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On the weak convergence of the kernel density estimator

in the uniform topology

Gilles Stupfler

Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,

13002 Marseille, France

Abstract. The pointwise asymptotic properties of the Parzen-Rosenblatt kernel
estimator f̂n of a probability density function f on Rd have received great attention,
and so did its integrated or uniform errors. It has been pointed out in a couple
of recent works that the weak convergence of its centered and rescaled versions in
a weighted Lebesgue Lp space, 1 ≤ p < ∞, considered to be a difficult problem,
is in fact essentially uninteresting in the sense that the only possible Borel mea-
surable weak limit is 0 under very mild conditions. This paper examines the weak
convergence of such processes in the uniform topology. Specifically, we show that
if fn(x) = E(f̂n(x)) and (rn) is any nonrandom sequence of positive real numbers
such that rn/

√
n→ 0 then, with probability 1, the sample paths of any tight Borel

measurable weak limit in an `∞ space on Rd of the process rn(f̂n − fn) must be
almost everywhere zero. Simple conditions making it possible to drop the tightness
requirement and to examine the actual existence of this limit are provided along
with an investigation of the uniform behavior of the bias term rn(fn − f).

AMS Subject Classifications: 60F17, 62G07, 62G20.
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1 Introduction

The Parzen-Rosenblatt estimator of a probability density function f on Rd, d ≥ 1
(Parzen, 1962, Rosenblatt, 1956) is defined as follows:

f̂n(x) =
1

n

n∑
i=1

Kh(x−Xi).

Here, (Xn) is a sequence of independent random copies of a random variable X,
such that X has a probability density function f . In particular, we assume that the
Xn, n ≥ 1 are defined on a common probability space and induce Borel measurable
maps. The parameter h = h(n)→ 0 as n→∞ is called the bandwidth, and we let
Kh(u) = h−dK(u/h) for a kernel functionK : Rd → R, that is, an integrable function
on Rd with unit integral. The estimator f̂n is essentially a (possibly modified) version
of the histogram whose smoothness is tuned by h and potentially enhanced by the
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regularity of the kernel function K. The random function x 7→ f̂n(x) is the empirical
counterpart of the function x 7→ fn(x) = E[f̂n(x)] = E[Kh(x − X)] which is well-
defined almost everywhere on Rd and integrable. The pointwise properties of the
Parzen-Rosenblatt estimator have been known for a long time: for instance, it is
shown in pp.1069–1070 of Parzen (1962) that under some conditions on K, the
quantity

√
nhd(f̂n(x)−fn(x)) converges weakly to a Gaussian distribution provided

nhd →∞, f(x) > 0 and f is continuous at x.

In this paper, we focus on the weak convergence properties of the random process
x 7→ rn(f̂n(x)−fn(x)), where (rn) is a nonrandom sequence of positive real numbers,
in an `∞ space on Rd. In other words, we try to understand the limiting behavior of
centered and rescaled versions of f̂n in the uniform topology on a (measurable) set.
Convergence results of this kind are valuable because they have important corollaries
such as uniform convergence properties of the random function rn(f̂n − f): if a
nontrivial weak limit can be identified for the process rn(f̂n − fn) and a suitable
condition on the bias term rn(fn − f) is further satisfied, then the rate of uniform
convergence of the estimator f̂n to f shall be exactly rn.

Specifically, let S be a Borel measurable set in Rd with positive Lebesgue measure
and `∞(S) be the space of those real-valued functions which are bounded on S:

H ∈ `∞(S)⇔ ‖H‖∞,S := inf{C ≥ 0 | |H(x)| ≤ C for all x ∈ S} <∞.

Assuming that K is bounded on Rd, it is straightforward that the random function
x 7→ rn(f̂n(x)−fn(x)), x ∈ S, defines a random process belonging to `∞(S). Clearly,
for this random process to converge weakly in `∞(S) its uniform norm rn‖f̂n−fn‖∞,S
has to converge weakly in R, but this is not a sufficient condition. The uniform norm
of rn(f̂n − fn) on S has been studied in many instances in the literature, see for
example the early works of Silverman (1978) and Stute (1982, 1984); Talagrand’s
inequalities (1994, 1996) and general distributional results on empirical processes
(see the monographs by van der Vaart and Wellner, 1996 and van der Vaart, 1998)
then sparked renewed interest in this problem, see e.g. Einmahl and Mason (2000),
Giné and Guillou (2002), Giné et al. (2004), Einmahl and Mason (2005) and Dony
and Einmahl (2006).

None of these works though consider the convergence of rn(f̂n − fn) as a random
process taking values in an `∞ space on Rd. More broadly, the problem of analyzing
the convergence of this process in functional spaces such as Lp spaces on Rd has
long been considered to be difficult. When K2 is integrable on Rd, the recent work
of Nishiyama (2011) generalized a result of Ruymgaart (1998) by disproving the
existence of a nondegenerate Borel measurable weak limit for the process rn(f̂n−fn)
in the L2(Rd) space of square-integrable functions on Rd provided rn/

√
n→ 0. The

ideas of his paper paved the way for the work of Stupfler (2014) which showed that
the same negative conclusion holds in the weighted Lp spaces

Lp(Rd, µ) :=

{
H : Rd → R

∣∣∣∣H is Borel measurable and

∫
Rd

|H(x)|pdµ(x) <∞
}

for p ∈ [1,∞), when Kp is integrable on Rd and the weighting measure µ is a
nontrivial absolutely continuous measure with bounded Radon-Nikodym derivative
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with respect to the Lebesgue measure. These results cannot be easily extended to
the `∞(S) space for topological reasons: in particular, both Nishiyama (2011) and
Stupfler (2014) use the fact that for p finite, the space Lp(Rd, µ) is a separable
metric space. It is well-known that this fails to hold for the `∞(S) space in general,
which makes it very difficult to characterize weak convergence to an arbitrary Borel
measurable random element in `∞(S). This is why we start here by identifying at
first the possible tight Borel measurable weak limits of the process rn(f̂n − fn) in
the uniform topology. It is shown in what follows that such a limit must be 0 almost
everywhere on S with probability 1. Our conclusion about the possible limits of
the process rn(f̂n − fn) appears to be different from what may be obtained when
considering other types of convergence, such as the weak convergence of processes
constructed using f̂n and indexed by classes of functions, see the work by van der
Vaart (1994) and further developments in e.g. Radulović and Wegkamp (2000) and
Giné and Nickl (2008), even though these papers also focus on weak convergence
to tight (Gaussian) limits. Moreover, we shall highlight that, as a corollary of
our results, one can discard the requirement that the weak limit be tight under
mild additional regularity assumptions on f and K and a condition on S by taking
advantage of the particular topology of spaces of continuous functions over compact
sets, and in this case the limit must be 0 everywhere on S. We then show how
this makes it possible to classify the asymptotic behavior of the process of interest,
depending on (rn), by using the sharp rates of uniform convergence of f̂n to fn
obtained in Giné and Guillou (2002). We conclude our work with a simple uniform
analysis of the bias term rn(fn−f) underscoring that if a further regularity condition
on f holds then our results carry over to the process rn(f̂n−f), which is the process
of interest in practical applications, when a classical bias condition is satisfied.

The outline of the paper is as follows: our main results are stated in Section 2 and
the discussion regarding the bias term is given in Section 3.

2 Main results

In all what follows, we assume that S is a Borel measurable set in Rd with positive
Lebesgue measure and K : Rd → R is an integrable function with unit integral which
is bounded on Rd. The guiding ideas are those of Nishiyama (2011) and Stupfler
(2014): our first result relates the problem of identifying the possible weak limits
of the process rn(f̂n − fn) in `∞(S) to the simpler problem of understanding the
weak convergence of sequences of real-valued random variables constructed using
this process and a suitably chosen class of continuous linear functionals on `∞(S).
To do so, we start by noting that Borel measurability of the random function rn(f̂n−
fn) in `∞(S) is not clear even though K and the Xi are measurable, because the
space `∞(S) is not separable (see the discussion in Section 1.1 of van der Vaart and
Wellner, 1996). In this paper, “weak convergence” thus refers to the notion of weak
convergence using outer probabilities (see Definition 1.3.3 p.17 in van der Vaart and
Wellner, 1996).

We continue by recalling a few facts about duality in `∞(S). Since we will investigate
the possible tight and Borel measurable weak limits of the process rn(f̂n − fn), it
turns out that we need only work with the space of all bounded and Borel measurable
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functions on S. This space is itself a subspace of L∞(S), the space of all Borel
measurable functions which are essentially bounded on S:

H ∈ L∞(S)⇔ ‖H‖L∞(S) := inf{C ≥ 0 | |H(x)| ≤ C for almost every x ∈ S} <∞.

Let µS be the measure on Rd whose Radon-Nikodym density with respect to the
Lebesgue measure is 1lS , the indicator of the set S. Then L∞(S) = L∞(Rd, µS),
the space of the Borel measurable functions on Rd which are bounded µS−almost
everywhere. By Theorem 16 p.296 in Dunford and Schwartz (1957), the space
ba(Rd,B(Rd), µS) of the additive, bounded, signed measures on the Borel σ−algebra
B(Rd) which are absolutely continuous with respect to µS is then isometrically iso-
morphic to the dual space of L∞(S). The isomorphism is

ν ∈ ba(Rd,B(Rd), µS) 7→
(
Tν : g ∈ L∞(S) 7→

∫
Rd

g(x)dν(x)

)
with the topology on ba(Rd,B(Rd), µS) being induced by the total variation distance
between measures. Because an element of ba(Rd,B(Rd), µS) may be additive but
not countably additive, the whole dual space ba(Rd,B(Rd), µS) is somewhat incon-
venient to work with; in particular, the absolute continuity condition with respect
to the (countably additive and σ−finite) measure µS is difficult to take advantage
of because it does not translate into the existence of a Radon-Nikodym derivative
with respect to µS . This is why we consider instead the subspace

bca(Rd,B(Rd), µS) = {ν ∈ ba(Rd,B(Rd), µS) | ν is countably additive}.

Using a Hahn-Jordan decomposition, any element ν of bca(Rd,B(Rd), µS), which
is σ−finite because it is bounded, must have a Radon-Nikodym derivative with
respect to µS . The particular structure of µS then entails that ν must have a
Radon-Nikodym derivative with respect to the Lebesgue measure as well, having
value 0 everywhere outside S, and we denote it by dν/dx. With these elements in
mind, the following result can be stated:

Proposition 1. If G1 and G2 are two tight Borel measurable random elements
of L∞(S), then the distributions of G1 and G2 are equal if and only if for every
ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞, the distributions of Tν(G1)
and Tν(G2) are equal.

Proof of Proposition 1. For any ν ∈ bca(Rd,B(Rd), µS), the map Tν is a contin-
uous linear form on L∞(S), so if G1 and G2 have equal distributions then Tν(G1)
and Tν(G2) must have equal distributions as well. Conversely, suppose that for any
ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞, the distributions of Tν(G1)
and Tν(G2) are equal. We introduce the class F of functions F : L∞(S) → R
for which there exist a positive integer J , a continuous and bounded real-valued
function g on RJ and ν1, . . . , νJ ∈ bca(Rd,B(Rd), µS) having essentially bounded
Radon-Nikodym derivatives on S with respect to the Lebesgue measure, such that:

∀ϕ ∈ L∞(S), F (ϕ) = g(Tν1(ϕ), . . . , TνJ (ϕ)).

Because

∀t1, . . . , tJ ∈ R, ∀ν1, . . . , νJ ∈ bca(Rd,B(Rd), µS),

J∑
i=1

tiTνi = T∑J
i=1 tiνi

,
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it comes as a consequence of the Cramér-Wold device that the random vectors
(Tν1(G1), . . . , TνJ (G1)) and (Tν1(G2), . . . , TνJ (G2)) must have the same distribution.
If ρ1 and ρ2 are the pushforward probability measures on L∞(S) induced by G1 and
G2, it becomes clear that

∀F ∈ F ,
∫
L∞(S)

F (ϕ)dρ1(ϕ) =

∫
L∞(S)

F (ϕ)dρ2(ϕ).

In the sense of van der Vaart and Wellner (1996), p.25, the class F is a vector lattice
of continuous bounded functions on L∞(S) containing the constant functions. By
Lemma 1.3.12 (ii) p.25 in van der Vaart and Wellner (1996), it suffices to prove that
the class F separates the points of L∞(S).

Let then ϕ, ψ ∈ L∞(S) be such that ϕ 6= ψ. In other words, the Borel measurable
set E = {ϕ 6= ψ} satisfies µS(E) > 0. Since µS(E ∩ [0, N ]d) ↑ µS(E) as N → ∞,
we may find a bounded Borel measurable set F such that µS(F ) > 0 and ϕ 6= ψ on
F . In particular, ϕ 6= ψ on F ∩S, which is a Borel measurable set having a positive
and finite Lebesgue measure. Let

ν = (ϕ− ψ)1lF · µS .

Then ν is clearly an element of bca(Rd,B(Rd), µS) with essentially bounded Radon-
Nikodym derivative on S and

Tν(ϕ− ψ) =

∫
F∩S

[ϕ(x)− ψ(x)]2dx > 0

which is the desired separation property. The proof is complete.

This result basically makes it possible to identify a tight Borel measurable random
element of `∞(S) up to null sets in S. It is the central tool necessary to prove our
first asymptotic result on the possible tight Borel measurable weak limits of the
process rn(f̂n − fn) in `∞(S).

Theorem 1. Let (rn) be a nonrandom sequence of positive real numbers. If rn/
√
n→

0 and the random process rn(f̂n − fn) converges weakly in `∞(S) to a tight Borel
measurable random process G then G is almost surely zero almost everywhere on S.

Proof of Theorem 1. Pick ν ∈ bca(Rd,B(Rd), µS) such that ‖dν/dx‖L∞(S) < ∞
and note that the map

t 7→ Tν(Kh(· − t)) =

∫
S
Kh(x− t)dν

dx
(x)dx

is Borel measurable because S is a measurable set and K and dν/dx are Borel
measurable as well. As a consequence, Tν(Kh(· − X)) is a Borel measurable real-
valued random variable and, by the continuous mapping theorem (see Theorem 1.3.6
p.20 in van der Vaart and Wellner, 1996), the weak convergence of rn(f̂n − fn) to
G implies the following weak convergence of Borel measurable real-valued random
variables:

∆n(ν) := Tν

(
rn(f̂n − fn)

)
→ Tν(G) as n→∞.

5



We start by showing that Tν(G) = 0 almost surely. Because ν is countably additive
and σ−finite, Fubini’s theorem yields

Tν (E(Kh(· −X))) = E (Tν(Kh(· −X))) .

We may then rewrite ∆n(ν) as a sum of independent and identically distributed
centered random variables, as follows:

∆n(ν) =
rn
n

n∑
i=1

Wn,i(ν) with Wn,i(ν) = Tν(Kh(· −Xi))− E (Tν(Kh(· −X))) .

A change of variables yields

Tν(Kh(· −X)) =

∫
S
Kh(x−X)

dν

dx
(x)dx =

∫
Rd

K(t)
dν

dx
(X + ht)1l{X+ht∈S}dt

almost surely. Because ‖dν/dx‖L∞(S) <∞, we get with probability 1:

|Tν(Kh(· −X))| ≤ ‖dν/dx‖L∞(S)

∫
Rd

|K(t)|dt <∞.

In other words, the random variable Tν(Kh(· −X)) is almost surely bounded. The
triangle inequality thus entails

E|∆n(ν)|2 =

[
rn√
n

]2
E|Wn(ν)|2 = O

([
rn√
n

]2)
.

Consequently, ∆n(ν)→ 0 in probability as n→∞ and Tν(G) = 0 almost surely.

Now, because inclusion preserves tightness (see Lemma 14.4 p.257 in Kallenberg,
1997), G also defines a tight Borel measurable random element of L∞(S). By Propo-
sition 1, G = 0 almost surely in L∞(S), which means in particular that G is almost
surely zero almost everywhere on S: the proof is complete.

Theorem 1 is an analogue of Theorem 2.1 in Nishiyama (2011) and Theorem 2.2 in
Stupfler (2014), which tackled the case of weak convergence in weighted Lp spaces
on Rd, 1 ≤ p < ∞. This result says that either the process rn(f̂n − fn) converges
weakly to an essentially degenerate limit or does not converge weakly to a tight
Borel measurable limit.

It should be pointed out that on the one hand, because `∞(S) is not a separable
metric space, Borel measurable random elements on this space are not necessarily
tight; on the other hand, requiring the limit G to be tight makes it possible to use
in the proof of Proposition 1 the very nice characterization of the distribution of a
random process on a metric space contained in Lemma 1.3.12 (ii) p.25 in van der
Vaart and Wellner (1996), while getting information about a non-tight distribution
appears to be difficult, see (i) in this same Lemma. Furthermore, tightness of the
weak limit is a desirable property encountered in many instances when considering
weak convergence in a metric space endowed with a sup-norm, see for example
the necessary-and-sufficient conditions for weak convergence in the space `∞(S) in
Section 18 of van der Vaart (1998) and particularly Theorem 18.14 p.261 therein.
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Another example is provided by weak convergence in the uniform topology over a
class of functions, see e.g. van der Vaart (1994), Radulović and Wegkamp (2000),
Mendelson and Zinn (2006), Nickl (2007), Giné and Nickl (2008), Nickl (2009) and
Radulović and Wegkamp (2009); a particular consequence of Theorem 1 is that the
process rn(f̂n − fn) cannot have, for instance, a tight Brownian bridge limit in the
space `∞(S), as opposed to what is found in several of the aforementioned studies
in their respective frameworks.

There are some cases though in which we can say more about the possible limits
of the process of interest, especially when the process rn(f̂n − fn) takes its values
in a separable and complete subspace of `∞(S), such as the space C(S) of continu-
ous functions on S provided S is compact, mainly because the separability property
makes any Borel measurable random element tight in this space. Somewhat surpris-
ingly, the compactness of S is not even necessary: we shall merely require that the
set S be σ−compact and none of its points be isolated from the point of view of the
Lebesgue measure. This is the meaning of our next assumption:

(H1) S can be written as the union of countably many compact subsets of Rd and
for every x ∈ S and ε > 0, the intersection of S and the Euclidean open ball with
center x and radius ε > 0 has positive Lebesgue measure.

Combining this condition with a couple of continuity assumptions about f and K
makes it possible to state our next result.

Theorem 2. Let (rn) be a nonrandom sequence of positive real numbers. Assume
that S satisfies (H1), K is a continuous and compactly supported function on Rd
and f is a continuous function on an open set containing S. If rn/

√
n→ 0 and the

random process rn(f̂n−fn) converges weakly in `∞(S) to a Borel measurable random
process G then G = 0 almost surely.

Proof of Theorem 2. The regularity requirements on f and K make it clear
that the sample paths of the process f̂n − fn are in fact almost surely continuous
on S, in the sense that the event An := {f̂n − fn is continuous on S}, although not
necessarily measurable, contains a measurable set having probability 1; in particular,
An has outer probability 1 for every n. Furthermore, because `∞(S) and C(S) are
complete metric spaces and a uniform limit of continuous functions is continuous,
it is clear that the space C(S) is a closed subspace of `∞(S): it follows from the
Portmanteau theorem (see Theorem 1.3.4 p.18 in van der Vaart and Wellner, 1996)
that the probability that G belongs to C(S) is equal to 1. As a first conclusion, G
thus defines a probability measure on C(S).

We first deal with the case when S is compact. The space C(S) is then a separable
and complete metric space so that any Borel probability measure on C(S) is tight.
It follows that G defines a tight element of C(S) and thus of `∞(S) because inclusion
preserves tightness (see Lemma 14.4 p.257 in Kallenberg, 1997). By Theorem 1,
G = 0 almost everywhere on S with probability 1. Finally, because G is continuous
on S and (H1) holds, one concludes that G = 0 almost surely on S.

If now S is not compact, notice that for every compact set T contained in S, the
restriction map H 7→ H|T from `∞(S) to `∞(T ) is continuous. By the continuous
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mapping theorem, rn(f̂n−fn) then converges weakly in `∞(T ) to the restriction G|T
of G on the set T . We thus get G|T = 0 almost surely for any compact subset T of

S. The result follows since S is a countable union of compact subsets of Rd.

In particular, when S is an open cube in Rd, we can infer that any weak limit of
rn(f̂n − fn) in `∞(S) should be degenerate, although it is known since Stute (1982,
1984) that under additional conditions, the sup-norm of f̂n − fn over S converges
almost surely at the rate vn :=

√
nhd/| log h|. This last observation suggests that

the sequence (vn) shall play a crucial role in the description of the actual asymptotic
behavior of f̂n − fn in `∞(S). Another consequence of Theorem 2 is that centered
and rescaled kernel density estimators cannot converge weakly to a Gaussian process
in spaces of continuous functions; see also the introduction of Ruymgaart (1998).

We thus examine in the second part of this work what happens depending on the
behavior of (rn) relatively to (vn). The arguments presented in what follows make a
heavy use of the exact rates of convergence for the sup-norm of f̂n − fn which were
investigated in Giné and Guillou (2002). We introduce the following hypotheses:

(H2) The set S is σ−compact and its interior S◦ is dense in S.

(M) The kernel K is a nonnegative, bounded, compactly supported function belong-
ing to the linear span of the nonnegative functions k satisfying the following property:
the subgraph {(s, u) ∈ Rd×R | k(s) ≥ u} of k can be represented as a finite number
of Boolean operations among sets of the form {(s, u) ∈ Rd × R | p(s, u) ≥ ϕ(u)}
where p is a polynomial on Rd+1 and ϕ is an arbitrary real function.

(R) The function f is uniformly continuous and the kernel K is continuous on Rd.

(W ) The bandwidth h is such that

h ↓ 0,
nhd

| log h|
→ ∞, | log h|

log log n
→∞ and nhd ↑ ∞.

Assumption (H2) contains condition (H1) and entails that the supremum of a con-
tinuous function over S is also its supremum over its interior S◦. Hypothesis (M)
is taken from Giné and Guillou (2002) and Giné et al. (2004); it is basically a
measurability condition ensuring that the class of functions

K =

{
x 7→ K

(
x− t
h

)
: h > 0, t ∈ Rd

}
is a bounded measurable Vapnik-Červonenkis class, which ensures in particular that
‖f̂n − fn‖∞,S is a Borel measurable random variable and is thus a key ingredient

for the search of uniform rates of convergence for f̂n − fn. Many kernels, such as
the naive kernel or the triangular kernel, satisfy this assumption, see the discussion
p.911 in Giné and Guillou (2002). Regularity condition (R) on f and K gives that
the sample paths of f̂n − fn should be almost surely continuous; notice that the
continuity condition on K is also required in Stute (1984). Condition (W ) was
already partly introduced in p.87 of Stute (1982) and p.367 of Stute (1984), and in
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its present form, it is one of the hypotheses necessary for the results of Giné and
Guillou (2002) to hold. Related but stronger assumptions are those of Giné et al.
(2004), p.2574. The following result then holds:

Theorem 3. Let (rn) be a nonrandom sequence of positive real numbers. Assume
that K satisfies condition (M), that the density function f is bounded on Rd and
that condition (W ) holds.

(i) If rn/vn → 0, then rn(f̂n − fn)→ 0 weakly in `∞(S).

Assume further that conditions (H2) and (R) hold, the set S is either Rd or bounded
and the set {f > 0} ∩ S◦ is not empty.

(ii) If rn/vn → c ∈ (0,∞], then rn(f̂n− fn) does not converge weakly to any Borel
measurable random element in `∞(S).

Proof of Theorem 3. To show (i), apply first Theorem 2.3 in Giné and Guillou
(2002) to get

lim sup
n→∞

vn‖f̂n − fn‖∞,Rd ≤ C almost surely

where C is a nonnegative finite constant. Since rn/vn → 0 this entails

lim
n→∞

rn‖f̂n − fn‖∞,Rd = 0 almost surely.

But clearly
rn‖f̂n − fn‖∞,S ≤ rn‖f̂n − fn‖∞,Rd

and thus
lim
n→∞

rn‖f̂n − fn‖∞,S = 0 almost surely

of which a consequence is rn(f̂n − fn)→ 0 weakly in `∞(S).

Point (ii) is shown by recalling that because (H2) holds, then

‖f̂n − fn‖∞,S = ‖f̂n − fn‖∞,S◦ almost surely.

Applying Proposition 3.1 in Giné and Guillou (2002) when S◦ is bounded or Theorem
3.3 in Giné and Guillou (2002) when it is equal to Rd, we obtain

lim
n→∞

rn‖f̂n − fn‖∞,S√
2d supS f

∫
Rd K2

= c > 0 almost surely.

It follows that rn‖f̂n − fn‖∞,S has a positive (possibly infinite) almost sure limit;

if rn(f̂n − fn) converged weakly to a Borel measurable random element in `∞(S)
then this limit would be almost surely 0 by Theorem 2 and therefore rn‖f̂n−fn‖∞,S
would converge to 0 in probability, which is a contradiction. The proof is complete.

Theorem 3, which offers a full classification of the asymptotic behavior of rn(f̂n−fn)
in `∞(S) depending on the rate (rn), is the counterpart of Theorem 2.2 in Nishiyama
(2011) and Theorems 2.3 and 2.4 in Stupfler (2014) for the uniform topology. We
conclude Section 2 with a couple of remarks about this last result.
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Remark 1. In Theorem 3, the uniform continuity condition on f contained in (R)
can be relaxed, as mentioned in Giné and Guillou (2002), by assuming that the set
{f > 0} is open, f is continuous and bounded on this set, and f(x) converges to 0
as ‖x‖ → ∞. This makes it possible to apply Theorem 3 to the uniform distribution
or the exponential distribution.

Remark 2. It is interesting to note that the rate rn for which the weak behavior
of rn(f̂n − fn) becomes nontrivial in `∞(S) is vn =

√
nhd/| log h| which is asymp-

totically smaller than the rate
√
nhd playing an analogue role in Lp(Rd, µS) when

p is finite (Nishiyama, 2011 and Stupfler, 2014). While it is a well-known fact that
uniform rates of convergence usually feature a logarithmic penalty term, it also sug-
gests that one cannot easily deduce the limiting behavior of rn(f̂n − fn) in `∞(S)
from its behavior in an Lp(Rd, µS) space for p finite. Indeed, write tentatively

∀p ∈ [1,∞), rn‖f̂n − fn‖p,µS ≤ rn‖f̂n − fn‖∞,S |S|
1/p

when S has a finite Lebesgue measure |S|. Then it is known that under very mild
hypotheses the left-hand side does not converge to 0 in probability if and only if
rn has at least order

√
nhd, see e.g. the proof of Theorems 2.3 and 2.4 in Stupfler

(2014). The strongest conclusion one can reach from this inequality is thus that√
nhd‖f̂n − fn‖∞,S cannot converge to 0 in probability. In other words, applying

Theorem 2, the best we can infer is that
√
nhd(f̂n−fn) cannot converge weakly to a

Borel measurable element in `∞(S), which is not informative enough since we know
from Stute (1982, 1984) that the rate of convergence of ‖f̂n− fn‖∞,S in R is strictly

smaller than
√
nhd.

3 The bias term

Our main results consider the centered random process rn(f̂n− fn). In practice one
would certainly be more interested in the process rn(f̂n − f). Writing f̂n − f =
(f̂n − fn) + (fn − f) it follows that if rn(fn − f) converges to 0 uniformly on S then
our results also apply to the process rn(f̂n − f) in the space `∞(S).

Our aim here is to provide a simple analysis of this bias term. Write

fn(x)− f(x) = E(Kh(x−X))− f(x) =

∫
Rd

h−dK

(
x− u
h

)
f(u)du− f(x).

A change of variables yields

fn(x)− f(x) =

∫
Rd

K(t)[f(x+ ht)− f(x)]dt.

Assuming that K has a compact support C, we get

‖fn − f‖∞,S = O

(
sup
x∈S

sup
t∈C
|f(x+ ht)− f(x)|

)
.

Condition (R) already contains that f should be uniformly continuous on Rd. We
shall be a bit more precise here about the behavior of f on S and assume that

∃η ∈ (0, 1], sup
x∈S

sup
t∈C
|f(x+ ht)− f(x)| = O(hη),
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which essentially means that f is Hölder continuous on S with exponent η. We get

rn‖fn − f‖∞,S = O(rnh
η).

Specializing rn = vn =
√
nhd/| log h| it follows that our results carry over to the

process vn(f̂n − f) provided it holds that nhd+2η/| log h| → 0 as n → ∞. Together
with condition nhd → ∞, this bias condition entails that h has essentially order
n−1/(d+2η) and therefore vn is essentially nη/(d+2η); when d = 1, this is basically
the minimax rate of uniform convergence for the estimation of Hölder continuous
densities over compact intervals (see Khasminskii, 1978 and Korostelev and Nuss-
baum, 1999). All in all, under a few regularity conditions, although vn‖f̂n − f‖∞,S
converges almost surely to a positive constant and the rate vn is minimax, our re-
sults and especially Theorem 3 show that the random process vn(f̂n − f) does not
converge weakly to a Borel measurable limit in `∞(S).
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Birkhäuser, Boston.
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