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On the weak convergence of the kernel density estimator

in the uniform topology

Gilles Stupfler

Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,

13002 Marseille, France

Abstract. The pointwise asymptotic properties of the Parzen-Rosenblatt kernel
estimator f̂n of a probability density function f on Rd have received great attention,
and so have its integrated or uniform errors. It has been pointed out in a couple
of recent works that the weak convergence of its centered and rescaled versions in
a weighted Lebesgue Lp space, 1 ≤ p < ∞, considered to be a difficult problem,
is in fact essentially uninteresting in the sense that the only possible Borel mea-
surable weak limit is 0 under very mild conditions. This paper examines the weak
convergence of such processes in the uniform topology. Specifically, we show that
if fn(x) = E(f̂n(x)) and (rn) is any nonrandom sequence of positive real numbers
such that rn/

√
n→ 0 then, with probability 1, the sample paths of any tight Borel

measurable weak limit in an `∞ space on Rd of the process rn(f̂n − fn) must be
almost everywhere zero. The particular case when the estimator f̂n has continuous
sample paths is then considered and simple conditions making it possible to examine
the actual existence of a weak limit in this framework are provided.

AMS Subject Classifications: 60F17, 62G07, 62G20.
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1 Introduction

The Parzen-Rosenblatt estimator of a probability density function f on Rd, d ≥ 1
(Parzen, 1962, Rosenblatt, 1956) is defined as follows:

f̂n(x) =
1

n

n∑
i=1

Kh(x−Xi).

Here, (Xn) is a sequence of independent random copies of a random variable X,
such that X has a probability density function f . In particular, we assume that the
Xn, n ≥ 1 are defined on a common probability space and induce Borel measurable
maps. The parameter h = h(n)→ 0 as n→∞ is called the bandwidth, and we let
Kh(u) = h−dK(u/h) for a kernel functionK : Rd → R, that is, an integrable function
on Rd with unit integral. The estimator f̂n is essentially a (possibly modified) version
of the histogram whose smoothness is tuned by h and potentially enhanced by the
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regularity of the kernel function K. The random function x 7→ f̂n(x) is the empirical
counterpart of the function x 7→ fn(x) = E[f̂n(x)] = E[Kh(x − X)] which is well-
defined almost everywhere on Rd and integrable. The pointwise properties of the
Parzen-Rosenblatt estimator have been known for a long time: for instance, it is
shown in pp.1069–1070 of Parzen (1962) that under some conditions on K, the
quantity

√
nhd(f̂n(x)−fn(x)) converges weakly to a Gaussian distribution provided

nhd →∞, f(x) > 0 and f is continuous at x.

In this paper, we focus on the weak convergence properties of the random process
x 7→ rn(f̂n(x)−fn(x)), where (rn) is a nonrandom sequence of positive real numbers,
in an `∞ space on Rd. In other words, we try to understand the limiting behavior of
centered and rescaled versions of f̂n in the uniform topology on a (measurable) set.
Convergence results of this kind are valuable because they have important corollaries
such as uniform convergence properties of the random function rn(f̂n − f): if a
nontrivial weak limit can be identified for the process rn(f̂n − fn) and a suitable
condition on the bias term rn(fn − f) is further satisfied, then the rate of uniform
convergence of the estimator f̂n to f shall be exactly rn.

Specifically, let S be a Borel measurable set in Rd with positive Lebesgue measure
and `∞(S) be the space of those real-valued functions which are bounded on S:

H ∈ `∞(S)⇔ ‖H‖∞,S := inf{C ≥ 0 | |H(x)| ≤ C for all x ∈ S} <∞.

Assuming that K is bounded on Rd, it is straightforward that the random function
x 7→ rn(f̂n(x)−fn(x)), x ∈ S, defines a random process belonging to `∞(S). Clearly,
for this random process to converge weakly in `∞(S) its uniform norm rn‖f̂n−fn‖∞,S
has to converge weakly in R, but this is not a sufficient condition. The uniform
norm of rn(f̂n − fn) on S has been studied in many instances in the literature, see
for example the early works of Bickel and Rosenblatt (1973), Silverman (1978) and
Stute (1982, 1984); Talagrand’s inequalities (1994, 1996) and general distributional
results on empirical processes (see the monographs by van der Vaart and Wellner,
1996 and van der Vaart, 1998) then sparked renewed interest in this problem, see e.g.
Einmahl and Mason (2000), Giné and Guillou (2002), Giné et al. (2004), Einmahl
and Mason (2005) and Dony and Einmahl (2006).

None of these works though consider the convergence of rn(f̂n − fn) as a random
process taking values in an `∞ space on Rd. More broadly, the problem of analyzing
the convergence of this process in functional spaces such as Lp spaces on Rd has
long been considered to be difficult. When K2 is integrable on Rd, the recent work
of Nishiyama (2011) generalized a result of Ruymgaart (1998) by disproving the
existence of a nondegenerate Borel measurable weak limit for the process rn(f̂n−fn)
in the L2(Rd) space of square-integrable functions on Rd provided rn/

√
n→ 0. The

ideas of his paper paved the way for the work of Stupfler (2014) which showed that
the same negative conclusion holds in the weighted Lp spaces

Lp(Rd, µ) :=

{
H : Rd → R

∣∣∣∣H is Borel measurable and

∫
Rd

|H(x)|pdµ(x) <∞
}

for p ∈ [1,∞), when Kp is integrable on Rd and the weighting measure µ is a
nontrivial absolutely continuous measure with bounded Radon-Nikodym derivative
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with respect to the Lebesgue measure. These results cannot be easily extended to
the `∞(S) space for topological reasons: in particular, both Nishiyama (2011) and
Stupfler (2014) use the fact that for p finite, the space Lp(Rd, µ) is a separable metric
space whose dual space is Lq(Rd, µ) for q = p/(p − 1). It is well-known that the
space `∞(S) fails to be separable in general and his dual space is more difficult to
work with, which causes measurability-related problems for the process rn(f̂n − fn)
and makes it very hard to characterize weak convergence to an arbitrary Borel
measurable random element in `∞(S). This is why we start here by introducing a
convenient subspace of the dual space of `∞(S), and we then use it to identify the
possible tight Borel measurable weak limits of the process rn(f̂n−fn) in the uniform
topology. It is shown in what follows that such a limit must be 0 almost everywhere
on S with probability 1. Our conclusion about the possible limits of the process
rn(f̂n − fn) appears to be different from what may be obtained when considering
other types of convergence, such as the weak convergence of processes constructed
using f̂n and indexed by classes of functions, see the work by van der Vaart (1994)
and further developments in e.g. Radulović and Wegkamp (2000) and Giné and Nickl
(2008), even though these papers also focus on weak convergence to tight (Gaussian)
limits. Moreover, we shall highlight that when K is continuous, since the process
considered has continuous sample paths, one can show as a corollary of our results
that the limit must be 0 everywhere on S and discard the requirement that the
weak limit be tight under a further mild condition on S by taking advantage of the
particular topology of spaces of continuous functions over compact sets. We finally
show how this makes it possible to classify the asymptotic behavior of the process of
interest, depending on (rn), by using the sharp rates of uniform convergence of f̂n to
fn obtained in Giné and Guillou (2002). Under a further regularity condition on f ,
it is then straightforward that our results carry over to the process rn(f̂n−f), which
is the process of interest in practice, when a classical bias condition is satisfied.

The outline of the paper is as follows: our main results are stated in Section 2 and
some concluding remarks, including on possible extensions of our results, are given
in Section 3.

2 Main results

In all what follows, we assume that S is a Borel measurable set in Rd with positive
Lebesgue measure and K : Rd → R is an integrable function with unit integral which
is bounded on Rd. The guiding ideas are those of Nishiyama (2011) and Stupfler
(2014): our first result relates the problem of identifying the possible weak limits
of the process rn(f̂n − fn) in `∞(S) to the simpler problem of understanding the
weak convergence of sequences of real-valued random variables constructed using
this process and a suitably chosen class of continuous linear functionals on `∞(S).
To do so, we start by noting that Borel measurability of the random function rn(f̂n−
fn) in `∞(S) is not clear even though K and the Xi are measurable, because the
space `∞(S) is not separable (see the discussion in Section 1.1 of van der Vaart and
Wellner, 1996). In this paper, “weak convergence” thus refers to the notion of weak
convergence using outer probabilities (see Definition 1.3.3 p.17 in van der Vaart and
Wellner, 1996).
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We continue by recalling a few facts about duality in `∞(S). Since we will investigate
the possible tight and Borel measurable weak limits of the process rn(f̂n − fn), it
turns out that we need only work with the space of all bounded and Borel measurable
functions on S. This space is itself a subspace of L∞(S), the space of all Borel
measurable functions which are essentially bounded on S:

H ∈ L∞(S)⇔ ‖H‖L∞(S) := inf{C ≥ 0 | |H(x)| ≤ C for almost every x ∈ S} <∞.

Let µS be the measure on Rd whose Radon-Nikodym density with respect to the
Lebesgue measure is 1lS , the indicator of the set S. Then L∞(S) = L∞(Rd, µS),
the space of the Borel measurable functions on Rd which are bounded µS−almost
everywhere. By Theorem 16 p.296 in Dunford and Schwartz (1957), the space
ba(Rd,B(Rd), µS) of the additive, bounded, signed measures on the Borel σ−algebra
B(Rd) which are absolutely continuous with respect to µS is then isometrically iso-
morphic to the dual space of L∞(S). The isomorphism is

ν ∈ ba(Rd,B(Rd), µS) 7→
(
Tν : g ∈ L∞(S) 7→

∫
Rd

g(x)dν(x)

)
with the topology on ba(Rd,B(Rd), µS) being induced by the total variation distance
between measures. Because an element of ba(Rd,B(Rd), µS) may be additive but
not countably additive, the whole dual space ba(Rd,B(Rd), µS) is somewhat incon-
venient to work with; in particular, the absolute continuity condition with respect
to the (countably additive and σ−finite) measure µS is difficult to take advantage
of because it does not translate into the existence of a Radon-Nikodym derivative
with respect to µS . This is why we consider instead the subspace

bca(Rd,B(Rd), µS) = {ν ∈ ba(Rd,B(Rd), µS) | ν is countably additive}.

Using a Hahn-Jordan decomposition, any element ν of bca(Rd,B(Rd), µS), which
is σ−finite because it is bounded, must have a Radon-Nikodym derivative with
respect to µS . The particular structure of µS then entails that ν must have a
Radon-Nikodym derivative with respect to the Lebesgue measure as well, having
value 0 everywhere outside S, and we denote it by dν/dx. With these elements in
mind, the following result can be stated:

Proposition 1. If G1 and G2 are two tight Borel measurable random elements
of L∞(S), then the distributions of G1 and G2 are equal if and only if for every
ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞, the distributions of Tν(G1)
and Tν(G2) are equal.

Proof of Proposition 1. For any ν ∈ bca(Rd,B(Rd), µS), the map Tν is a contin-
uous linear form on L∞(S), so if G1 and G2 have equal distributions then Tν(G1)
and Tν(G2) must have equal distributions as well. Conversely, suppose that for any
ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞, the distributions of Tν(G1)
and Tν(G2) are equal. We introduce the class F of functions F : L∞(S) → R
for which there exist a positive integer J , a continuous and bounded real-valued
function g on RJ and ν1, . . . , νJ ∈ bca(Rd,B(Rd), µS) having essentially bounded
Radon-Nikodym derivatives on S with respect to the Lebesgue measure, such that:

∀ϕ ∈ L∞(S), F (ϕ) = g(Tν1(ϕ), . . . , TνJ (ϕ)).
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Because

∀t1, . . . , tJ ∈ R, ∀ν1, . . . , νJ ∈ bca(Rd,B(Rd), µS),
J∑
i=1

tiTνi = T∑J
i=1 tiνi

,

it comes as a consequence of the Cramér-Wold device that the random vectors
(Tν1(G1), . . . , TνJ (G1)) and (Tν1(G2), . . . , TνJ (G2)) must have the same distribution.
If ρ1 and ρ2 are the pushforward probability measures on L∞(S) induced by G1 and
G2, it becomes clear that

∀F ∈ F ,
∫
L∞(S)

F (ϕ)dρ1(ϕ) =

∫
L∞(S)

F (ϕ)dρ2(ϕ).

In the sense of van der Vaart and Wellner (1996), p.25, the class F is a vector lattice
of continuous bounded functions on L∞(S) containing the constant functions. By
Lemma 1.3.12 (ii) p.25 in van der Vaart and Wellner (1996), it suffices to prove that
the class F separates the points of L∞(S).

Let then ϕ, ψ ∈ L∞(S) be such that ϕ 6= ψ. In other words, the Borel measurable
set E = {ϕ 6= ψ} satisfies µS(E) > 0. Since µS(E ∩ [0, N ]d) ↑ µS(E) as N → ∞,
we may find a bounded Borel measurable set F such that µS(F ) > 0 and ϕ 6= ψ on
F . In particular, ϕ 6= ψ on F ∩S, which is a Borel measurable set having a positive
and finite Lebesgue measure. Let

ν = (ϕ− ψ)1lF · µS .

Then ν is clearly an element of bca(Rd,B(Rd), µS) with essentially bounded Radon-
Nikodym derivative on S and

Tν(ϕ− ψ) =

∫
F∩S

[ϕ(x)− ψ(x)]2dx > 0

which is the desired separation property. The proof is complete.

This result basically makes it possible to identify a tight Borel measurable random
element of `∞(S) up to null sets in S. It is the central tool necessary to prove our
first asymptotic result on the possible tight Borel measurable weak limits of the
process rn(f̂n − fn) in `∞(S).

Theorem 1. Let (rn) be a nonrandom sequence of positive real numbers. If rn/
√
n→

0 and the random process rn(f̂n − fn) converges weakly in `∞(S) to a tight Borel
measurable random process G then G is almost surely zero almost everywhere on S.

Proof of Theorem 1. Pick ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞
and note that the map

t 7→ Tν(Kh(· − t)) =

∫
S
Kh(x− t)dν

dx
(x)dx

is Borel measurable because S is a measurable set and K and dν/dx are Borel
measurable as well. As a consequence, Tν(Kh(· − X)) is a Borel measurable real-
valued random variable and, by the continuous mapping theorem (see Theorem 1.3.6
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p.20 in van der Vaart and Wellner, 1996), the weak convergence of rn(f̂n − fn) to
G implies the following weak convergence of Borel measurable real-valued random
variables:

∆n(ν) := Tν

(
rn(f̂n − fn)

)
→ Tν(G) as n→∞.

We start by showing that Tν(G) = 0 almost surely. Because ν is countably additive
and σ−finite, Fubini’s theorem yields

Tν (E(Kh(· −X))) = E (Tν(Kh(· −X))) .

We may then rewrite ∆n(ν) as a sum of independent and identically distributed
centered random variables, as follows:

∆n(ν) =
rn
n

n∑
i=1

Wn,i(ν) with Wn,i(ν) = Tν(Kh(· −Xi))− E (Tν(Kh(· −X))) .

A change of variables yields

Tν(Kh(· −X)) =

∫
S
Kh(x−X)

dν

dx
(x)dx =

∫
Rd

K(t)
dν

dx
(X + ht)1l{X+ht∈S}dt

almost surely. Because ‖dν/dx‖L∞(S) <∞, we get with probability 1:

|Tν(Kh(· −X))| ≤ ‖dν/dx‖L∞(S)

∫
Rd

|K(t)|dt <∞.

In other words, the random variable Tν(Kh(· −X)) is almost surely bounded. The
triangle inequality thus entails

E|∆n(ν)|2 =

[
rn√
n

]2
E|Wn(ν)|2 = O

([
rn√
n

]2)
.

Consequently, ∆n(ν)→ 0 in probability as n→∞ and Tν(G) = 0 almost surely.

Now, because inclusion preserves tightness (see Lemma 14.4 p.257 in Kallenberg,
1997), G also defines a tight Borel measurable random element of L∞(S). By Propo-
sition 1, G = 0 almost surely in L∞(S), which means in particular that G is almost
surely zero almost everywhere on S: the proof is complete.

Theorem 1 is an analogue of Theorem 2.1 in Nishiyama (2011) and Theorem 2.2 in
Stupfler (2014), which tackled the case of weak convergence in weighted Lp spaces
on Rd, 1 ≤ p < ∞. This result says that either the process rn(f̂n − fn) converges
weakly to an essentially degenerate limit or does not converge weakly to a tight
Borel measurable limit.

Remark 1. By Theorem 1.5.4 p.35 in van der Vaart and Wellner (1996), the ex-
istence of a tight weak limit for rn(f̂n − fn) in `∞(S) is equivalent to asymptotic
tightness of this process (van der Vaart and Wellner, 1996, p.21) plus weak conver-
gence of its finite-dimensional marginals. Under some technical conditions on K and
continuity of f , joint convergence of the marginals of rn(f̂n − fn) can be checked
when (rn) has at most order

√
nhd, by using arguments similar to those of Parzen

(1962, Theorems 1A and 2A and discussion on pp.1069-1070); in such a case, The-
orem 1 yields that the asymptotic tightness of rn(f̂n − fn) is equivalent to its weak
convergence to a limit essentially equal to 0 on S.
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It should be pointed out that on the one hand, because `∞(S) is not a separable
metric space, Borel measurable random elements on this space are not necessarily
tight; on the other hand, tightness of a Borel probability measure on a complete
metric space such as `∞(S) is equivalent to separability of this measure (van der
Vaart and Wellner, 1996, Lemma 1.3.2 p.17), and nonseparable Borel measures can-
not be constructed in the usual Zermelo-Fraenkel system of axioms (van der Vaart
and Wellner, 1996, p.24). As a consequence, tightness of the weak limit does not
appear to be a very restrictive requirement in practice, and this condition makes it
possible to use in the proof of Proposition 1 the very nice characterization of the
distribution of a random process on a metric space contained in Lemma 1.3.12 (ii)
p.25 in van der Vaart and Wellner (1996), while getting information about a non-
tight distribution appears to be difficult, see (i) in this same Lemma. Tightness is
consequently a desirable property, encountered in many instances when consider-
ing weak convergence in a metric space endowed with a sup-norm, see for example
the necessary-and-sufficient conditions for weak convergence in the space `∞(S) in
Section 18 of van der Vaart (1998) and particularly Theorem 18.14 p.261 therein.
Other instances where this condition is used include recent works on weak conver-
gence in the uniform topology over a class of functions, see e.g. van der Vaart
(1994), Radulović and Wegkamp (2000), Mendelson and Zinn (2006), Nickl (2007),
Giné and Nickl (2008), Nickl (2009) and Radulović and Wegkamp (2009). It is re-
markable that although Theorem 1 implies that the process x 7→ rn(f̂n(x)− fn(x))
cannot have a non-essentially trivial, tight Borel measurable weak limit in the space
`∞(S), the process

g ∈ G 7→
√
n

∫
Rd

(f̂n(x)− fn(x))g(x)dx,

where G is a suitable class of functions, may actually converge in `∞(G) to a tight
Brownian bridge limit, see for instance Radulović and Wegkamp (2000) and Giné
and Nickl (2008).

A case though in which we can strengthen our conclusion about the possible limits
of rn(f̂n − fn) is when it takes its values in the space C(S) of continuous functions
on S. In this case, if no point in S is isolated from the point of view of the Lebesgue
measure then we should expect the potential weak limit in Theorem 1 to be 0
everywhere on S instead of almost everywhere. Meanwhile, the tightness hypothesis
about the weak limit, although fairly mild as mentioned above, can be for instance
dropped when S is compact, because the space C(S) is then a separable and complete
subspace of `∞(S), making any Borel measurable random element tight in this space.
Somewhat surprisingly, the tightness requirement can actually also be dropped in
the much more general case when S is σ−compact. These two reasons lead us to
introduce our next assumption on S:

(H1) S can be written as the union of countably many compact subsets of Rd and,
for every x ∈ S and ε > 0, the intersection of S and the Euclidean open ball with
center x and radius ε has positive Lebesgue measure.

Combining condition (H1), which holds true in most if not all practical applications
(for instance if S is an open cube, the closure of an open set, or equal to Rd), with
a continuity assumption about K, we get the following result.
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Theorem 2. Let (rn) be a nonrandom sequence of positive real numbers. Assume
that S satisfies (H1) and K is a continuous function on Rd. If rn/

√
n→ 0 and the

random process rn(f̂n−fn) converges weakly in `∞(S) to a Borel measurable random
process G then G = 0 almost surely.

Proof of Theorem 2. The regularity requirement on K makes it clear that the
sample paths of the process f̂n−fn are in fact almost surely continuous on S, in the
sense that the event An := {f̂n − fn is continuous on S}, although not necessarily
measurable, contains a measurable set having probability 1; in particular, An has
outer probability 1 for every n. Furthermore, because `∞(S) and C(S) are complete
metric spaces and a uniform limit of continuous functions is continuous, it is clear
that the space C(S) is a closed subspace of `∞(S): it follows from the Portmanteau
theorem (see Theorem 1.3.4 p.18 in van der Vaart and Wellner, 1996) that the
probability that G belongs to C(S) is equal to 1. As a first conclusion, G thus
defines a probability measure on C(S).

We first deal with the case when S is compact. The space C(S) is then a separable
and complete metric space so that any Borel probability measure on C(S) is tight.
It follows that G defines a tight element of C(S) and thus of `∞(S) because inclusion
preserves tightness (see Lemma 14.4 p.257 in Kallenberg, 1997). By Theorem 1,
G = 0 almost everywhere on S with probability 1. Finally, because G is continuous
on S and (H1) holds, one concludes that G = 0 almost surely on S.

If now S is not compact, notice that for every compact set T contained in S, the
restriction map H 7→ H|T from `∞(S) to `∞(T ) is continuous. By the continuous

mapping theorem, rn(f̂n−fn) then converges weakly in `∞(T ) to the restriction G|T
of G on the set T . We thus get G|T = 0 almost surely for any compact subset T of

S. The result follows since S is a countable union of compact subsets of Rd.

In particular, when S is an open cube in Rd, we can infer that any weak limit of
rn(f̂n − fn) in `∞(S) should be degenerate, although it is known since Stute (1982,
1984) that under additional conditions, the sup-norm of f̂n − fn over S converges
almost surely at the rate vn :=

√
nhd/| log h|. This last observation suggests that

the sequence (vn) shall play a crucial role in the description of the actual asymptotic
behavior of f̂n − fn in `∞(S). Another consequence of Theorem 2 is that centered
and rescaled kernel density estimators cannot converge weakly to a Gaussian process
in spaces of continuous functions; see also the introduction of Ruymgaart (1998).

We thus examine in the second part of this work what happens depending on the
behavior of (rn) relatively to (vn). The arguments presented in what follows make a
heavy use of the exact rates of convergence for the sup-norm of f̂n − fn which were
investigated in Giné and Guillou (2002). We introduce the following hypotheses:

(H2) The set S is σ−compact and its interior S◦ is dense in S.

(M) The kernel K is a nonnegative, bounded, compactly supported function belong-
ing to the linear span of the nonnegative functions k satisfying the following property:
the subgraph {(s, u) ∈ Rd×R | k(s) ≥ u} of k can be represented as a finite number
of Boolean operations among sets of the form {(s, u) ∈ Rd × R | p(s, u) ≥ ϕ(u)}
where p is a polynomial on Rd+1 and ϕ is an arbitrary real function.
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(R) The function f is uniformly continuous and the kernel K is continuous on Rd.

(W ) The bandwidth h is such that

h ↓ 0,
nhd

| log h|
→ ∞, | log h|

log log n
→∞ and nhd ↑ ∞.

Assumption (H2) contains condition (H1) and entails that the supremum of a con-
tinuous function over S is also its supremum over its interior S◦. Hypothesis (M)
is taken from Giné and Guillou (2002) and Giné et al. (2004); it is basically a
measurability condition ensuring that the class of functions

K =

{
x 7→ K

(
x− t
h

)
: h > 0, t ∈ Rd

}
is a bounded measurable Vapnik-Červonenkis class, which ensures in particular that
‖f̂n− fn‖∞,S is a Borel measurable random variable and is thus a key ingredient for

the search of uniform rates of convergence for f̂n − fn. Many kernels, such as the
naive kernel or the pyramid kernel, satisfy this assumption, see the discussion p.911
in Giné and Guillou (2002). Regularity condition (R) on f and K especially gives
that the sample paths of f̂n − fn should be almost surely continuous; notice that a
similar condition is also required in Theorem 3.1 of Stute (1984). Condition (W )
was already partly introduced in p.87 of Stute (1982) and p.367 of Stute (1984), and
in its present form, it is one of the hypotheses necessary for the results of Giné and
Guillou (2002) to hold. Related but stronger assumptions are those of Giné et al.
(2004), p.2574. The following result then holds:

Theorem 3. Let (rn) be a nonrandom sequence of positive real numbers. Assume
that K satisfies condition (M), that the density function f is bounded on Rd and
that condition (W ) holds.

(i) If rn/vn → 0, then rn(f̂n − fn)→ 0 weakly in `∞(S).

Assume further that conditions (H2) and (R) hold, the set S is either Rd or bounded
and the set {f > 0} ∩ S◦ is not empty.

(ii) If rn/vn → c ∈ (0,∞], then rn(f̂n− fn) does not converge weakly to any Borel
measurable random element in `∞(S).

Proof of Theorem 3. To show (i), apply first Theorem 2.3 in Giné and Guillou
(2002) to get

lim sup
n→∞

vn‖f̂n − fn‖∞,Rd ≤ C almost surely

where C is a nonnegative finite constant. Since rn/vn → 0 this entails

lim
n→∞

rn‖f̂n − fn‖∞,Rd = 0 almost surely.

But clearly
rn‖f̂n − fn‖∞,S ≤ rn‖f̂n − fn‖∞,Rd
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and thus
lim
n→∞

rn‖f̂n − fn‖∞,S = 0 almost surely

of which a consequence is rn(f̂n − fn)→ 0 weakly in `∞(S).

Point (ii) is shown by recalling that because (H2) holds, then

‖f̂n − fn‖∞,S = ‖f̂n − fn‖∞,S◦ almost surely.

Applying Proposition 3.1 in Giné and Guillou (2002) when S◦ is bounded or Theorem
3.3 in Giné and Guillou (2002) when it is equal to Rd, we obtain

lim
n→∞

rn‖f̂n − fn‖∞,S√
2d‖f‖∞,S

∫
Rd K2

= c > 0 almost surely.

It follows that rn‖f̂n − fn‖∞,S has a positive (possibly infinite) almost sure limit;

if rn(f̂n − fn) converged weakly to a Borel measurable random element in `∞(S)
then this limit would be almost surely 0 by Theorem 2 and therefore rn‖f̂n−fn‖∞,S
would converge to 0 in probability, which is a contradiction. The proof is complete.

Theorem 3, which offers a full classification of the asymptotic behavior of rn(f̂n−fn)
in `∞(S) depending on the rate (rn), is the counterpart of Theorem 2.2 in Nishiyama
(2011) and Theorems 2.3 and 2.4 in Stupfler (2014) for the uniform topology. We
conclude Section 2 with several remarks about this last result.

Remark 2. In Theorem 3, the uniform continuity condition on f contained in (R)
can be relaxed, as mentioned in Giné and Guillou (2002), by assuming that the set
{f > 0} is open, f is continuous and bounded on this set, and f(x) converges to 0
as ‖x‖ → ∞. This makes it possible to apply Theorem 3 to the uniform distribution
or the exponential distribution.

Remark 3. It is interesting to note that the rate rn for which the weak behavior
of rn(f̂n − fn) becomes nontrivial in `∞(S) is vn =

√
nhd/| log h| which is asymp-

totically smaller than the rate
√
nhd playing an analogue role in Lp(Rd, µS) when

p is finite (Nishiyama, 2011 and Stupfler, 2014). While it is a well-known fact that
uniform rates of convergence usually feature a logarithmic penalty term, it also sug-
gests that one cannot easily deduce the limiting behavior of rn(f̂n − fn) in `∞(S)
from its behavior in an Lp(Rd, µS) space for p finite. Indeed, write tentatively

∀p ∈ [1,∞), rn‖f̂n − fn‖p,µS ≤ rn‖f̂n − fn‖∞,S |S|
1/p

when S has a finite Lebesgue measure |S|. Then it is known that under very mild
hypotheses the left-hand side does not converge to 0 in probability if and only if
rn has at least order

√
nhd, see e.g. the proof of Theorems 2.3 and 2.4 in Stupfler

(2014). The strongest conclusion one can reach from this inequality is thus that√
nhd‖f̂n − fn‖∞,S cannot converge to 0 in probability. In other words, applying

Theorem 2, the best we can infer is that
√
nhd(f̂n−fn) cannot converge weakly to a

Borel measurable element in `∞(S), which is not informative enough since we know
from Stute (1982, 1984) that the rate of convergence of ‖f̂n− fn‖∞,S in R is strictly

smaller than
√
nhd.
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Remark 4. While Theorem 3 says that we cannot expect vn(f̂n−fn) to converge to
a nondegenerate limit in `∞(S), it does not mean that finding uniform results that
have practical implications is impossible. For instance, Theorem 3.1 in Bickel and
Rosenblatt (1973) in the case d = 1 and the approximation results in Propositions
3.1 and 3.2 in Chernozhukov et al. (2014) suggest that, under certain regularity
hypotheses, the problem of finding constants A and B such that the difference

2d| log h|

 vn‖f̂n − fn‖∞,S√
2d‖f‖∞,S

∫
Rd K2

− 1

−A log(| log h| ∨ e)−B

converges weakly to a nondegenerate weak limit has a solution; when d = 1, the
result of Bickel and Rosenblatt (1973) actually gives A and B such that

2| log h|

 sup
x∈[0,1]

∣∣∣∣∣∣vn(f̂n(x)− fn(x))√
2f(x)

∫
Rd K2

∣∣∣∣∣∣− 1

−A log(| log h| ∨ e)−B

converges weakly to a nondegenerate, explicit limit. In other words, it appears
that the correct way to obtain asymptotic uniform confidence bands on f is to look
directly at the (possibly weighted) supremum of vn|f̂n−fn| over S instead of working
on the weak behavior of vn(f̂n − fn) in `∞(S).

3 Concluding remarks

In this paper, we examined the weak behavior of centered and rescaled versions
rn(f̂n − fn) of the Parzen-Rosenblatt density estimator f̂n in `∞ spaces on Rd. In
particular, we showed that under mild conditions, any Borel measurable weak limit
of this process is equal to 0, although the exact almost sure asymptotics for uniform
norms of f̂n− fn are known to be nontrivial. Interestingly, our results are similar to
the negative results of Stupfler (2014) regarding the weak behavior of rn(f̂n− fn) in
Lp spaces on Rd for p finite; besides, the basic idea in the case of Lp spaces, which
was to understand the weak behavior of this process through the weak behavior of
a suitable collection of its integrals, can actually also be used successfully in the `∞

space, because of the particular structure of its dual space. In other words, although
an Lp space for 1 ≤ p < ∞ and an `∞ space are structurally very different from
each other, their dual spaces have enough common characteristics to ensure that the
weak convergence properties of f̂n − fn can be examined in the same way.

Moreover, the presented technique may be applied to other types of density esti-
mators to analyze their weak behavior in functional spaces. Consider for instance
the wavelet density estimator on R (Doukhan and León, 1990, Kerkyacharian and
Picard, 1992), that is:

f̃n(x) :=
∑
k∈Z

α̂jn,k2
jn/2Φ(2jnx− k) where α̂jn,k :=

1

n

n∑
i=1

2jn/2Φ(2jnXi − k).

Here jn ↑ ∞ is a sequence of integers; the function Φ is a square-integrable function
such that {Φ(· − k), k ∈ Z} is an orthonormal system in L2(R) and moreover, the
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(functional) linear spaces defined by induction by

V0 =

{
g(x) =

∑
k∈Z

ckΦ(x− k), (ck) square-summable

}
and ∀j ≥ 1, Vj = {h(x) = g(2x), g ∈ Vj−1}

are nested and such that their union is dense in L2(R). Then clearly

rn

(
f̃n(x)− E(f̃n(x))

)
=

1

n

n∑
i=1

Yn,i(x)

where Yn,i(x) =
∑
k∈Z

[
Φ(2jnXi − k)− E(Φ(2jnXi − k))

]
2jnΦ(2jnx− k).

As a consequence, if ν ∈ bca(Rd,B(Rd), dx), we may write

V (rn, ν) := Var
(
Tν

(
rn(f̃n − E(f̃n))

))
=
r2n
n
E

([∫
R
Yn,1(x)

dν

dx
(x)dx

]2)
.

After straightforward computations, we get

V (rn, ν) =
r2n
n
E

([∫
R

{
S(2jnX1, y)− E(S(2jnX1, y))

} dν
dx

( y

2jn

)
dy

]2)
with S(x, y) =

∑
k∈Z

Φ(x− k)Φ(y − k).

If moreover Φ is bounded and compactly supported, then |S(x, y)| ≤ Q(y−x) where
Q : R → R+ is bounded and compactly supported, see Lemma 8.6 in Har̈dle et al.
(1998). Because Q is then integrable, this entails

V (rn, ν) ≤ r2n
n

[
2‖dν/dx‖∞,R

∫
R
Q(y)dy

]2
= O

([
rn√
n

]2)
,

which is a bound similar to the one we had found in the proof of Theorem 1 in
the case of the kernel density estimator. It appears then that Theorem 1 holds for
wavelet density estimators on R as well; in other words, any centered and rescaled
version of the wavelet density estimator, if it converges to a tight Borel measurable
weak limit in `∞(R), must in fact converge essentially to 0. It is known though that
the exact rate of almost sure convergence of the uniform norm ‖f̃n − E(f̃n)‖∞,R is√
n/(jn2jn) under certain regularity conditions, see Theorem 2 in Giné and Nickl

(2009). Classifying the weak behavior of rn(f̃n−E(f̃n)) in `∞(R) can then likely be
done as in Theorem 3 of the present paper for f̂n. The method of proof presented
here seems therefore flexible enough to apply to, and yield the same results for, other
density estimators than the Parzen-Rosenblatt estimator.
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