhu’s condition, that is, the condition
that the barycenter is the origin. To recover Chi Li’s result, let us introduce
additional notations in the case of groups, as illustrated in Figure 1: let A be
barDH(P+), let B be 2ρ and let C denote the intersection of the boundary of
−Ξ + P+ with the half line starting from A in the direction of B if it exists.
It follows from Theorem C that the intersection exists if and only if R(X) < 1

and is then the point B+ s
−−→
AB with s = R(X)/(1−R(X)). We may then check

that |BC|/|AC| = s/(1 + s) = R(X). This is precisely the expression given in
[Li11] in the toric case, up to a change in notations.

The structure of the article is as follows. Section 1 is devoted to the com-
putation of the Hessian of a K ×K-invariant function on a reductive group G.
Proposition B is obtained as a consequence in Corollary 1.3. Section 2 is a short
introduction to group compactifications, allowing to introduce the associated
polytope and relevant examples. The tool of convex potentials, developed in
[Delb], is recalled here and applied to obtain a formula for the degree of an am-
ple linearized line bundle on a group compactification. Section 3 and Section 4
provide the general strategy of the proofs of Theorem A and Theorem B, and
preliminary results. Finally, Section 5 contains the proof of the necessity of our
condition and of an upper bound on R(X), and Section 6 contains the proof that
the condition is sufficient and that the upper bound on R(X) is in fact equal to
R(X). Theorem A is a consequence of Proposition 5.3 and Theorem 6.7, and
Theorem B is a consequence of Proposition 5.5 and Section 6.4.

5



The present article along with [Delb] contain the main results of the author’s
PhD thesis [Del15]. The author would like to thank his advisor Philippe Eys-
sidieux, and also Michel Brion for helpful discussions and the explanations on
the automorphism group of the non Kähler-Einstein example.

Notations

Let us introduce here some notations on groups that will be used throughout
the article. We use as reference for Lie groups the books [Kna02, Hel78], and
[Bor91] for algebraic groups.

Let G be a connected complex linear reductive group. Let T be a maximal
torus inG. We choose a maximal compact subgroupK inG such that S := K∩T
is a maximal compact torus in T . We denote by g, k, t, s the respective Lie
algebras of G, K, T , S.

Let Φ denote the root system of (G, T ) andW the corresponding Weyl group.
We choose a system of positive roots Φ+. We use the standard notation ρ for
the half sum of the positive roots.

Since G is reductive, we have the Cartan decomposition g = k ⊕ ik, and
denote by θ the corresponding Cartan involution on g. Define a := t ∩ ik. We
identify a with N ⊗ R where N is the group of one parameter subgroups of T .
Denote by a+ the positive open Weyl chamber defined by Φ+.

Recall the KAK decomposition for reductive groups [Kna02, Theorem 7.39]:
every element g ∈ G can be written g = k1 exp(a)k2 with a ∈ a+ uniquely
determined by g, and k1, k2 ∈ K.

We can decompose a in a toric part and a semisimple part:

a = at ⊕ ass,

with at = z(g) ∩ ik and ass = a ∩ [g, g]. The Killing form of g, restricted to ass,
gives a scalar product, and we choose a scalar product 〈·, ·〉 on a that coincides
with the Killing form on ass and leaves ass and at orthogonal. We use this scalar
product to identify a and its dual, which is also identified with M ⊗ R, where
M is the group of characters of T .

1 Complex Monge-Ampère on G

The aim of this section is to compute, for any K ×K-invariant function ψ on
G, the function MAC(ψ) such that

(

i

2π
∂∂ψ

)n

= MAC(ψ)dg,

where dg is a Haar volume form on G and n is the complex dimension of G.
As the notation suggests, this function is the complex Monge-Ampère of ψ
in some local coordinates, i.e. the determinant of the complex Hessian of ψ
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in these coordinates. We express this Hessian and Monge-Ampère in terms
of the restriction of ψ to exp(a), using the K × K-invariance and the KAK-
decomposition.

1.1 Complex Hessian matrix on G

We first choose a special basis of g ≃ TeG. Recall the root decomposition:

g = t⊕
⊕

α∈Φ

gα

where, if ad denotes the adjoint representation of g,

gα := {x ∈ g ; ad(h)(x) = 〈α, h〉x ∀h ∈ t} .

We can choose a set {eα}α∈Φ of elements of g such that e−α = −θ(eα), [eα, e−α] =
α and eα generates the complex line gα [Hel78, Chapter VI, Lemma 3.1].

We would like to choose a complex basis of g which is also a real basis of k.
Define, for α ∈ Φ+,

kα :=
{

x ∈ k ; ad(h)2(x) = 〈α, h〉
2
x ∀h ∈ s

}

.

Then each kα is of real dimension two and we have gα ⊕ g−α = kα ⊕ ikα. We
obtain a real basis of kα by considering eα+θ(eα) = eα−e−α and ieα+θ(ieα) =
ieα + ie−α. We complete this with a real basis of s to obtain a real basis of
k = s⊕

⊕

α∈Φ+ kα, and thus a complex basis of g. We denote this complex basis
of g by (lj)

n
j=1.

Since the exponential map is a biholomorphism from a neighborhood of
0 ∈ g to a neighborhood of the neutral element e in G, we get holomorphic
coordinates on G near e. Then, using a translation on the right by g ∈ G, this
defines holomorphic coordinates on a neighborhood of g. More precisely, the
map corresponding to the local coordinates is the map Cn → G defined by

(z1, . . . , zn) 7→ exp(z1l1 + · · · znln)g.

We will compute the complex Hessian with respect to these coordinates.
If ψ is a function on G we denote by HessC(ψ)(g) the complex Hessian and
by MAC(ψ)(g) the determinant of the complex Hessian of ψ at g, called the
complex Monge-Ampère, in both cases with respect to the coordinates given
above.

If f is a function on a, then we denote by MAR(f)(x) the determinant of
its real Hessian at x, and by ∇f the gradient of f with respect to the scalar
product 〈·, ·〉 on a.

By the KAK decomposition, a K × K-invariant function ψ on G is com-
pletely determined by the function f defined on a by f(x) = ψ(expx).

Let us begin by a remark that shows that even though we use a specific set
of coordinates to compute the complex Hessian, the complex Monge-Ampère
thus obtained is the potential of i

2π∂∂ψ with respect to a Haar measure, up to
a multiplicative constant.
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Remark 1.1. Let dg be a Haar volume form on G (thus a G × G-invariant
volume form, because a reductive group is unimodular [Kna02, Section VIII.2]).
Then there exists a constant C > 0 such that for any K ×K-invariant function
ψ on G, we have,

(

i

2π
∂∂ψ

)n

= CMAC(ψ)dg.

Indeed, in local coordinates zj , we can write

i

2π
∂∂ψ =

∑

j,k

i

2π

∂2ψ

∂zj∂zk
dzj ∧ dzk,

so in the coordinates above, we have locally
(

i

2π
∂∂ψ

)n

=
1

(2π)n
MAC(ψ)(i

ndz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn).

But by the construction of the coordinates, the global form defined locally as
indz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn is a Haar volume form. To conclude, remark that
all Haar volume forms are positive scalar multiples of one another.

Theorem 1.2. Let ψ be a K×K invariant function on G, and f the associated
function on a. Then in the coordinates above and for a ∈ a+, the complex
Hessian matrix of ψ is diagonal by blocks, equal to:

HessC(ψ)(exp(a)) =

















1
4HessR(f)(a) 0 0

0 Mα1
(a) 0

0 0
. . .

...
...

...
. . . 0

0 0 Mαp
(a)

















where the (αi)i∈{1,...,p} describe the positive roots of Φ and Mα is defined by:

Mα(a) =
1

2
〈α,∇f(a)〉

(

coth 〈α, a〉 i
−i coth 〈α, a〉

)

.

As a corollary, we obtain Proposition B:

Corollary 1.3. Let ψ be a K×K invariant function on G, and f the associated
function on a. Then in the coordinates above and at a ∈ a+, if r denotes the
rank of G and p the number of positive roots, we have

MAC(ψ)(exp(a)) =
1

4r+p
MAR(f)(a)

1

J(a)

∏

α∈Φ+

〈α,∇f(a)〉
2

where we denote by J the function defined on a by

J(a) :=
∏

α∈Φ+

sinh2 〈α, a〉 .
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Proof. Since MAR(f)(a) = det(HessR(f)(a)), we just have to compute the de-
terminant of Mα. This is

det(Mα) =

(

1

2
〈α,∇f(a)〉

)2

(coth2 〈α, a〉 − 1)

=
1

4
〈α,∇f(a)〉

2 cosh2 〈α, a〉 − sinh2 〈α, a〉

sinh2 〈α, a〉

=
1

4
〈α,∇f(a)〉

2 1

sinh2 〈α, a〉

Example 1.4. Consider the case G = PSL2(C). Then a+ ≃ R∗
+, and there is

only one positive root that we can identify with the identity on R. Then

HessC(ψ)(exp(a)) =
1

2





f ′′(a)/2 0 0
0 f ′(a) coth(a) if ′(a)
0 −if ′(a) f ′(a) coth(a)





and the complex Monge-Ampère reads:

MAC(ψ)(exp(a)) =
1

16
f ′′(a)(f ′(a))2

1

sinh2(a)
.

The rest of the section is devoted to the proof of the theorem. The technique
of the proof is based on the work of Bielawski [Bie04]. In particular, the idea to
use the decomposition in Lemma 1.6 and the Baker-Campbell-Hausdorff formula
appears in this article. We begin by introducing these two tools.

1.2 The Baker-Campbell-Hausdorff formula

As a formal series in the variables x and y, the logarithm of exp(x) exp(y) is well
defined. We denote this by BCH(x, y). The Baker-Campbell-Hausdorff formula
is the following.

Proposition 1.5. [Hoc65, Theorem X.3.1] There exists a neighborhood U of
0 in g such that for all x and y in U , BCH(x, y) is convergent and defines an
element of g, and we have

exp(x) exp(y) = exp(BCH(x, y)).

Furthermore we know explicitly the terms of BCH(x, y). We will only use
the following:

BCH(x, y) = x+ y +
1

2
[x, y] +O

where O denotes terms of order higher than 2 in x and y.
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1.3 A decomposition in g

Let a ∈ a+. Let Exp(ad(a)) be the linear application g → g defined by

Exp(ad(a))(x) =
∞
∑

n=0

ad(a)n(x)

n!
.

Recall that G acts on g through the adjoint action Ad, and that we have the
general relation

Exp(ad(a))(x) = Ad(exp a)(x)

for x ∈ g.

Lemma 1.6. Let l ∈ g and a ∈ a+. Then

1. there exists A ∈ k, B ∈ a and C ∈ Ad(exp a)
(
⊕

α∈Φ+ kα
)

such that

l = A+B + C;

2. if l ∈
⊕

α∈Φ gα then B = 0;

3. if l ∈ kα, and l′ denotes ad(a)(il)/ 〈α, a〉, then l′ ∈ kα and the decomposi-
tion above for the element il ∈ gα ⊕ g−α reads

il = −(cosh 〈α, a〉)l′ +
1

sinh(〈α, a〉)
Ad(exp a)(l′);

4. if l = eα + θ(eα) then l′ = ieα − iθ(eα);

5. if l = ieα − iθ(eα) then l′ = −eα − θ(eα).

In the statement, the result is more and more precise as we know more
precisely the element considered. In the proof we will begin by the very precise
case of the elements of the basis and work our way up by linearity.

Proof. Let a ∈ a+. We begin by the two last points. By definition of l′, we
have, if l = eα + θ(eα),

l′ = ad(a)(il)/ 〈α, a〉

= ad(a)(ieα)/ 〈α, a〉+ ad(a)(iθ(eα))/ 〈α, a〉

= ieα − iθ(eα)

and if l = ieα − iθ(eα),

l′ = ad(a)(il)/ 〈α, a〉

= ad(a)(−eα)/ 〈α, a〉+ ad(a)(θ(eα))/ 〈α, a〉

= −eα − θ(eα).
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In particular, in both cases, l′ is in kα. By linearity this is also true of l′ for any
l ∈ kα.

To prove the decomposition in the third point, it suffices to compute that,
using the definition of kα,

Exp(ad(a))(l′) = (cosh 〈α, a〉)l′ + (sinh 〈α, a〉)il

= Ad(exp a)(x).

Then by linearity the first point holds true for any l ∈ i
⊕

α∈Φ+ kα, with
B = 0. But we have

⊕

α∈Φ

gα =
⊕

α∈Φ+

kα ⊕ i
⊕

α∈Φ+

kα,

so we have the decomposition for any l ∈
⊕

α∈Φ gα, with B = 0.
Finally for l ∈ t, it suffices to decompose l along t = s⊕ a. By linearity and

the root decomposition, we obtain the proposition for any l ∈ g.

1.4 Using the Baker-Campbell-Hausdorff formula

We want to compute the complex Hessian of ψ in the chosen system of coordi-
nates, at a point exp(a) for a in the open Weyl chamber a+. If l1 and l2 are two
vectors in the chosen basis of k, we thus want to compute:

Hl1,l2(a) :=
∂2

∂z1∂z2

∣

∣

∣

∣

z1,z2=0

ψ(exp(z1l1 + z2l2) exp(a)).

There are different cases, according to the subspaces where l1 and l2 lie.
We will first describe the part of the argument that is used in all cases, which
relies on the Baker-Campbell-Hausdorff formula, and then deal with each case
separately.

Using the decomposition from Lemma 1.6 on z1l1 + z2l2 we can write

z1l1 + z2l2 = A1 +B1 + C1

with A1 ∈ k, B1 ∈ a and C1 ∈ Ad(exp a)(k), and all are of homogeneous degree
one in z1 and z2. Let

D1 =
1

2
([B1, A1] + [C1, A1] + [C1, B1]),

it is of order two in z1 and z2.
Let us now use again Lemma 1.6 to get

D1 = A2 +B2 + C2.

with A2 ∈ k, B2 ∈ a and C2 ∈ Ad(exp a)(k), and all are of homogeneous degree
two in z1 and z2.

The Baker-Campbell-Hausdorff formula allows to prove the following lemma,
which can be seen as an explicit infinitesimal KAK decomposition. Note that
to lighten the notations we do not write the dependence on z1, z2, but all the
terms defined aboveAj , Bj , Cj andD1 are in fact functions of these two complex
variables.

11



Lemma 1.7. We can write

exp(z1l1 + z2l2) exp(a) = k1 exp(B1 +B2 + a+O)k2

where k1, k2 ∈ K, and O denotes terms of order greater than two in z1 and z2.

Proof. We begin by applying Proposition 1.5 to exp(−A1) exp(A1 + B1 + C1),
and get that this is equal to

exp (B1 + C1 + [−A1, B1 + C1]/2 +O1) ,

where O1 denotes terms of order greater than 2 in z1 and z2.
Then we multiply on the right by exp(−C1) and get, with Proposition 1.5

again,
exp (B1 + [−A1, B1 + C1]/2 + [B1,−C1]/2 +O2) ,

where O2 denotes terms of order greater than 2 in z1 and z2. By definition of
D1, we have proved

exp(−A1) exp(z1l1 + z2l2) exp(−C1) = exp (B1 +D1 +O2) .

Recall that D1 = A2 + B2 + C2, and that all of these are of degree two in
z1 and z2. We apply another time the Proposition 1.5, to exp(−A2) exp(B1 +
D1 + O2), but here we only need to use the first term in the development of
BCH. We might say that A2 commutes up to order two with elements of degree
greater or equal to one in z1, z2. We get

exp(−A2) exp(B1 +D1 +O2) = exp(B1 +B2 + C2 +O3),

where O3 denotes terms of order greater than 2 in z1 and z2.
One further use of the Baker-Campbell-Hausdorff formula yields

exp(−A2) exp(B1 +D1 +O2) exp(−C2) = exp(B1 +B2 +O4),

where O4 denotes terms of order greater than 2 in z1 and z2.
Consider now exp(C2) exp(C1). Since C1, C2 ∈ Ad(exp a)(k), we have

exp(C2) exp(C1) = exp(a)k2 exp(−a)

for some k2 ∈ K. On the other hand, we have k1 := exp(A1) exp(A2) ∈ K.
Summing up we have proved that

exp(z1l1 + z2l2) = k1 exp(B1 +B2 +O4) exp(a)k2 exp(−a).

But then

exp(z1l1 + z2l2) exp(a) = k1 exp(B1 +B2 +O4) exp(a)k2,

and one last application of Proposition 1.5 gives the lemma, because B1, B2 and
a commute:

exp(z1l1 + z2l2) exp(a) = k1 exp(B1 +B2 + a+O)k2

where O denotes terms of order greater than 2 in z1 and z2.

12



Lemma 1.8. We have

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B2 +B1).

Proof. We first use K ×K-invariance of ψ and Lemma 1.7 to write

ψ(exp(z1l1 + z2l2) exp(a)) = ψ(exp(a+B1 +B2 +O)).

Then

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

z1,z2=0

ψ(exp(z1l1 + z2l2) exp(a))

=
∂2

∂z1∂z2

∣

∣

∣

∣

0

ψ(exp(a+B1 + B2 +O))

because O is of order greater than two, this becomes

=
∂2

∂z1∂z2

∣

∣

∣

∣

0

ψ(exp(a+B1 + B2))

since a+B1 +B2 ∈ a, this is

=
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B1 +B2)

It remains to determine B1 +B2 for all coefficients of the Hessian, and then
to compute the coefficient. For that, since we want to reduce to real coordinates,
we recall that if z1 = x1 + iy1 and z2 = x2 + iy2 then

∂2

∂z1∂z2
=

1

4

(

∂2

∂x1∂x2
+

∂2

∂y1∂y2

)

+
i

4

(

∂2

∂x1∂y2
−

∂2

∂y1∂x2

)

.

1.5 Determining Hl1,l2(a)

Lemma 1.9. Assume l1, l2 ∈ s. Then Hl1,l2(a) is the corresponding coefficient
of HessR(f)(a)/4:

Hl1,l2(a) =
1

4

∂2

∂y1∂y2

∣

∣

∣

∣

0

f(a+ y1il1 + y2il2).

Proof. In this case we have z1l1+z2l2 = A1+B1+0 with A1 = x1l1+x2+ l2 ∈ s

and B1 = y1l1 + y2l2 ∈ a, and A1 and B1 commute, so D1 = 0 and B2 = 0.
Then by Lemma 1.8,

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+ y1il1 + y2il2)

=
1

4

∂2

∂y1∂y2

∣

∣

∣

∣

0

f(a+ y1il1 + y2il2)

13



Lemma 1.10. Assume l1 ∈ kα and l2 ∈ s, then Hl1,l2(a) = 0.

Proof. Let us first determine the A1, B1, C1 such that z1l1+z2l2 = A1+B1+C1.
Using Lemma 1.6, write

il1 = −(coth 〈α, a〉)l′1 +
1

sinh 〈α, a〉
(Ad(exp a)(l′1)

with l′1 = ad(a)(il)/ 〈α, a〉.
Then we have

A1 = x1l1 − y1(coth 〈α, a〉)l
′
1 + x2l2

B1 = y2il2

C1 =
y1

sinh 〈α, a〉
(Ad(expa)(l′1) = y1il1 + y1(cosh 〈α, a〉)l

′
1

We must now compute D1 = ([B1, A1] + [C1, A1] + [C1, B1]) /2. In fact we
must only determine B2 which is the part of D1 that lies in a.

We have

[B1, A1] = [y2il2, x1l1 − y1(coth 〈α, a〉)l
′
1 + x2l2]

= −y1y2(coth 〈α, a〉)[il2, l
′
1] + x1y2[il2, l1]

Now il2 ∈ a and l1, l
′
1 ∈ kα ⊂ gα ⊕ g−α so [il2, l

′
1], [il2, l1] ∈ gα ⊕ g−α, and the

third point of Lemma 1.6 applies to show that the a component of [B1, A1] is
zero.

For the second part, write

[C1, A1] = x1y1(cosh 〈α, a〉)[l
′
1, l1]− y21(coth 〈α, a〉)[il1, l

′
1]

+ x2y1[il1, l2] + x2y1(cosh 〈α, a〉)[l
′
1, l2]

We have here [l′1, l1], [l
′
1, l2] ∈ k, and [il1, l2] ∈ gα⊕ g−α as above, so only [il1, l

′
1]

matters. By the properties of the root decomposition,

[il1, l
′
1] ∈ (g−2α ⊕ g0 ⊕ g2α) ∩ ik

and g−2α = g2α = {0}. So [il1, l
′
1] ∈ a. But in fact we don’t need to determine

it more explicitly because it appears as a term in y21 and these are ignored in
the computation of ∂∂.

For the third part,

[C1, B1] = y1y2[il1, il2] + y1y2(cosh 〈α, a〉)[l
′
1, il2]

with [il1, il2] ∈ k and [l′1, il2] ∈ gα ⊕ g−α so there is no contribution to B2.
We have thus proved that

B2 = −
1

2
y21(coth 〈α, a〉)[il1, l

′
1].
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Lemma 1.8 now gives

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B2 +B1)

=
∂2

∂z1∂z2

∣

∣

∣

∣

0

f
(

a+ y2il2 − y21(coth 〈α, a〉)[il1, l
′
1]/2

)

= 0

Lemma 1.11. Assume l1 ∈ kα1
and l2 ∈ kα2

, with α1 6= α2 positive roots. Then
Hl1,l2(a) = 0.

Proof. Using Lemma 1.6, we write

il1 = −(coth 〈α1, a〉)l
′
1 +

1

sinh 〈α1, a〉
Ad(exp a)(l′1)

il2 = −(coth 〈α2, a〉)l
′
2 +

1

sinh 〈α2, a〉
Ad(exp a)(l′2)

with l′1 = ad(a)(il1)/ 〈α1, a〉 and l′2 = ad(a)(il2)/ 〈α2, a〉.
Then we have

A1 = x1l1 + x2l2 − y1(coth 〈α1, a〉)l
′
1 − y2(coth 〈α2, a〉)l

′
2

B1 = 0

C1 = y1
1

sinh 〈α1, a〉
(Ad(exp a)(l′1) + y2

1

sinh 〈α2, a〉
(Ad(exp a)(l′2)

D1 = [C1, A1]/2

= [y1il1 + y2il2 + y1(cosh 〈α1, a〉)l
′
1 + y2(cosh 〈α2, a〉)l

′
2, A1]/2

We have y1(cosh 〈α1, a〉)l
′
1 + y2(cosh 〈α2, a〉)l

′
2 and A1 in k, so their bracket

remains in k and doesn’t appear in B2. We compute [y1il1 + y2il2, A1] which is
equal to

x2y1[il1, l2]− y21(coth 〈α1, a〉)[il1, l
′
1]− y1y2(coth 〈α1, a〉)[il2, l

′
1]

+ x1y2[il2, l1]− y22(coth 〈α2, a〉)[il2, l
′
2]− y1y2(coth 〈α2, a〉)[il1, l

′
2].

Again the properties of the root decomposition tell us that [il1, l2], [il1, l′2],
[il2, l1], and [il2, l

′
1] are in

⊕

α∈Φ gα, so the corresponding terms do not con-
tribute to B2. As before, [il1, l′1] and [il2, l

′
2] are in a, so we get

B2 =
1

2
(−y21(coth 〈α1, a〉)[il1, l

′
1]− y22(coth 〈α2, a〉)[il2, l

′
2]).

Applying Lemma 1.8, we get

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+ B2 +B1)

=
∂2

∂z1∂z2

∣

∣

∣

∣

0

f
(

a− y21 coth(〈α1, a〉)[il1, l
′
1]/2− y22 coth(〈α2, a〉)[il2, l

′
2]/2

)

= 0
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Suppose now that α1 = α2 = α. The subspace kα is two dimensional, and
we have chosen a basis formed by the vectors eα + θ(eα) and ieα − iθ(eα).

First we deal with the case when l1 6= l2.

Lemma 1.12. Suppose l1 = eα + θ(eα) and l2 = ieα − iθ(eα). Then

Hl1,l2(a) =
i

2
〈α,∇f(a)〉 = −Hl2,l1(a).

Proof. Using Lemma 1.6, we write, just as in the previous proof

il1 = −(coth 〈α, a〉)l′1 +
1

sinh 〈α, a〉
Ad(exp a)(l′1)

il2 = −(coth 〈α, a〉)l′2 +
1

sinh 〈α, a〉
Ad(exp a)(l′2)

with l′1 = l2 and l′2 = −l1.
Then we have

A1 = (x1 + y2 coth 〈α, a〉)l1 + (x2 − y1 coth 〈α, a〉)l2

B1 = 0

C1 = y1
1

sinh 〈α, a〉
Ad(exp a)(l′1) + y2

1

sinh 〈α, a〉
Ad(exp a)(l′2)

D1 = [C1, A1]/2

= [y1il1 + y2il2 + y1 cosh(〈α, a〉)l2 − y2 cosh(〈α, a〉)l1, A1]/2

Once again the bracket of y1(cosh 〈α, a〉)l2 − y2(cosh 〈α, a〉)l1 with A1 yields
only terms in k so we compute [y1il1 + y2il2, A1], which is equal to

y2(x1 + y2 coth 〈α, a〉)[il2, l1] + y1(x2 − y1 coth 〈α, a〉)[il1, l2].

Using the explicit choices of l1 and l2 we have

−[il2, l1] = [il1, l2] = [i(eα + θ(eα)), ieα − iθ(eα)]

= 2[eα, θ(eα)]

= −2[eα, e−α]

= −2α.

Finally we have

B2 =
(

y2x1 + y22 coth 〈α, a〉 − y1x2 + y21 coth 〈α, a〉
)

α.

Applying Lemma 1.8, we get

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B2 +B1)

=
i

4

(

∂2

∂x1∂y2
−

∂2

∂y1∂x2

)∣

∣

∣

∣

0

f(a+ (y2x1 − y1x2)α)

=
i

2
(Df)a(α)
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where (Df)a denotes the differential of f at a, so

Hl1,l2(a) =
i

2
〈α,∇f(a)〉 .

Lemma 1.13. Suppose now that l1 = l2 = eα + θ(eα), then

Hl1,l2(a) =
1

2
〈α,∇f(a)〉 coth 〈α, a〉 .

Proof. Using Lemma 1.6, we write

il2 = il1 = −(coth 〈α, a〉)l′1 +
1

sinh 〈α, a〉
Ad(exp a)(l′1)

with
l′2 = l′1 = ieα − iθ(eα).

Then we have

A1 = (x1 + x2)l1 − (y1 coth 〈α, a〉+ y2 coth 〈α, a〉)l
′
1

B1 = 0

C1 = y1
1

sinh 〈α, a〉
Ad(exp a)(l′1) + y2

1

sinh 〈α, a〉
Ad(exp a)(l′2)

D1 = [C1, A1]/2

= [(y1 + y2)il1 + (y1 cosh(〈α, a〉) + y2 cosh(〈α, a〉))l
′
1, A1]/2

Once again the bracket of (y1 cosh 〈α, a〉 + y2 cosh 〈α, a〉)l
′
1 with A1 yields

only terms in k, so we just compute

[(y1 + y2)il1, A1] = −(y1 + y2)
2(coth 〈α, a〉)[il1, l

′
1].

Using the explicit choices of l1 we have

[il1, l
′
1] = [i(eα + θ(eα)), ieα − iθ(eα)]

= −2α.

Finally we have
B2 = (y1 + y2)

2(coth 〈α, a〉)α.

Applying Lemma 1.8, we get

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B2 +B1)

=
1

4

∂2

∂y1∂y2

∣

∣

∣

∣

0

f
(

a+ (y21 + 2y1y2 + y22)(coth 〈α, a〉
)

α)

=
coth 〈α, a〉

2
(Df)a(α)

=
coth 〈α, a〉

2
〈α,∇f(a)〉 .
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The last step is to compute the coefficient of the Hessian with l1 = l2 =
ieα − iθ(eα), and the result is exactly the same as in the previous case:

Lemma 1.14. Assume that l1 = l2 = ieα − iθ(eα), then

Hl1,l2(a) =
1

2
〈α,∇f(a)〉 coth 〈α, a〉 .

Proof. Using Lemma 1.6, we write

il2 = il1 = −(coth 〈α, a〉)l′1 +
1

sinh 〈α, a〉
Ad(exp a)(l′1)

with l′2 = l′1 = −eα − θ(eα).
The beginning of the computation doesn’t change: we have

A1 = (x1 + x2)l1 − (y1 coth 〈α, a〉+ y2 coth 〈α, a〉)l
′
1

B1 = 0

C1 = y1
1

sinh 〈α, a〉
Ad(exp a)(l′1) + y2

1

sinh 〈α, a〉
Ad(exp a)(l′2)

D1 = [(y1 + y2)il1 + (y1 cosh 〈α, a〉+ y2 cosh 〈α, a〉)l
′
1, A1]/2

Once again the bracket of (y1 cosh 〈α, a〉 + y2 cosh 〈α, a〉)l
′
1 with A1 yields

only terms in k, so we just compute

[(y1 + y2)il1, A1] = −(y1 + y2)
2(coth 〈α, a〉)[il1, l

′
1].

Now the expression of l1 has changed, but we have

[il1, l
′
1] = [i(ieα − iθ(eα)),−eα − θ(eα)]

= 2[eα, θ(eα)]

= −2α.

In other words we have again

B2 = (y1 + y2)
2(coth 〈α, a〉)α,

and applying Lemma 1.8, we get again

Hl1,l2(a) =
∂2

∂z1∂z2

∣

∣

∣

∣

0

f(a+B2 +B1)

=
coth 〈α, a〉

2
〈α,∇f(a)〉 .

2 Fano group compactifications

We present here in a concise way group compactifications and the associated
polytopes, then recall results from [Delb] about the convex potential of a hermi-
tian metric, giving more precise statements for smooth metrics. We then com-
bine this with the computation of the complex Monge-Ampère (Corollary 1.3)

18



to partially recover the formula of Brion and Kazarnovskii for the degree of an
ample line bundle on a group compactification. The reader willing to learn more
details about group compactifications can consult, for example, [AB04, AK05]
or [BK05, Chapter 6]. For more general references about spherical varieties, see
[Tim11, Per14].

2.1 Definition and examples

Definition 2.1. We say that a projective manifold X is a compactification of G
(or a group compactification, when G is not specified) if X admits a holomorphic
G × G action with an open and dense orbit isomorphic to G as a G × G-
homogeneous space. We say that (X,L) is a polarized compactification of G if
X is a compactification of G and L is a G×G-linearized ample line bundle on
X .

Recall that a G-linearized line bundle over a G-manifold X is a line bundle
L on X equipped with an action of G lifting the action on X , and such that the
morphisms between the fibers induced by this action are linear.

Example 2.2. If G = T ≃ (C∗)n is a torus, then the compactifications of T
are the projective toric manifolds. One goes from the T -action to the T × T
action through the morphism T × T → T, (t1, t2) 7→ t1t

−1
2 .

Example 2.3. Assume that G is an adjoint semisimple group, that is, a reduc-
tive group with trivial center. Then De Concini and Procesi [DCP83] proved the
existence of a special compactification of G, called the wonderful compactifica-
tion of G. It is the only compactification of G satisfying the following property:
its boundary X \G (where we identify the open and dense orbit in X with G)
is a union of simple normal crossing prime divisors Di, i ∈ {1, . . . , r}, such that
for any subset I ⊂ {1, . . . , r}, the intersection X ∩

⋂

i∈I Di is the closure of a
unique G×G-orbit, and all G×G-orbits appear this way. The integer r is equal
to the rank of G, which is the dimension of a maximal torus in G.

2.2 Polytopes associated to a polarized group compactifi-

cation

Theorem 2.4. [AB04, Section 2] Let (X,L) be a polarized group compactifi-
cation of G. Denote by Z the closure of T in X. Then Z is a toric manifold,
equipped with a W -action, and L|Z is a W -linearized ample toric line bundle on
Z.

We denote by P (X,L), or P for simplicity, the polytope associated to the
ample toric line bundle L|Z by the theory of toric varieties [Ful93, Oda88]. The
polytope P is a lattice polytope in M ⊗ R, that we identified with a, and it
is W -invariant. Define P+(X,L) := P (X,L) ∩ a+. It is a polytope in a, and
P (X,L) is the union of the images of P+(X,L) by W .
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Figure 2: Polytope P (X1,−KX1
)

The polytope P+(X,L) encodes the structure of G×G-representation of the
space of holomorphic sections of L, generalizing the same property for toric line
bundles.

Proposition 2.5. [AB04, Section 2.2] Let (X,L) be a polarized group compact-
ification, then

H0(X,L) ≃
⊕

{End(Vα) ; α ∈M ∩ P+(X,L)}

where Vα is an irreducible representation of G with highest weight α.

Example 2.6. [BK05, Proposition 6.1.11] The wonderful compactificationX of
an adjoint semisimple group is Fano. The corresponding polytope P (X,−KX)
is the convex hull of the images by the Weyl groupW of the weight 2ρ+

∑r
i=1 αi,

where the αi are the simple roots of Φ+, and 2ρ is the sum of all positive roots.

We will use the three following examples to illustrate our results.

Example 2.7. The wonderful compactification X0 of PGL2(C) is especially
simple: it is P3 considered as P(Mat2,2(C)) equipped with the action of PGL2(C)×
PGL2(C) induced by the multiplication of matrices on the left and on the right.

If we identify a with R by sending the only positive root to 1, then the
lattice of characters is (1/2)Z, the polytope P associated to the anticanonical
line bundle is [−2, 2] and the polytope P+ is [0, 2]. Remark that X0 is in fact
homogeneous under a bigger group. This is in general not the case for wonderful
compactifications, as the next example shows.

Example 2.8. Consider the adjoint semisimple group PGL3(C). Then its won-
derful compactification, that we denote by X1, is Fano. Figure 2 represents the
polytope P (X1,−KX1

), along with the Weyl chambers decomposition, and the
weight lattice M .

Brion computed the automorphism group Aut(X) of all wonderful compact-
ifications X of adjoint semisimple groups [Bri07, Example 2.4.5]. In particular,

20



Figure 3: Polytope P (X2,−KX2
)

the connected component of the identity Aut0(X1) ⊂ Aut(X1) is the image of
PGL3(C)×PGL3(C). This shows that the manifold X1 is not homogeneous un-
der a bigger group, and not toric. The same statement is true for any wonderful
compactification of an adjoint semisimple group with no factor of rank one.

Example 2.9. Consider now the simply connected semisimple group Sp4(C).
It is the subgroup of GL4(C) whose elements are the matrices M such that
M tΩM = Ω, where M t denotes the transpose of M and

Ω =

(

0 1n
1n 0

)

.

It is a semisimple group of type B2, which means that its associated root sys-
tem is the root system B2. While it is not an adjoint group, it also admits a
wonderful compactification (see for example [GR13]). Let X2 be the blow up
of this wonderful compactification along the closed orbit. Then X2 is a Fano
compactification of Sp4(C) [Ruz12].

The moment polytope associated to the anticanonical line bundle is obtained
easily in the following way: Ruzzi classifies in [Ruz12] all Fano compactifications
of reductive groups of rank two, by giving for each the usual data identifying a
spherical variety. Then we can use the description by Gagliardi and Hofscheier
[GH15] of the moment polytope of the anticanonical line bundle in these terms.
Figure 3 represents the polytope P (X2,−KX2

), along with the Weyl chambers
decomposition, and the weight lattice M .

For this manifold also, Aut0(X2) is the image of Sp4(C) × Sp4(C). This is
proved using Blanchard’s lemma [Bla56, Proposition I.1] applied to the blow up,
and the fact that the connected component of the identity in the automorphism
group of the wonderful compactification of Sp4(C) is also the image of Sp4(C)×
Sp4(C) [Pez09].
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2.3 Convex potentials

Let (X,L) be a polarized compactification of G. We recall in this section how
to associate to a K ×K-invariant hermitian metric with positive curvature on
L a convex function, called its convex potential (see [Delb, Section 2.2]). We let
P := P (X,L), P+ := P+(X,L), and let v denote the support function of the
dilated polytope 2P , defined by v(x) = sup{〈p, x〉 ; p ∈ 2P}.

Let s be a G × {e}-equivariant trivialization of L|G, where we identify G
with the open G×G-orbit in X . Let h be a smooth, K×K-invariant, positively
curved hermitian metric on L. Let ϕ be the local potential of h with respect to
the trivialization s, defined for g ∈ G by:

ϕ(g) := − ln |s(g)|2h.

Then the function ϕ is a smooth strictly plurisubharmonic function onG, K×K-
invariant by [Delb, Proposition 2.2].

The function u defined on a by u(x) = ϕ(expx) is then called the convex
potential of h and satisfies the following properties.

Proposition 2.10. Let h be a smooth K ×K-invariant hermitian metric with
positive curvature on L, and let u be its convex potential. Then u is a W -
invariant, smooth and strictly convex function such that:

1. u(x) ≥ v(x) + C1 for all x ∈ a, for some constant C1 depending on u;

2. given any x0 ∈ a, u(x) ≤ v(x− x0) + u(x0) for all x ∈ a;

3. the gradient ∇u of u defines a diffeomorphism from a to the interior of
2P ;

4. in particular, there exists a constant d depending only on L such that
|∇u(x)| ≤ d for all x ∈ a;

5. the restriction of ∇u to a+ is a diffeomorphism to the interior of 2P+.

Proof. The fact that u is a W -invariant smooth and strictly convex function
follows from its definition and [AL92].

A smooth metric has locally bounded potentials, so [Delb, Theorem 2.4]
implies that there exists constants C1 and C2 depending on u such that

v(x) + C1 ≤ u(x) ≤ v(x) + C2.

In particular, the first point is proved. Let us prove the second point.
Let x0 ∈ a. For any 0 6= y ∈ a, consider the slope

u(x0 + ty)− u(x0)

t
,

with t > 0. By convexity and the two previous inequalities, we see that this
slope increases and converges to v(y) as t tends to infinity. This shows that for
any x = x0 + y ∈ a \ {x0}, we have

u(x) ≤ v(x− x0) + u(x0).
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This inequality is obviously also satisfied at x0, so the second point is proved.
Since u is smooth and strictly convex, ∇u is a diffeomorphism. It remains

to determine its image. It is clear that this image is open and included in 2P
(for example because the domain of the convex conjugate of u is 2P , see [Delb,
Proposition 3.12]). Assume now that one point from the interior of 2P is not
attained by ∇u. Then by convexity, we can find a 0 6= y ∈ a and an ǫ > 0 such
that ∀x ∈ a, v(y) − 〈∇u(x), y〉 > ǫ. But considering the ray starting from any
x0 and in the direction y as above leads to a contradiction. This implies that
∇u(a) = Int(2P ). By W -invariance, we also have ∇u(a+) = Int(2P+).

Finally, the fourth point is a direct consequence of the third because the
polytope 2P is bounded.

Remark 2.11. We fixed a choice of a G × {e}-equivariant trivialization of
L on G to define the convex potential. All such trivializations are non zero
scalar multiples of one another, so the convex potentials defined with respect to
two different such trivializations differ by a constant scalar independent of the
metric. In particular, it does not change the asymptotic behavior.

2.4 Degree of an ample linearized line bundle

Proposition 2.12. Let (X,L) be a polarized compactification of G, and let
P+ = P+(X,L). Then

deg(L) = C

∫

2P+

∏

α∈Φ+

〈α, p〉
2
dp

for some constant C depending only on the group G. Furthermore, if u is the
convex potential of a smooth positively curved K × K-invariant metric on L,
then

deg(L) = C

∫

a
+

∏

α∈Φ+

〈α,∇u(a)〉
2
MAR(u)(a)da.

Proof. Let h be a smooth positively curved K ×K-invariant hermitian metric
on L, with curvature the Kähler form ω ∈ 2πc1(L). Then we have

deg(L) =

∫

X

( ω

2π

)n

.

Let s be a G × {e}-equivariant section of L, and ϕ the potential of h with
respect to s. We have ω = i∂∂ϕ on G. Using Remark 1.1, Choose a Haar
volume form dg on G so that, independently of ϕ,

(

i

2π
∂∂ϕ

)n

= MAC(ϕ)dg,
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where MAC(ϕ) is the Monge-Ampère of ϕ in the coordinates chosen in Sec-
tion 1.1. Then

deg(L) =

∫

X

( ω

2π

)n

=

∫

G

( ω

2π

)n

=

∫

G

(

i

2π
∂∂ϕ

)n

=

∫

G

MAC(ϕ)dg.

By the KAK integration formula, this is, for a constant C depending only on
the choice of Haar measure,

deg(L) = C

∫

a
+

MAC(ϕ)(exp a)J(a)da

where da is the Lebesgue measure on a normalized by N . Let u denote the
convex potential of h. From Corollary 1.3 we obtain that this is

deg(L) = C′

∫

a
+

∏

α∈Φ+

〈α,∇u(a)〉2 MAR(u)(a)da

for a constant C′ still depending only on G. We then use the variable change
p = ∇u(a), and obtain, by Proposition 2.10,

deg(L) = C′

∫

2P+

∏

α∈Φ+

〈α, p〉
2
dp.

3 Strategy of proof

We describe in this section the global strategy of the proof, starting by recalling
classical results on the continuity method. We then determine the expression of
the continuity method equation in restriction to G, in terms of convex potentials.
We finally introduce the function νt and gather some estimates on this function
or on − lnJ that will be used later.

3.1 The continuity method

LetX be a Fano manifold. Fix a reference Kähler form ωref in the class 2πc1(X).
The Kähler forms in 2πc1(X) can all be written as ωref + i∂∂ψ with ψ a smooth
and ωref -strictly psh function on X (i.e. such that ωref + i∂∂ψ > 0).

The Kähler-Einstein equation Ric(ω) = ω on X translates, in terms of ωref-
psh functions, as the Monge-Ampère equation

(ωref + i∂∂ψ)n = efref−ψωnref , (1)
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where fref is the normalized Ricci potential of ωref defined as the ωref-psh func-
tion that satisfies ωref + i∂∂fref = Ric(ωref) and

∫

X e
frefωnref =

∫

X ω
n
ref .

Let href be a smooth hermitian metric on −KX with curvature form ωref .
Then it determines a volume form dV on X defined in a local trivialization s of
−KX by dV = |s|2href

s−1 ∧ s−1. Then up to a constant, the Ricci potential fref
is equal to the logarithm of the potential of dV with respect to ωnref . We choose
href (by multiplying by a scalar) such that fref is indeed equal to that.

The following family of equations is the one used in the usual continuity
method for the Kähler-Einstein equation:

(ωref + i∂∂ψt)
n = efref−tψtωnref . (2)

To show the existence of a Kähler-Einstein metric on X , it is enough to show
that the set I of 0 ≤ t ≤ 1 such that this equation admits a solution is exactly
[0, 1].

By the work of Aubin [Aub76] and Yau [Yau78], 0 ∈ I, and I is open.
Furthermore, it is enough to know uniform a priori estimates on the C0 norm
of ψt, to ensure the closure of I, and thus the existence of a solution at t = 1,
i.e. a Kähler-Einstein metric. We recall that by C0 estimates, we mean, as in
most of the literature, a uniform control on supx∈X |ψt(x)|. In fact, we can even
concentrate only on a uniform upper bound on ψt (see [Siu88, Proposition 2.1]
or [Tia87, pages 235 and 236]).

Notation 3.1. Let us fix some 0 < t0 ∈ I, which exists since 0 ∈ I and I is
open.

Let us summarize the consequence of what we have recalled in this section.

Proposition 3.2. Assume that [t0, t1[⊂ I, that ψt denotes the solution at t ∈
[t0, t1[, and that there exists a constant C such that ψt ≤ C ∀t ∈ [t0, t1[. Then
t1 ∈ I.

3.2 Reduction to the open orbit

Suppose now that X is a G×G-equivariant smooth and Fano compactification
of G. Let P be the polytope associated to the anticanonical bundle −KX .

We choose ωref and href K ×K-invariant. Then a solution of equation (2)
at t < 1 is K ×K-invariant. This follows from the uniqueness result for twisted
(or generalized) Kähler-Einstein metrics (see [ZZ14, Corollary 1.4] or [DS]).

By continuity of the solutions ψt, it is enough to prove a uniform upper
bound on the restrictions of ψt to the open and dense orbit G ⊂ X . Let ϕt
denote the function on a induced by ψt. It is enough to give an upper bound for
ϕt. We also denote by ht the hermitian metric on −KX whose potential with
respect to href is ψt and whose curvature form is ωref + i∂∂ψt.

Any G × {e}-equivariant trivialization s of −KG defines a left G-invariant
volume form s−1 ∧ s−1 on G, and so a Haar volume form. All Haar volume
forms on G are obtained this way. By Remark 1.1, we can thus choose s and
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the corresponding Haar volume form dg := s−1 ∧ s−1 such that for all smooth
K ×K-invariant function ψ on G,

(i∂∂ψ)n = MAC(ψ)dg,

where MAC(ψ) is the complex Monge-Ampère of ψ in the local coordinates given
in Section 1.1.

Let uref be the convex potential of href with respect to the trivialization s,
defined on a, and denote by ut the convex function uref+ϕt which is the convex
potential of the metric ht. Finally, we denote by wt the function tut+(1−t)uref .

Proposition 3.3. Suppose ψt is a K × K-invariant solution of equation (2).
Then for x ∈ a,

MAR(ut)(x)
∏

α∈Φ+

〈α,∇ut(x)〉
2 = e−wt(x)J(x). (3)

Proof. Let ψref be the potential of the reference metric href with respect to the
section s. By the choice of s, we have, on G,

(ωref + i∂∂ψt)|
n
G = (i∂∂(ψref + ψt))

n

= MAC(ψref + ψt)dg

Now the computation of the complex Monge-Ampère in local coordinates
from Section 1.1 gives

(ωref + ∂∂ψt)
n(expx) = MAR(ut)(x)

∏

α∈Φ+

〈α,∇ut(x)〉
2 1

J(x)
dg

for x ∈ a+.
On the other hand, the definition of the normalized Ricci potential fref

implies that
efrefωnref = e−ψrefdg,

which allows to write the right hand side of equation (2) as

efref−tψtωnref = e−tψt−ψrefdg.

For x ∈ a, we have

(−tψt − ψref)(expx) = −tϕt(x)− uref(x)

= −tut(x)− (1 − t)uref(x)

= −wt(x).

In conclusion, at a point exp(x) for x ∈ a+, equation (2) reads

MAR(ut)(x)
∏

α∈Φ+

〈α,∇ut(x)〉
2 1

J(x)
dg = e−wt(x)dg.

It is equivalent to the equality of the potentials with respect to dg. Furthermore,
by multiplying both sides by J(x), we obtain the equation of the statement,
that is well defined on the whole of a, and it is satisfied by W -invariance and
smoothness.
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3.3 Strategy

To find a uniform upper bound for ϕt we will introduce another function νt,
and study this function, following the strategy used by Wang and Zhu in the
toric case. More precisely, let j be the function on the open Weyl chamber a+

defined by j(x) = − lnJ(x). We consider the function νt = wt + j defined on
a+. We will show that it is a strictly convex function on a+. It is proper in the
following sense: As x goes to infinity, or x goes to a wall of a+, νt(x) goes to
infinity.

These two properties of νt imply that it admits a unique minimum. Let
mt be the minimum of νt and xt be the point of a+ where this minimum is
attained. We will obtain estimates on both the value mt of the minimum and
on the distance from the origin |xt| of the point where it is attained. Then
we need to relate these estimates with the function that we want to control.
Namely we will go from νt to wt then ut and finally ϕt.

To summarize, the strategy to prove estimates on ϕt is in three steps:

• reduce to estimates on |mt| and |xt|,

• find uniform estimates |mt| ≤ C,

• get a uniform control |xt| ≤ C of xt.

We will also have to prove the necessity of the condition in Theorem A and the
upper bound on R(X). Before that, we gather some preliminary results.

3.4 The function j = − ln J

The half sum of positive roots ρ is in a+, so 〈α, ρ〉 > 0 for all α ∈ Φ+. We will
use this as a reference to control the distance to the walls of a+. We also choose
a basis {ei} of a, and corresponding coordinates {xi} when necessary.

Lemma 3.4. There exists a constant c such that for any x ∈ a+, we have

j(x) ≥ 〈−4ρ, x〉+ c.

Furthermore, for any b > 0, there exists constants C = C(b), C′ = C′(b) such
that for all x ∈ bρ+ a+,

j(x) ≤ 〈−4ρ, x〉+ C ≤ C′.

Proof. Write

sinh 〈α, x〉 = e〈α,x〉
(

1− e−2〈α,x〉

2

)

≤
e〈α,x〉

2

for x ∈ a+. Then

j(x) = −2
∑

α∈Φ+

ln sinh 〈α, x〉 ≥ −2
∑

α∈Φ+

〈α, x〉 + c,
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where c = 2 ln(2)Card(Φ+).
If we assume x ∈ bρ+ a+, then using the same expression of sinh 〈α, x〉, we

get j(x) ≤ 〈−4ρ, x〉+ C with

C = −2
∑

α∈Φ+

ln

(

1− e−2b〈α,ρ〉

2

)

.

and j(x) ≤ C′ with

C′ = C − 2b
∑

α∈Φ+

〈α, ρ〉 .

Let us now turn to the derivatives of j. Recall that the directional derivative
of j in the direction ξ is defined by:

∂j

∂ξ
(x) := 〈∇j(x), ξ〉 .

Lemma 3.5. For any ξ ∈ a+, we have, for all x ∈ a+,

∂j

∂ξ
(x) < 〈−4ρ, ξ〉 .

If ξ ∈ at, then for all x ∈ a+,
∂j

∂ξ
(x) = 0.

Proof. The second statement is clear because for any α ∈ Φ, 〈α, x〉 depends
only on the projection of x on ass.

For the first statement, we compute

∂j

∂ξ
(x) = −2

∑

α∈Φ+

〈α, ξ〉 coth 〈α, x〉 .

Since ξ ∈ a+, we have 〈α, ξ〉 > 0 for all α ∈ Φ+. Since x is also in a+, we have
coth 〈α, x〉 > 1. We deduce from this that

∂j

∂ξ
(x) < −2

∑

α∈Φ+

〈α, ξ〉 = 〈−4ρ, ξ〉 .

We will also need to control the derivatives of j away from the walls. This
is achieved by the following lemma.

Lemma 3.6. For any b > 0, there exists a constant C such that for any x ∈
bρ+ a+,

|∇(j)(x)| ≤ C.
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Proof. Recall that

∂j

∂xi
(x) = −2

∑

α∈Φ+

〈α, ei〉 coth 〈α, x〉

For x ∈ bρ+ a+, we have 1 < coth 〈α, x〉 < coth(b 〈α, ρ〉), so for any i,
∣

∣

∣

∣

∂j

∂xi
(x)

∣

∣

∣

∣

≤ 2
∑

α∈Φ+

|α| coth(b 〈α, ρ〉).

Lemma 3.7. The function j is strictly convex on a+.

Proof. An easy computation shows that

∂2

∂xj∂xi
(− ln sinh 〈α, x〉) =

〈α, ei〉 〈α, ej〉

sinh2 〈α, x〉
.

So the Hessian of j is a sum of semipositive matrices, and it is easy to check
that the whole sum is definite, so the Hessian of j is positive definite.

3.5 The function νt

Lemma 3.8. The function νt is strictly convex and admits a unique minimum.

Proof. From Lemma 3.7, and the fact that wt is strictly convex as a convex
combination of strictly convex functions, we obtain that νt = wt + j is strictly
convex. The function wt is bounded below, and j tends to +∞ when x ap-
proaches a Weyl wall, so νt(x) also tends to +∞ when x approaches a Weyl
wall. To prove the existence of a minimum xt it remains to explain why νt goes
to infinity at infinity.

Proposition 2.10 implies that wt(x) ≥ v(x)+C1 for some constant C1, where
v is the support function of the polytope 2P , so νt(x) ≥ v(x)+ j(x)+C1. Then

νt(x) ≥ v(x)− 〈4ρ, x〉+ c+ C1

by Lemma 3.4. Finally, the fact that X is Fano implies, by [Delb, Remark 4.10]
that 4ρ ∈ Int(2P ), so νt is indeed proper.

Let mt denote the minimum value of νt and xt be such that νt(xt) = mt.

Lemma 3.9. There exists a constant b1 > 0 independent of t such that

xt ∈ b1ρ+ a+

Proof. By definition of xt, the derivative of νt at xt vanishes. In particular, we
have

∂νt
∂ρ

(xt) = 0.
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Recall that νt = wt + j, and that the derivatives of wt are bounded by Propo-
sition 2.10. In particular we get a bound

∣

∣

∣

∣

∂wt
∂ρ

(xt)

∣

∣

∣

∣

≤ C.

On the other hand, recall that:

∂j

∂ρ
(xt) = −2

∑

α∈Φ+

〈α, ρ〉 coth 〈α, xt〉 .

So we have
∣

∣

∣

∣

∣

2
∑

α∈Φ+

〈α, ρ〉 coth 〈α, xt〉

∣

∣

∣

∣

∣

≤ C

but since all the terms of the sum are positive and all the 〈α, ρ〉 are strictly
positive, this implies that for all α ∈ Φ+, coth 〈α, xt〉 ≤ C. Observe that the
function coth tends to +∞ at 0, so we obtain 〈α, xt〉 ≥ C′ for all α for a constant
C′ > 0 independent of t.

To conclude, observe that the intersection of the half spaces defined by
〈α, x〉 ≥ C′ is contained in a translate b1ρ + a+ for some b1 > 0 sufficiently
small, independent of t.

We will also need to control from below the value of νt near the walls. This
will be achieved by the following technical proposition. For now we cannot
control νt uniformly close to the walls, but we will as soon as we control mt.
We will use twice the proposition, first to obtain a lower bound on mt, then to
ensure e−νt is uniformly sufficiently small near the walls. Remark also that this
proposition can be seen as a precise statement of what we called the properness
of νt near the walls.

Proposition 3.10. For any M > 0, there exists a constant b > 0 independent
of t such that for any x ∈ a+ satisfying 〈α, x〉 < b 〈α, ρ〉 for some root α ∈ Φ+

defining a wall of a+, we have

νt(x) ≥ mt +M.

Recall that the roots defining the walls are also the simple roots of Φ+.

Proof. Let x ∈ a+ be such that 〈α, x〉 < b1 〈α, ρ〉 for some simple root α ∈
Φ+. Consider the ray {x + sρ, s ≥ 0} starting from x. It meets the boundary
∂(b1ρ + a+) of b1ρ + a+ at a unique point y = x + s0ρ. Furthermore y is in
b1ρ + α⊥ for a simple root α. We can then write x = y − s0ρ, and s0 satisfies
0 < b1 − s0 < b.

Consider α ∈ Φ+ a simple root, and y ∈ (b1ρ+ α⊥) ∩ ∂(b1ρ+ a+). We will
show that there exists a constant b > 0 independent of t such that νt(y− sρ) ≥
mt + M for all s such that 0 < b1 − s < b, and that this b can be chosen
independent of y and α.
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This is enough to prove the proposition because any x as in the statement
is of the form above for some α, y and s as shown at the beginning.

Consider the function g(s) = νt(y−sρ) on [0, b1[. We have g(0) = νt(y) ≥ mt

by definition of mt.
We consider now the derivative of g. Remember that the derivatives of wt

are uniformly bounded, by d, in absolute value by Proposition 2.10. Then

g′(s) ≥ −d+ 2
∑

β∈Φ+

〈β, ρ〉 coth 〈β, y − sρ〉 .

Since all the terms in the sum are positive, we have in particular

g′(s) ≥ −d+ 2 〈α, ρ〉 coth 〈α, y − sρ〉 .

From the assumptions, we compute

〈α, y − sρ〉 = b1 〈α, ρ〉 − s 〈α, ρ〉 = (b1 − s) 〈α, ρ〉 .

Observe that the positive function coth is not integrable near 0+, so

∫ b1

0

coth((b1 − s) 〈α, ρ〉)ds = +∞.

Together with the fact that g is greater than mt at 0, it means that for any M ,
we can find a bα > 0 such that g(s) ≥M +mt for b1 − s ≤ bα.

Remark that none of what we have done depends on the choice of y. Fur-
thermore, since there are only a finite number of roots α, we can choose a b > 0
such that b < bα for all α, and it concludes the proof.

3.6 Reduction to estimates on mt and xt

Lemma 3.11. Suppose we have uniform estimates |mt| < Cm and |xt| < Cx
for t in some interval [t0, t1[⊂ [0, 1]. Then there is an uniform upper bound for
ϕt on [t0, t1[.

Proof. Recall that it is enough to obtain a uniform upper bound on ut − uref
which is a function defined on a. We have, by Proposition 2.10 with x0 = xt,
that

ut(x) ≤ v(x − xt) + ut(xt)

where v is the support function of 2P . Using the other inequality for uref we
have

uref(x) ≥ v(x) + C1 ≥ v(x − xt) + C1 − d|xt|.

Combining these two gives

(ut − uref)(x) ≤ v(x − xt) + ut(xt)− v(x− xt)− C1 + d|xt|

≤ ut(xt)− C1 + d|xt|

≤ ut(xt)− C1 + dCx
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so we just have to control ut(xt).
We have |mt| = |νt(xt)| ≤ Cm, i.e

|tut(xt) + (1− t)uref(xt) + j(xt)| ≤ Cm.

Now we have:

• t ≥ t0 > 0,

• |j(xt)| ≤ C2 for some constant C2 because xt ∈ b1ρ+ a+,

• and uref(xt) ≤ sup{uref(y) ; y ∈ B(0, Cx)} =: C3.

So

ut(xt) ≤
Cm + C2 + C3

t0
.

Finally we have proved the uniform upper bound

(ut − uref)(x) ≤ C4 :=
Cm + C2 + C3

t0
− C1 + dCx.

4 Estimates on |mt|

In this section, we essentially follow the work of Wang and Zhu to obtain es-
timates on |mt| and a uniform estimates on the (at least linear) growth of νt.
A key step is proposition 4.3, which is a direct consequence of Proposition 2.12
and will be used in the next sections also.

We consider the set

At := {x ∈ a+ ; mt ≤ νt(x) ≤ mt + 1} ⊂ a+.

We will obtain upper and lower bound for the volume of At. The upper bound
will depend on mt. The key is to obtain an upper bound that is small enough
to give information.

Note that the set At is a bounded and convex set. Indeed, since mt is the
minimum of νt, At is a sublevel set of νt which is convex, so At is convex.
Furthermore, by the properness of νt, At is a bounded set.

Lemma 4.1. There is an upper bound on the volume of At:

Vol(At) ≤ Cemt/2

where the constant C > 0 does not depend on t ≥ t0.

Proof. Fritz John proved in [Joh48, Theorem III] that for any convex and
bounded subset A of Rr, there exists an ellipsoid E such that

1

r
E ⊂ A ⊂ E
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where (1/r)E is the dilation of E of factor 1/r centered at the center of the
ellipsoid E.

We can then find such an ellipsoid Et for At. Let T be a linear transforma-
tion, of determinant one, such that T (E) = B(y, δ) is a ball. We will obtain
an upper bound on δ, thus getting an upper bound for the volume of Vol(At)
because

Vol(At) ≤ Vol(E) = Vol(T (E)) = Cδr.

Let ν′t be the function defined by ν′t(x) = νt(T
−1(x)). We want to use a

comparison principle on B(y, δ/r). For that we first show that MAR(ν
′
t)(x) ≥

Ce−mt on T (At). This is equivalent to showing that MAR(νt)(x) ≥ Ce−mt on
At. First remark that since the Hessian HessRνt of νt satisfies:

HessRνt = tHessRut + (1− t)HessRuref +HessRj,

we have
det(HessRνt) ≥ det(tHessRut),

i.e.
MAR(νt)(x) ≥ trMAR(ut)(x).

Using Proposition 3.3 we deduce that

MAR(νt)(x) ≥ trJ(x)e−wt(x)
∏

α∈Φ+

1

〈α,∇ut(x)〉
2

≥ tre−νt(x)
∏

α∈Φ+

1

〈α,∇ut(x)〉
2 .

We treat the factors separately:

• We have t ≥ t0 > 0 for t0 defined in Notation 3.1.

• By definition of At, we have e−νt(x) ≥ e−mt−1 on At.

• For any x ∈ a, we have ∇ut(x) ∈ 2P , so for any α ∈ Φ+, 〈α,∇ut(x)〉 is
bounded above independently of t. This implies that

∏

α∈Φ+

1

〈α,∇ut(x)〉
2 ≥ c

for some positive constant c.

In conclusion, we indeed have an inequality MAR(νt)(x) ≥ Ce−mt on At, with
C a positive constant independent of t ≥ t0.

Now we use the comparison principle on B(y, δ/r) for real Monge-Ampère
equations: let g be the auxiliary function defined by

g(x) = C1/re−mt/r

(

|x− y|2 −
δ2

r2

)

+mt + 1.

Then we have
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• g(x) = mt + 1 ≥ ν′t(x) for x ∈ ∂B(y, δ/r), and

• MAR(g)(x) = Ce−mt ≤ MAR(ν
′
t)(x) on B(y, δ/r).

So the comparison principle gives that ν′t(x) ≤ g(x) on B(y, δ/r). In particular,
we have

mt ≤ νt(T
−1(y))

≤ ν′t(y)

≤ g(y)

≤ C1/re−mt/r

(

−
δ2

r2

)

+mt + 1.

We deduce from that the following upper bound for δ:

δ ≤

√

1

C1/r
remt/2r.

Putting everything together, we obtain

Vol(At) ≤ Vol(B(y, δ) ≤ C′emt/2.

We turn now to a lower bound on Vol(At).

Lemma 4.2. There exists a constant c > 0 independent of t such that

Vol(At) ≥ c.

Proof. There exists a constant b2 independent of t such that 0 < b2 < b1 and

At ⊂ b2ρ+ a+.

This is a corollary of Proposition 3.10, taking b2 corresponding to M = 1.
Then by Lemma 3.6 and Proposition 2.10, on b2ρ + a+, |∇νt| is bounded

independently of t, say by C. Then it is clear that the ball B(xt, 1/C) is
contained in At. So Vol(At) ≥ c for some c > 0 independent of t.

Proposition 4.3. The following integral is independent of t:
∫

a
+

e−νt(x)dx =

∫

2P+

∏

α∈Φ+

〈α, p〉
2
dp =: V.

Proof. Applying Proposition 2.12 with the ample line bundle −KX , we have,
for some constant C depending only on G, and for any convex potential u of a
smooth K ×K-invariant positively curved hermitian metric on −KX ,

deg(−KX) = C

∫

a
+

∏

α∈Φ+

〈α,∇u(x)〉
2
MAR(u)(x)dx

= C

∫

2P+

∏

α∈Φ+

〈α, p〉
2
dp
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We apply this to the convex potential ut, which by Proposition 3.3 satisfies

e−νt(x) =
∏

α∈Φ+

〈α,∇ut(x)〉
2 MAR(ut)(x)

and obtain the statement, with V = deg(−KX)/C.

We can now prove the main result of this subsection.

Proposition 4.4.

• There exists a constant C independent of t, such that |mt| ≤ C.

• There exist a constant κ > 0 and a constant C, both independent of t,
such that for x ∈ a+,

νt(x) ≥ κ|x− xt| − C.

Proof. Following here Donaldson [Don08] rather than Wang and Zhu, we write
∫

a
+

e−νt(x)dx =

∫

a
+

∫ +∞

νt(x)

e−sdsdx

=

∫ +∞

−∞

e−s
∫

a
+

1{νt(x)≤s}dxds

=

∫ +∞

mt

e−sVol({νt ≤ s})ds

= e−mt

∫ +∞

0

e−sVol({νt ≤ mt + s})ds

Now remark that {νt ≤ mt + s} ⊂ s · At by convexity of νt, where s · At is
the s-dilation of At with center xt. We deduce from that

Vol({wt ≤ νt + s}) ≤ srVol(At) ≤ Csremt/2.

Applying this to the formula above we obtain
∫

a
+

e−νt(x)dx ≤ e−mtCemt/2

∫ +∞

0

e−ssnds

≤ C′e−mt/2.

The left hand side being constant, this inequality gives an upper bound on mt.
For the lower bound, remark that

V =

∫

a
+

e−νt(x)dx = e−mt

∫ +∞

0

e−sVol({wt ≤ νt + s})ds

≥ e−mt

∫ +∞

1

e−sVol({wt ≤ νt + s})ds

≥ e−mtVol(At)

∫ +∞

1

e−sds.
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By Lemma 4.2, Vol(At) admits a lower bound c independent of t, so

V ≥ e−mtc

∫ +∞

1

e−sds,

and we deduce that

−mt ≤ ln(V )− ln

(

c

∫ +∞

1

e−sds

)

so −mt is bounded above by a constant independent of t. Thus we have showed
estimates on |mt|.

Now for linear growth, the estimate on |mt| implies that we know both an
upper bound C1 and a lower bound C2 independent of t for the volume of
At. Since this set is convex, and contains a ball B(xt, δ0) of fixed radius δ0
independent of t by the proof of Lemma 4.2, this implies that At is included in
a ball At ⊂ B(xt, δ) where δ only depends on C1 and δ0.

By convexity of νt, this implies that νt(x) ≥ |x − xt|/δ +mt outside of the
ball, and we can extend this inequality to the whole of a+ simply by subtracting
1:

νt(x) ≥ |x− xt|/δ +mt − 1

everywhere. Using again the fact that mt is uniformly bounded we get the result
with κ = 1/δ.

5 Obstruction, and upper bound on R(X)

We will here explain how our condition appears as a necessary condition, then
obtain an upper bound on the greatest Ricci lower bound. Everything relies on
the following vanishing statement, which will also be of major importance in
the next section.

5.1 A vanishing integral

Proposition 5.1. Let u be the convex potential of a smooth positive metric on
−KX. Define ν := u+ j. Let ξ be any vector in a+. Then

∫

a
+

∂ν

∂ξ
e−νdx = 0.

Before we get to the proof, let us remark that the function considered is
integrable. More generally, we can remark first that for any potential u0, and
any vector ξ, the function ∂u0

∂ξ e
−ν is integrable on a+. This is the case because

∇u0 ∈ 2P , and e−ν ≤ Ce−(v−4ρ)+C (by Proposition 2.10 and Lemma 3.4) is
obviously integrable.
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Secondly, we have to show that the function ∂j
∂ξ e

−ν = ∂j
∂ξJe

−u is integrable.
Write

∂j

∂ξ
(x)J(x) = −2

∑

α∈Φ+

〈α, ξ〉 coth 〈α, x〉
∏

β∈Φ+

sinh2 〈β, x〉

= −2
∑

α∈Φ+

〈α, ξ〉 cosh 〈α, x〉 sinh 〈α, x〉
∏

β 6=α

sinh2 〈β, x〉 .

Then by a computation similar to Lemma 3.4, we have
∣

∣

∣

∣

e4ρ
∂j

∂ξ
J

∣

∣

∣

∣

≤ Ce4ρ,

so again ∂j
∂ξ e

−ν is integrable.

Proof. Choose a basis (ei)i=1..s of the semisimple part ass which generate a+ ∩
ass as a cone, and a basis (fj)j=1..r−s of the toric part at. Consider the following
sets, for 0 ≤ ǫ < M :

Q(ǫ,M) :=
{

∑

i

xiei +
∑

j

yjfj ; ∀i ǫ ≤ xi ≤M, ∀j −M ≤ yj ≤M
}

.

Note that ∂Q(ǫ,M) = S1(ǫ,M) ∪ S2(ǫ,M), where:

S1(ǫ,M) :=
{

∑

i

xiei +
∑

j

yjfj ∈ Q(ǫ,M) ; ∃i xi = ǫ
}

S2(ǫ,M) :=
{

∑

i

xiei +
∑

j

yjfj ∈ Q(ǫ,M) ; ∃i xi =M or ∃j |yj | =M
}

.

Remark that ∂ν
∂ξ e

−ν = −∂e−ν

∂ξ . Then by the divergence formula applied to
e−ν we have for ǫ > 0,

∫

Q(ǫ,M)

∂ν

∂ξ
e−νdx =

∫

S1(ǫ,M)∪S2(ǫ,M)

e−ν 〈ξ, µ〉 dσ

where µ is the exterior normal and dσ is the surface area.
Write now e−ν = e−uJ . This is a continuous function on a, and it vanishes

on the Weyl walls. Fixing M , we can thus let ǫ tend to 0, and we have that e−ν

tends uniformly to 0 on S1(ǫ,M), so
∫

S1(ǫ,M)
e−ν 〈ξ, µ〉 dσ tends to 0.

We thus have
∫

Q(0,M)

∂ν

∂ξ
e−νdx =

∫

S2(0,M)

e−ν 〈ξ, µ〉 dσ.

Now as we have seen before, we have e−ν ≤ Ce−(v−4ρ)+C , so e−ν(x) decreases
exponentially as |x| tends to infinity. Since the area of S2(0,M) grows polyno-
mially, this ensures that

∫

S2(0,M) e
−ν 〈ξ, µ〉 dσ tends to zero as M tends to ∞.

This ends the proof.

37



5.2 Obstruction to the existence of a Kähler-Einstein met-

ric

Let us now explain the relation between convex potentials and the barycenter
barDH(P+). Recall that V denotes the volume of the polytope P+ with respect
to the Duistermaat-Heckman measure, and is equal, up to a multiplicative con-
stant, to the volume of the anticanonical line bundle.

Proposition 5.2. Assume that u is the convex potential of a smooth, positively
curved hermitian metric on −KX, then

∫

a
+

∂u

∂ξ

∏

α∈Φ+

〈α,∇u〉2 MAR(u)dx =
〈

ξ, barDH(2P+)
〉

V.

Proof. We simply use the change of variable p = ∇u(x), just as in the proof of
Proposition 2.12. It gives:

∫

a
+

∂u

∂ξ

∏

α∈Φ+

〈α,∇u〉2 MAR(u)dx =

∫

2P+

〈p, ξ〉
∏

α∈Φ+

〈α, p〉2 dp

=
〈

ξ, barDH(2P+)
〉

V.

We now prove an obstruction to the existence of Kähler-Einstein metrics
on X . Recall that Ξ denotes the relative interior of the cone generated by the
positive roots Φ+.

Proposition 5.3. Assume there exists a Kähler-Einstein metric on X. Then

barDH(2P+) ∈ 4ρ+ Ξ.

Proof. By Proposition 3.3, the Kähler-Einstein equation restricted to the open
orbit reads:

MAR(u)
∏

α∈Φ+

〈α,∇u〉
2
= e−uJ.

Suppose that there exists a solution u. Applying Proposition 5.1 to u gives
∫

a
+

∂ν

∂ξ
e−νdx = 0,

so by definition of ν = u+ j,
∫

a
+

∂u

∂ξ
e−νdx+

∫

a
+

∂j

∂ξ
e−νdx = 0.

Since u is solution to the Kähler-Einstein equation, we have

e−ν = e−uJ = MAR(u)
∏

α∈Φ+

〈α, ρ〉2 .
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In particular, by Proposition 4.3,
∫

a
+

e−νdx = V

is constant, and by Proposition 5.2,
∫

a
+

∂u

∂ξ
e−νdx =

〈

ξ, barDH(2P+)
〉

V.

By Lemma 3.5, we have for ξ ∈ a+,
∫

a
+

∂j

∂ξ
e−νdx < −4 〈ρ, ξ〉V.

Combining these facts, we have:

〈

ξ, barDH(2P+)
〉

V − 4 〈ρ, ξ〉V >

∫

a
+

∂u

∂ξ
e−νdx+

∫

a
+

∂j

∂ξ
e−νdx

> 0.

Dividing by V we obtain that for any ξ ∈ a+,
〈

ξ, barDH(2P+)− 4ρ
〉

> 0.

The large inequality would mean barDH(2P+)−4ρ ∈ (a+)∨, and here the strict
inequality means that barDH(2P+)−4ρ is in the relative interior of (a+)∨, which
is precisely Ξ.

Example 5.4. This obstruction allows to show that the manifold X2 does
not admit any Kähler-Einstein metric. Recall that this is a compactification of
Sp4(C) so the corresponding root system is B2. Denote by α1 and α2 the simple
roots, with α2 the long root. Then the other positive roots are α1 + α2 and
2α1 + α2, so 2ρ = 4α1 + 3α2.

Choosing a realization of B2 in the euclidean plane with α1 = (1, 0) and
α2 = (−1, 1), we compute that, for p = xα1 + yα2,

∏

α∈Φ+

〈α, p〉
2
= x2y2(x− y)2(−x+ 2y)2.

We can then compute

barDH(P+) =
278037566905

66955221696
α1 +

3043253830

1046175339
α2.

In particular the coordinate in α2 is strictly smaller than 3 so there exists no
Kähler-Einstein metric on X2. Figure 4 gives a representation of the polytope
P+, the barycenter is represented by a cross and the cone delimited by the
dashed lines is 2ρ+ Ξ.
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P+

α1

α2

Figure 4: Barycenter for X2

5.3 Upper bound on R(X)

Proposition 5.5. Assume that X admits no Kähler-Einstein metrics, then the
greatest Ricci lower bound of X is lower than or equal to the supremum of all
t < 1 such that

4ρ+
t

t− 1
(barDH(2P+)− 4ρ) ∈ −Ξ+ 2P+.

Proof. Consider the equation at time t:

MAR(ut)
∏

α∈Φ+

〈α,∇ut〉
2
= e−νt .

Apply Proposition 5.1 to wt. This gives for any ξ ∈ a+,
∫

a
+

∂νt
∂ξ

e−νtdx = 0.

This is equivalent to

t

∫

a
+

∂ut
∂ξ

e−νt + (1− t)

∫

a
+

∂uref
∂ξ

e−νt +

∫

a
+

∂j

∂ξ
e−νt = 0.

Without loss of generality we can assume t < 1 and divide by (t − 1)V to
get

t

t− 1

∫

a
+

∂ut
∂ξ

e−νt

V
+

1

t− 1

∫

a
+

∂j

∂ξ

e−νt

V
=

∫

a
+

∂uref
∂ξ

e−νt

V
.

If v is the support function of 2P , we have for any x ∈ a+, ∂uref

∂ξ (x) ≤ v(ξ), so

∫

a
+

∂uref
∂ξ

e−νt

V
≤ v(ξ).

On the other hand, we can use here also Lemma 3.5 to get, for ξ ∈ a+,

1

t− 1

∫

a
+

∂j

∂ξ

e−νt

V
>

1

t− 1
(−4 〈ρ, ξ〉).
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We thus have, using Proposition 5.2,

v(ξ) >
t

t− 1

∫

a
+

∂ut
∂ξ

e−νt

V
+

1

t− 1

∫

a
+

∂j

∂ξ

e−νt

V

>
t

t− 1

〈

ξ, barDH(2P+)
〉

−
1

t− 1
4 〈ρ, ξ〉

>

〈

ξ, 4ρ+
t

t− 1
(barDH(2P+)− 4ρ)

〉

The fact that this is true for all ξ ∈ a+ means, since v is the support function
of 2P , that

4ρ+
t

t− 1
(barDH(2P+)− 4ρ) ∈ −Ξ+ 2P+.

6 Absence of estimates on |xt|

6.1 Consequence

We will assume now that there are no Kähler-Einstein metrics on X . We will
denote by t∞ := R(X) the greatest Ricci lower bound.

Our assumption implies that |xt| is unbounded as t tends to t∞. Indeed if it
was not the case, then we would have estimates on |xt| and so by Proposition 3.11
and Lemma 4.4, there would be a solution at time t∞ and by openness for times
greater than t∞ if t∞. This is a contradiction.

We can find a sequence ti such that ti → t∞ and |xti | → ∞. Define ξt ∈ a+ as
the direction given by the minimum ξt := xt/|xt|. Up to taking a subsequence,
we can also assume that ξt admits a limit ξ∞ ∈ a+ as ti → t∞.

We will consider an integral equality involving νt and consider the limit as
ti → t∞. The integral equality follows from Proposition 5.1 applied to wt:

∫

a
+

∂νt
∂ξ

e−νtdx = 0.

Recall that wt = tut + (1 − t)uref by definition, so

νt = tut + (1 − t)uref + j = t(ut + j) + (1− t)(uref + j).

The vanishing integral thus gives

t

∫

a
+

∂ut
∂ξt

e−νtdx+ (1 − t)

∫

a
+

∂uref + j

∂ξt
e−νtdx +

∫

a
+

∂j

∂ξt
e−νtdx = 0,

which can also be written

t

∫

a
+

∂ut + j

∂ξt
e−νtdx = (t− 1)

∫

a
+

∂uref + j

∂ξt
e−νtdx.

We will compute the limit of each of these terms as ti → t∞, and obtain the
following result.

Proposition 6.1. We have

t∞
〈

barDH(2P+)− 4ρ, ξ∞
〉

= (t∞ − 1)(v(ξ∞)− 〈4ρ, ξ∞〉).
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6.2 Proof of Proposition 6.1

Let us first consider
∫

a
+

∂ut
∂ξt

e−νtdx.

Since
e−νt =

∏

α∈Φ+

〈α,∇ut〉
2
MAR(ut),

Proposition 5.2 implies
∫

a
+

∂ut
∂ξt

e−νtdx =
〈

ξt, barDH(2P+)
〉

V.

In particular, the limit as ti → t∞ is
〈

ξ∞, barDH(2P+)
〉

V.

For the other terms we need more work to compute the limits. For sim-
plicity, we will often omit the indices i in ti. We will prove the two following
propositions.

Proposition 6.2. We have

lim
ti→t∞

∫

a
+

∂j

∂ξt
e−νt = −〈4ρ, ξ∞〉V.

Proposition 6.3. We have

lim
ti→t∞

∫

a
+

∂uref
∂ξt

e−νt = v(ξ∞)V.

Let us first find a domain D(ǫ) of the form B(xt, δ)∩ (bρ+a+) where e−νtdx
puts all the mass up to 2ǫ > 0. When we write B(xt, δ), we in general mean
B(xt, δ) ∩ a+.

Lemma 6.4. For any ǫ > 0, there exists a constant δ = δ(ǫ) independent of t
such that

∫

a
+\B(xt,δ)

e−νtdx < ǫ

and
e−κδ+Cσrδ

r−1 < ǫ,

where σr is the area of a sphere of radius 1 in Rr.

Proof. Recall from Proposition 4.4 that νt(x) ≥ κ|x−xt|−C, for some κ > 0, C
independent of t. Observe that the function e−κ|x−xt|+C is well defined on a,
positive and integrable. So there exists a δ > 0 such that

∫

a\B(xt,δ)

e−κ|x−xt|+Cdx < ǫ.
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But then we also have
∫

a
+\B(xt,δ)

e−νtdx ≤

∫

a
+\B(xt,δ)

e−κ|x−xt|+C < ǫ.

Of course, since e−κy+C decreases exponentially with respect to y, we can
increase δ so as to have the second condition:

e−κδ+Cσrδ
r−1 < ǫ.

Lemma 6.5. For any ǫ > 0, let δ = δ(ǫ) be given by Lemma 6.4. There
exists a constant b = b(ǫ) > 0 such that if we denote by D = D(ǫ) the domain
B(xt, δ) ∩ (bρ+ a+), we have

∫

B(xt,δ)\D

e−νtdx < ǫ,

and
∫

∂D

e−νtdσ < ǫ,

where dσ is the area measure of ∂D, which is piecewise smooth.

Proof. Here we want to use Proposition 3.10. Now that we know that mt is
uniformly bounded, we can choose M and the corresponding b so that:

∀x ∈ a+ \ (bρ+ a+), e−νt(x) < max

(

ǫ

σrδr−1
,

ǫ

δrωr

)

where ωr is the volume of the ball of radius 1 in R
r.

Let us prove that e−νt < ǫ/(σrδ
r−1) on ∂D. A point x ∈ ∂D is either on the

sphere of radius δ centered at xt, or on ∂(bρ+ a+). In the first case, we have,
by Proposition 4.4,

e−νt(x) ≤ e−κ|x−xt|+C

≤ e−κδ+C

<
ǫ

σrδr−1

by the second consequence of Lemma 6.4. In the second case, x ∈ ∂(bρ + a+),
so by the choice of b above, using the first term in the maximum, we have

e−νt(x) <
ǫ

σrδr−1
.

Obviously the volume of ∂D is ≤ σrδ
r−1, so

∫

∂D

e−νtdσ <

∫

∂D

ǫ

σrδr−1
dσ

< ǫ.
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For the other conclusion, we use the fact that e−νt(x) < ǫ/(δrωr) on B(xt, δ)\
D ⊂ a+ \ (bρ+ a+), which implies that

∫

B(xt,δ)\D

e−νtdx <

∫

B(xt,δ)\D

ǫ

δrωr
dx < ǫ

using the fact that the volume of B(xt, δ) \D is ≤ δrωr.

Lemma 6.6. Let ǫ > 0 and D = D(ǫ) be the domain given by Lemma 6.5. We
have

∣

∣

∣

∣

∣

∫

a
+\D

∂j

∂ξt
e−νt

∣

∣

∣

∣

∣

< (2d+ 1)ǫ.

Proof. Let us write:
∫

a
+\D

∂j

∂ξt
e−νtdx =

∫

a
+\D

∂(νt − wt)

∂ξt
e−νtdx

=

∫

a
+

∂νt
∂ξt

e−νtdx−

∫

D

∂νt
∂ξt

e−νtdx−

∫

a
+\D

∂wt
∂ξt

e−νtdx

The first of these three integrals is zero by Proposition 5.1.
For the third term, we have

∫

a
+\D

∣

∣

∣

∣

∂wt
∂ξt

∣

∣

∣

∣

e−νtdx ≤ d

∫

a
+\D

e−νtdx

< 2dǫ

by Lemma 6.5.
It remains to deal with the second integral. We apply the divergence theorem

on D to the function e−νt :
∫

D

∂νt
∂ξt

e−νtdx = −

∫

D

∂e−νt

∂ξt
dx =

∫

∂D

e−νt 〈ξt, n〉 dσ

where n is the exterior normal to D and dσ the area measure.
We conclude using Lemma 6.5 that

∣

∣

∣

∣

∫

D

∂νt
∂ξt

e−νtdx

∣

∣

∣

∣

≤

∫

∂D

e−νtdσ < ǫ.

Putting everything together, we see that
∣

∣

∣

∣

∣

∫

a
+\D

∂j

∂ξt
e−νtdx

∣

∣

∣

∣

∣

< (2d+ 1)ǫ
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Proof of Proposition 6.2. Let ǫ > 0. Set θ = ǫ/(3(2d+ 1 + 8|ρ|)) and let D :=
D(θ). Write
∣

∣

∣

∣

∫

a
+

∂j

∂ξt
e−νt + 〈4ρ, ξ∞〉 V

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

a
+\D

∂j

∂ξt
e−νt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

D

∂j

∂ξt
e−νt + 〈4ρ, ξ∞〉V

∣

∣

∣

∣

≤ (2d+ 1)θ +

∣

∣

∣

∣

∫

D

∂j

∂ξt
e−νt + 〈4ρ, ξ∞〉V

∣

∣

∣

∣

by Lemma 6.6.
Then we have
∣

∣

∣

∣

∫

D

∂j

∂ξt
e−νt + 〈4ρ, ξ∞〉 V

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

D

∂j

∂ξt
e−νt + 〈4ρ, ξt〉V

∣

∣

∣

∣

+ |〈4ρ, ξ∞ − ξt〉V |

The second term tends to zero so there exists an i0 such that for all i ≥ i0,

|〈4ρ, ξ∞ − ξt〉 V | ≤
ǫ

3
.

We now deal with the second term:
∣

∣

∣

∣

∫

D

∂j

∂ξt
e−νt + 〈4ρ, ξt〉 V

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

D

(

∂j

∂ξt
+ 〈4ρ, ξt〉

)

e−νt
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

a
+\D

〈4ρ, ξt〉 e
−νt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

D

(

∂j

∂ξt
+ 〈4ρ, ξt〉

)

e−νt
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

〈4ρ, ξt〉

∫

a
+\D

e−νt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

D

(

∂j

∂ξt
+ 〈4ρ, ξt〉

)

e−νt
∣

∣

∣

∣

+ |4ρ|

∣

∣

∣

∣

∣

∫

a
+\D

e−νt

∣

∣

∣

∣

∣

and by construction of D we deduce:

≤

∣

∣

∣

∣

∫

D

(

∂j

∂ξt
+ 〈4ρ, ξt〉

)

e−νt
∣

∣

∣

∣

+ |4ρ| · 2θ

We consider now the quantity

∂j

∂ξt
(x) + 〈4ρ, ξt〉

for x ∈ D. It is negative by Lemma 3.5 since ξt ∈ a+.
Recall that D(θ) ⊂ b(θ)ρ + a+ for some b(θ) > 0, and more precisely that

D(θ) = B(xt, δ(θ)) ∩ (b(θ)ρ + a+). Choose b0 > 0 such that B(b0ρ, δ(θ)) ⊂
b(θ)ρ+ a+.

We can write

ξt =
xt
|xt|

=
xt − b0ρ

|xt|
+
b0ρ

|xt|

=
|xt − b0ρ|

|xt|
ξ1 +

|b0ρ|

|xt|
ξ2
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where ξ1 = (xt − b0ρ)/|xt − b0ρ| and ξ2 = b0ρ/|b0ρ|.
It gives

∂

∂ξt
=

|xt − b0ρ|

|xt|

∂

∂ξ1
+

|b0ρ|

|xt|

∂

∂ξ2
.

Let x = xt+ y ∈ D, we consider the restriction of j to the line starting from
b0ρ+ y and of direction ξ1, which contains x. By convexity, we have

∂j

∂ξ1
(x) ≥

j(x) − j(y + b0ρ)

|xt − b0ρ|
.

Recall from Lemma 3.4 that

j(x) ≥ −2
∑

α∈Φ+

〈α, x〉+ C = −〈4ρ, x〉+ C

on a+, for some constant C.
Applying this gives

∂j

∂ξ1
(x) ≥

−〈4ρ, x〉+ C − j(y + b0ρ)

|xt − b0ρ|
.

Now going back to ∂j
∂ξt

(x), we have

∂j

∂ξt
(x) =

|xt − b0ρ|

|xt|

∂j

∂ξ1
(x) +

|b0ρ|

|xt|

∂j

∂ξ2
(x)

≥
|xt − b0ρ|

|xt|

− 〈4ρ, x〉+ C − j(y + b0ρ)

|xt − b0ρ|
+

|b0ρ|

|xt|

∂j

∂ξ2
(x)

≥
−〈4ρ, xt + y〉+ C − j(y + b0ρ)

|xt|
+

|b0ρ|

|xt|

∂j

∂ξ2
(x)

so

0 ≥
∂j

∂ξt
(x) +

〈

4ρ,
xt
|xt|

〉

≥
−〈4ρ, y〉+ C − j(y + b0ρ) + |b0ρ|

∂j
∂ξ2

(x)

|xt|

Now y ∈ B(b0ρ, δ(θ)) is bounded, j is bounded on b(θ)ρ+a+ by Lemma 3.4,
and the derivatives of j are bounded on b(θ)ρ+ a+ by Lemma 3.6, so there is a
(negative) constant C′ such that

0 ≥
∂j

∂ξt
(x) +

〈

4ρ,
xt
|xt|

〉

≥
C′

|xt|
.

Applying this to the sequence ti, we find that there exists a i1 such that for
i > i1, and unifomrly for x ∈ D,

∣

∣

∣

∣

∂j

∂ξt
(x) + 〈4ρ, ξt〉

∣

∣

∣

∣

≤
ǫ

3V
.
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Then for i > i1,
∣

∣

∣

∣

∫

D

(

∂j

∂ξt
+ 〈4ρ, ξt〉

)

e−νt
∣

∣

∣

∣

≤

∫

D

∣

∣

∣

∣

∂j

∂ξt
+ 〈4ρ, ξt〉

∣

∣

∣

∣

e−νt

≤
ǫ

3V

∫

D

e−νt

≤
ǫ

3

Gathering everything gives, for i > max(i0, i1),
∣

∣

∣

∣

∫

a
+

∂j

∂ξt
e−νt + 〈4ρ, ξ∞〉V

∣

∣

∣

∣

≤ (2d+ 1)θ + 8|ρ|θ +
ǫ

3
+
ǫ

3
= ǫ.

Proof of Proposition 6.3. Let ǫ > 0. Set θ := ǫ/6d and let δ = δ(θ). First, by
Lemma 6.4, we have

∣

∣

∣

∣

∣

∫

a
+\B(xt,δ)

∂uref
∂ξt

e−νt

∣

∣

∣

∣

∣

< dθ.

On B(xt, δ) , we always have ∂uref

∂ξt
≤ v(ξt). Now consider the ray starting

from x− xt and going to x. By convexity, we have

∂uref
∂ξt

(x) ≥
uref(x)− uref(x− xt)

|xt|

≥
v(x) + C

|xt|

for some constant C independent of x in B(xt, δ), by Proposition 2.10 and
because uref is bounded on B(0, δ). Then we can write

∂uref
∂ξt

(x) ≥ v(ξt +
x− xt
|xt|

) +
C

|xt|

≥ v(ξt) +
C′

|xt|

The last step holds because v is Lipschitz.
For i > i0 for some i0, we thus have, for x ∈ B(xt, δ),

∣

∣

∣

∣

∂uref
∂ξt

(x)− v(ξt)

∣

∣

∣

∣

<
ǫ

3
V.

Integrating on the ball gives
∣

∣

∣

∣

∣

∫

B(xt,δ)

∂uref
∂ξt

e−νt −

∫

B(xt,δ)

v(ξt)e
−νt

∣

∣

∣

∣

∣

<
ǫ

3
.
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Applying Lemma 6.4 again gives
∣

∣

∣

∣

∣

∫

B(xt,δ)

v(ξt)e
−νt −

∫

a
+

v(ξt)e
−νt

∣

∣

∣

∣

∣

< dθ,

with
∫

a
+

v(ξt)e
−νt = v(ξt)V.

Finally, since ξt converges to ξ∞, there exists i1 such that for i > i1,

|v(ξt)V − v(ξ∞)V | <
ǫ

3
.

We have proved that for i > i0, i1, we have
∣

∣

∣

∣

∫

a
+

∂uref
∂ξt

e−νt − v(ξ∞)V

∣

∣

∣

∣

< 2
ǫ

3
+ 2dθ = ǫ

This concludes the proof of Proposition 6.1, by considering the limit at t∞
and dividing by V .

6.3 Sufficient condition

We can now prove that our condition is sufficient for the existence of a Kähler-
Einstein metric and thus conclude the proof of Theorem A.

Theorem 6.7. If barDH(2P+) ∈ 4ρ + Ξ, then X admits a Kähler-Einstein
metric.

Proof. Assume that X admits no Kähler-Einstein metric. Then Proposition 6.1
gives

t∞
〈

barDH(2P+)− 4ρ, ξ∞
〉

= (t∞ − 1)(v(ξ∞)− 〈4ρ, ξ∞〉).

In particular, since v is the support function of 2P and 2ρ ∈ Int(P ), and 0 <
t∞ ≤ 1, we have

〈

barDH(2P+)− 4ρ, ξ∞
〉

≤ 0.

Assume that barDH(2P+) ∈ 4ρ+ Ξ. Then by the definition of Ξ, the only
possibility is that ξ∞ ∈ at and 〈barDH(2P+)− 4ρ, ξ∞〉 = 0.

To prove that this is impossible, consider the vanishing
∫

a
+

∂νt
∂ξ∞

e−νtdx = 0.

The difference with what we have done before is that we fix ξ∞ instead of
considering ξt.

Since ξ∞ ∈ at, we have ∂j
∂ξ∞

= 0 and so we deduce from the vanishing of the
integral the following equality, valid for t < t∞.

t

∫

a
+

∂ut
∂ξ∞

e−νtdx = (t− 1)

∫

a
+

∂uref
∂ξ∞

e−νtdx
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P+

α1

α2

Figure 5: Barycenter for X1

The left hand side term is zero because we assumed

0 =
〈

barDH(2P+)− 4ρ, ξ∞
〉

=
〈

barDH(2P+), ξ∞
〉

.

We thus have, for all t < t∞,
∫

a
+

∂uref
∂ξ∞

e−νtdx = 0.

This is a contradiction: let m := min{v(ξ) ; ξ ∈ a, |ξ| = 1} > 0. For any δ > 0
fixed, there exists an ǫ > 0 such that if t∞ − ǫ < t < t∞, ∂uref

∂ξ∞
≥ m/2 on

B(xt, δ). This is because |xt| goes to ∞ and uref is asymptotic to v. Choose
now δ = δ(m/4) given by Lemma 6.4, then for t close to t∞, we obtain

∫

a
+

∂uref
∂ξ∞

e−νtdx ≥ m/4 > 0.

Combined with the obstruction proved earlier, it ends the proof of Theo-
rem A.

Example 6.8. Consider the example X1, which we recall is the wonderful
compactification of PGL3(C). The corresponding root system is A2. We denote
by α1 and α2 the simple roots. The third positive root is then α1 + α2, and
2ρ = 2(α1 + α2). For p = xα1 + yα2,

∏

α∈Φ+

〈α, p〉
2
= (x− y/2)2(−x/2 + y)2(x/2 + y/2)2.

We computed the coordinates x and y of the barycenter barDH(P+) and
obtained

barDH(P+) =
24641

9888
(α1 + α2).

As a consequence, X1 admits a Kähler-Einstein metric. Figure 5 gives a repre-
sentation of P+, where the cross is the barycenter, and the convex cone delimited
by the dashed lines is 2ρ+ Ξ.
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6.4 Lower bound on R(X)

Assume first that t∞ < 1, then we can write

t∞
t∞ − 1

〈

barDH(2P+)− 4ρ, ξ∞
〉

= v(ξ∞)− 〈4ρ, ξ∞〉 ,

or
〈

4ρ+
t∞

1− t∞
(−barDH(2P+) + 4ρ), ξ∞

〉

= v(ξ∞).

For t = 0, we have 4ρ ∈ Int(2P ). The function t 7→ t/(1 − t) is strictly
increasing and its image is [0,∞[. Besides, since v is the support function of
2P , the value v(ξ∞) is attained by 〈m, ξ∞〉 if and only if m is in the supporting
hyperplane of 2P defined by ξ∞. We deduce that necessarily t∞ is the unique
value of t for which

4ρ+
t

1− t
(−barDH(2P+) + 4ρ) ∈ ∂(−Ξ+ 2P+),

if it exists. If it doesn’t exist, then t∞ = 1.
Combining this with the upper bound on R(X), we have proved Theorem C.

Example 6.9. This allows to compute exactly the greatest Ricci lower bound
for X2, which is

R(X2) =
1046175339

1236719713
.
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