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Figure 1: Camera rails (in blue) are computed from a raw camera trajectory (in red) composed of optimal camera positions. The motion
of the camera along this rail is then constrained and optimized for speed and orientation. The resulting camera motions provide natural
tracking of characters as well as transitions between different camera viewpoints.

Abstract

When creating real or computer graphics movies, the questions
of how to layout elements on the screen, together with how to
move the cameras in the scene are crucial to properly conveying
the events composing a narrative. Though there is a range of tech-
niques to automatically compute camera paths in virtual environ-
ments, none have seriously considered the problem of generating
realistic camera motions even for simple scenes. Among possible
cinematographic devices, real cinematographers often rely on cam-
era rails to create smooth camera motions which viewers are famil-
iar with. Following this practice, in this paper we propose a method
for generating virtual camera rails and computing smooth camera
motions on these rails. Our technique analyzes characters motion
and user-defined framing properties to compute rough camera mo-
tions which are further refined using constrained-optimization tech-
niques. Comparisons with recent techniques demonstrate the bene-
fits of our approach and opens interesting perspectives in terms of
creative support tools for animators and cinematographers.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.6 [Computer Graphics]:
Methodology and Techniques—;

Keywords: virtual camera control, cinematography, virtual cam-
era planning

1 Introduction

Recent improvement in the realism of computer games raises a re-
quirement to provide users with a more cinematic experience. Par-
ticularly, with the possibility to share replays of a player’s experi-
ence on the web, or to use game engines for creating movies (also
known as machinima), there is a pressing demand for techniques to
automatically generate virtual camera paths that capture what has
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occurred in the 3D scene. Furthermore, while to date most tech-
niques have focused on filming dialogue-based scenes by relying
on idioms, the problem of properly tracking character motions has
been relatively under-addressed.

Computing both smooth and well-composed camera paths is a key
problem in both real and virtual cinematography. In both contexts,
a crucial step is to provide cinematographers with means to design
camera motions which, on one side enable to track the motion of
targets (often characters) while on the other side maintain the cam-
era motions as smooth as possible – this is particularly desired in
real cinema, where minimizing the optical flow is one of the main
concerns.

In related work, a virtual camera has often been considered either as
able to move completely freely, or been restricted to simple stereo-
typical motions (e.g. traveling, arcing, dolly-in). Conversely, in the
real cinema industry, camera motions are often restricted to those of
a camera rig (e.g. a Louma or a dolly) moving along a single con-
tinuous rail. Generating realistic camera motions in such as context
remains a tedious task that requires iterating on (i) positioning the
in the scene, then (ii) generating a camera motion along this rail
(through a fine control of the on-screen layout and camera speed),
and finally (iii) viewing the on-screen result to decide whether or
not changes should be operated on the rail positions or on the cam-
era motions.

In an attempt to reproduce cinematographic practices to create real-
istic and smooth camera paths, we propose a two-stage approach to
the automated creation of camera paths. In the first step, we com-
pute a virtual camera rail that will constrain the camera motions
while the camera is transitioning between two framings. In the sec-
ond step, we generate a smooth camera motion onto this rail, that
ensures a proper composition of target characters on the screen.

Ranging from the tracking of simple motions of characters to the
creation of camera movements portraying complex motions of char-
acters, our system provides means to efficiently compute stereotypi-
cal and natural camera shots through the simple specification of ini-
tial and final framings. As a result, our method allows to automati-
cally create rushes that one can then use either as input to an editing
or previsualisation system (e.g. similar to Galvane et al. [2015] or
Lino et al. [2011]), or to create a single extended shot (long take)
covering an entire movie scene.

The contributions of this paper are:



• a method to compute virtual camera rails that enable creating
realistic camera transitions between an initial and a final fram-
ing, while accounting for the overall motion of target charac-
ters;

• a method to compute smooth camera paths constrained on
a given rail. Our method nicely combines constraint solv-
ing and optimization to account for both aesthetic constraints
(e.g. frame characters all along the camera path) and con-
straints on the camera (e.g. smoothly adapt the camera veloc-
ity and acceleration, and prevent the camera to get too close
or too far from characters).

The paper is organized as follows. We first review previous research
on virtual camera control (Section 2). We then provide an overview
of our method (Section 3), and proceed with a detailed description
of our two contributions (Sections 4 and 5). We further compare
and discuss our results with several state of the art methods (Sec-
tion 6) before concluding and offering perspectives for future work
(Section 7).

2 Related Work

Optimization-based camera motions. Starting with optimiza-
tion approaches [Drucker and Zeltzer 1994; Bares et al. 1998;
Olivier et al. 1999], there has been a wealth of techniques proposed
to automatically compute camera configurations (ie camera posi-
tion, orientation and field of view) from the specification of user-
defined visual properties such as visibility of targets, view angles,
and relative or absolute on-screen position of targets. The camera
parameters represent the search space, and techniques explore this
space by minimizing cost functions expressed from the visual prop-
erties over the camera parameters. Unfortunately such solutions,
which remain computationally expensive, are not easily extensible
to compute camera paths for two reasons.

First, the computation of one optimal camera position per frame
leads to the creation of jerky and overly reactive camera movements
for which further smoothing or dampening models are required. A
solution proposed by Assa et al. [Assa et al. 2008] consists in com-
puting a global optimization of camera parameters over time for the
whole animation. By creating a viewpoint entropy measure defined
as the amount of motion of the 3D targets (characters) that projects
onto the screen at each frame, the authors propose to maximize en-
tropy over time and minimize the camera’s internal energy. The
problem of jerky camera motions is intrinsically addressed by en-
compassing speed and acceleration in this camera’s internal energy
function.

Second, if the optimal camera positions are computed for larger
time steps and then further interpolated, there is the risk of not sat-
isfying the visual properties in-between time steps (eg not main-
taining the visibility of a target). Halper et al. [2000], for example,
propose to extend their Camplan viewpoint computation technique
by expressing properties over a camera path represented as a Bezier
curve, and solving these properties at starting and ending points
of the trajectory. Later, Christie et al. [2002] proposed the notion
of hypertube – a parameterized camera motion – to express a se-
quence of traditional camera motions on which framing and view
angle constraints are expressed. The overall trajectory is computed
incrementally, solving a piece of trajectory and propagating conti-
nuity to other pieces. The sequence of camera motions is however
selected manually and the computational cost remains important.

To address this cost issue, some novel camera representations have
been introduced [Lino and Christie 2012; Lino and Christie 2015]
that ensure the satisfaction of visual properties along time, by re-
ducing the dimensionality of the search process compared to using

classical camera models, and simplifying the computation of con-
tinuous camera motions. However, the technique uses the exact
on-screen locations of targets to compute the viewpoint at every
frame, and the tracking of targets that have jerky motions or sud-
den changes in positions will necessarily impact the camera motion
accordingly, hence creating non-smooth trajectories.

Physically-based camera motions. A well-known technique to
address jerky motions in computer graphics is to rely on physical
models. Such models present the benefit of naturally smoothing
trajectories and have been used in multiple camera navigation tech-
niques [Hanson and Wernert 1997; Beckhaus 2002; Halper et al.
2001; Burelli and Jhala 2009]. More recently, Galvane et al. [2014]
proposed to animate a camera by relying on physically-based steer-
ing behaviors to track characters. Lixandru et al. [2014] also pro-
posed a physically realistic camera model (based on a real camera
rig) to simulate a reactive camera capable of both tracking a mov-
ing target and producing plausible response to a variety of game
scenarios. While benefits of such smoothing techniques are clear,
the satisfaction of visual features in the simulation makes the solv-
ing process challenging, and the technique is mostly reserved to
reactive contexts.

Path-planned camera motions. Path-planning techniques have
been extensively exploited to create camera motions. Starting from
Nieuwenhuisen and Overmars[2003] with probabilistic roadmap
techniques to Oskam et al. [2009] using regular decompositions or
Lino et al. [2010] proposing planning in dynamic viewpoint parti-
tions, path-planning techniques display many interesting properties
such as robustness, computational efficiency (in such low dimen-
sions) or capacity to express and solve constraints along the camera
path. Most solutions however require extra smoothing stages to
deal with the regularity or irregularity of spatial decompositions.
Furthermore, computed trajectories are not constrained to primitive
camera motions, hence creating non natural camera motions in the
context of cinematographic applications.

3 Overview

In this paper, we focus on the automated computation of natural
camera motions between an initial and a final framing specified on
one or two characters. A framing in this context represents the spec-
ification of the visual layout of characters on the screen in terms of
exact on-screen positions, relative camera angle (high to low, front
to back [Arijon 1976]) or on-screen sizes.

As in the real cinema industry, our camera planning method is di-
vided into two consecutive steps: (i) creating a camera rail, and (ii)
moving the camera along the rail. The first step consists in comput-
ing a camera rail that links an initial and a final framing, and along
which the characters’ motions can be viewed. The second step then
consists in computing appropriate camera orientations and speed
along the rail so as to track the characters. To this end, we rely on
a constrained-optimization process which accounts for the framing
of characters, as well as the speed and acceleration of the camera
along the camera rail.

4 Building camera rails

In order to build a camera rail, we first rely on a parametric rep-
resentation of viewpoints similar to the one proposed in [Lino and
Christie 2012]. This allows us to create a raw trajectory which
satisfies, at each frame, the exact linearly interpolated framing be-
tween the initial framing and the final framing. This raw trajectory
generally results in jerky camera motions. We then approximate



the raw trajectory with a Bezier curve so as to smooth it out. We
restrict the complexity of the camera rail to a cubical curve, so as
to limit rails to those that are commonly used in real movies, hence
enhancing the naturalness of created shots.

4.1 Computing a raw trajectory

The input of this process is the motion of the characters as well
as the user-specified initial and final framings –at times t0 and t1
respectively– of these characters. These framings comprise on-
screen desired positions, on-screen sizes and vantage angles. Dif-
ferent optimization techniques can be used to compute actual cam-
era configurations from these framing specifications; we here rely
on [Lino and Christie 2015] that provides an efficient and algebraic
implementation.

Initial and final camera configurations can therefore be expressed
into a 2D-parametric representation, using one out of two types
of manifold surfaces: a spherical surface (that can handle single-
character configurations) or a toric-shaped surface (that can han-
dle two-character configurations). In the case of a single charac-
ter, the sphere is defined by using the shot size of the character.
The horizontal and vertical vantage angles are defined in spherical
coordinates, as shown in Figure 2a. The on-screen position of the
character is finally determined through its projection onto the image
plane. In the case of a pair of characters, we rely on the toric-shaped
manifold surface proposed by Lino and Christie [2012] to compute
the camera settings from the viewpoint. As explained by Lino and
Christie, the toric surface is fully determined by the on-screen po-
sitions of the pair of characters. The vantage angles are then com-
puted in a way similar to the single-character case, as shown in
Figure 2b.

(a) Spherical surface (b) Toric surface

Figure 2: Manifold surfaces used to defined visual properties in the
case of (a) one target and (b) two targets. In both cases, profile and
vantage angles are given respectively by θ and ϕ.

To compute the raw trajectory linking the initial and final camera
configurations, we propose to interpolate their framing properties
(on-screen position, view angle and size) along time, and compute
for each time step, the camera configuration satisfying the inter-
polated framing. Framing properties such as characters’ on-screen
positions, vantage angles or sizes are computed through a straight-
forward linear interpolation. In the case of a pair of characters, it
is however required to distinguish two types of viewpoint interpo-
lations. Indeed, since the vantage angle and the size of the target
characters are correlated (getting closer to one character changes
the vantage angle on the other), it is only possible to constrain (and
thus interpolate) one of them. Figure 3 illustrates the computation
of the raw path which interpolates between both viewpoints.

(a) (b)

Figure 3: Example of raw trajectories computed in the cases of
(a) a single moving target A and (b) two moving targets A and B.
The camera raw trajectory is displayed in red while the targets’
trajectories are displayed in black.

4.2 From raw trajectories to camera rails

The computation of a camera rail then requires a curve fitting pro-
cess to create a rail as close as possible to the raw trajectory (hence
satisfying the framing properties along the path), while smoothing
it out. While a classical B-spline model provides a good fitting,
it may result in the creation of complex, hence unnatural, camera
paths. Simpler models such as quadratic Bezier curves (as sug-
gested by [Olivier et al. 1999] in their CAMPLAN system) remain
limited (e.g. cannot handle loops). We here propose a cubic Bezier
curve, which offers a simple representation of a camera rail with
limited curvature changes and yet provides sufficient flexibility to
handle most common camera motions from the literature [Arijon
1976].

A rail R is therefore defined by a parametric function with four
control points (P0 to P3). P0 and P3 represent the extremities of the
rail, while P1 and P2 represent tangents at these extremities (hence
controlling the curvature and shape of the rail). Any point onR can
be computed from parameter t ∈ [0, 1] using the equation

R(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3

To approximate the raw path (which we will refer to as a dataset
D), we compute the Bezier parameters by using a least squares
fitting method. At each camera position Di along the raw path, we
first associate a parameter ti computed as the cumulative distance
(following the raw path) to reach Di, divided by the total length of
the raw path. We then minimize an error ξ defined as the cumulative
squared distance between all camera positions of the raw path and
their corresponding positions onto the Bezier curveR. This error is
computed as

ξ =

N∑
i=0

(R(ti)−Di)
2

Since our rail needs to operate the exact transition between the ini-
tial and final viewpoints, we can directly assign the first and last
control points to the initial and final camera positions of the raw
path respectively. At this point, only the positions of P1 and P2 are
left unknown. To find the minimum value of the error function, we
compute partial derivatives with respect to these two unknowns and
find where these equal zero, i.e.

δξ

δP1
= 0 and

δξ

δP2
= 0

Finally, as the maximum error is infinite, we know that the solution
of the system corresponds to the minimum error. To compute con-
trol points P1 and P2, we then solve this system of linear equations.
Figure 4 shows how our method approximates complex raw paths
with simple camera rails.



(a) (b) (c) (d)

Figure 4: Examples of camera rails (in blue) computed to approx-
imate raw trajectories (in red) when tracking one or several char-
acters with increasingly complex motions (from (a) to (d)). As the
motion of the character becomes more complex, our method still
provides a rail that well approximates the raw path.

5 Moving the camera on the rail

We now focus on generating a smooth camera motion (in position
and orientation) along this rail while maintaining an optimal fram-
ing over the target characters. To address this problem, we first
compute at each time step ti, the optimal camera position on the
rail that satisfies the interpolated framing at ti. We then improve
this camera motion through an iterative optimization process which
accounts for constraints on the camera (in terms of position, veloc-
ity and acceleration). Hence, we compute a camera motion closest
to the optimal framing while enforcing smoothing constraints. We
perform a similar process to compute the orientation of the camera
along the path. These stages are described in the following sections.

5.1 Raw camera motion

To initiate a raw camera motion along the rail, we try at each time
step to position the camera at an optimal position on the rail, know-
ing its previously defined raw position, i.e. on the raw trajectory.
Though a straightforward solution could consist in projecting this
raw camera position onto the rail, it may not ensure the satisfaction
of visual properties (see Figure 5 for an example). Our solution
consists in finding the position on the rail that is closest to the in-
tersection between the rail and the manifold surface. Since every
position on this manifold surface satisfies part of the desired visual
composition (at least the on-screen position of target characters, as
shown in [Lino and Christie 2012]), this methods tends to provide
better camera positions to frame the target characters (and limits
disturbing changes in on-screen sizes of characters).

Figure 5: The point on the rail (in grey) that provides the best ap-
proximation of the desired camera viewpoint C is not its projection
C1 on the rail. It is given by the closest intersection C2 of the rail
with the manifold surface (in black).

As the intersection of a Bezier curve with a manifold surface is not
straightforward, we compute the optimal camera position at a given
frame by performing a dichotomous search on the neighborhood
(along the rail) of the position found at previous frame. This search
algorithm is detailed in Algorithm 1.

Algorithm 1 Dichotomous search of the point on the rail that is
the closest to the manifold surface. The search is performed in the
neighborhood (defined by ∆) of the previous optimal camera po-
sition p. Rail(t) returns the position of the point at time t on the
rail.
left := p−∆
right := p+ ∆
while left− right ≥ ε do
middle := (left+ right)/2
pleft := Rail(middle− ε)
pright := Rail(middle+ ε)
dl := ||projectOnManifold(pleft)− pleft||
dr := ||projectOnManifold(pright)− pright||
if dl then
left := middle

else
right := middle

end if
end while
return (left+ right)/2

5.2 Smooth camera motion

To compute a smooth camera motion from the raw motion on the
rail, we need to add constraints such as smooth changes of camera
velocity and acceleration. We therefore search for the camera mo-
tion that satisfies these constraints while minimizing the distance to
the raw camera motion.

The problem is solved using an optimization process which takes
as input a shot duration d (comprising N frames) and a rail of
length L. This process then minimizes equation (1), where xi and
x′i are the parameters respectively defining the optimal and opti-
mized camera position on the rail. Our optimization process is then
subject to a number of constraints, each addressing one aspect of
the motion. Firstly, through constraint (2) we state that the camera
position will always belong to the rail, in-between both extremities
of the rail. Secondly, through constraints (3) and (4) we state that
the camera initial and final positions will be the extremities of the
rail (P0 and P3 respectively). Thirdly, through constraints (5) and
(6) we define a maximum velocity vmax and a maximum acceler-
ation amax for the camera motion. Finally, through constraints (7)
and (8) we state that the camera motion will start with a zero speed
and end with a zero speed (i.e. a complete stop of the camera). In
other words, our optimization process is formulated as

Minimize
N∑
i=0

|x′i − xi| (1)

Subject to

0 ≤ x′i ≤ 1 (2)

x′0 = 0 (3)

x′N = 1 (4)

|x′i − x′i−1| ≤ vmax ∗ dt/L ∀i ≥ 1 (5)

|2x′i−1 − x′i − x′i−2| ≤ amax ∗ dt2/L ∀i ≥ 2 (6)

x′1 − x′0 ≤ amax ∗ dt2/L (7)

x′N − x′N−1 ≥ −amax ∗ dt2/L (8)

Within this formalization, the problem can now be solved using



any existing linear programming library 1. However, to ensure that
our problem has a solution, we further define an implicit constraint
on the minimum input values of vmax and amax in the following
way. If we use the minimum acceleration satisfying all constraints,
the camera will constantly accelerate until it reaches half of the
rail length at precisely half of the rush duration, then constantly
decelerate until it reaches the end of the rail at precisely the end
of the rush (with zero speed). This can be formalized in a simple
mathematical way, as

amax ≥
4L

d2

Using this formula, we then deduce the minimum value of vmax.
We know that the camera will reach half of the rail at precisely
half of the rush duration and at its maximum speed. The camera
will also constantly accelerate until it reaches its maximum speed,
then will remain constant until half of the rail length. This can be
formalized as

vmax ≥
d.amax −

√
d2.a2max − 4L.amax

2

5.3 Camera orientation

The two previous steps have computed a smooth camera motion
(in terms of position) along the rail. Now computing the optimal
camera orientation at each frame, given its position on the rail and
a framing to satisfy, is easily addressed in [Lino and Christie 2012]
through an algebraic formulation of camera orientation. However,
for the same reasons as before, we also want to limit the angular
speed and acceleration of the camera while it is moving along the
rail to avoid jerky camera rotations that may occur. In a way similar
to camera position, we therefore perform an optimization process
along each of the three axes of the camera (i.e. pan, tilt, and roll).

This optimization process takes as input the duration d of the rush
(comprising N frames) and is defined as the minimization of equa-
tion (9), where θi and θ′i are respectively the optimal and optimized
rotation along a given camera axis at frame i. The camera orienta-
tion is also subject to a number of constraints, both at its initial and
final states and on the way it evolves along time. Firstly, through
constraints (10) and (11), we state that the initial and final camera
orientations will be equal to the initial and final optimal orienta-
tions respectively. Secondly, through constraints (12) and (13), we
define a maximum angular velocity θ̇max and acceleration θ̈max for
re-orienting the camera. Finally, through constraints (14) and (15),
we state that the camera will start the rush and end the rush with a
zero angular speed. In other words, this optimization process can
be formulated as:

Minimize
N∑
i=0

|θ′i − θi| (9)

Subject to

θ′0 = θ0 (10)

θ′N = θN (11)

|θ′i − θ′i−1| ≤ θ̇max ∗ dt ∀i ≥ 1 (12)

|2θ′i−1 − θ′i − θ′i−2| ≤ θ̈max ∗ dt2 ∀i ≥ 2 (13)

|θ′1 − θ′0| ≤ θ̈max ∗ dt2 (14)

|θ′N − θ′N−1| ≤ θ̈max ∗ dt2 (15)
1we used GLPK (GNU Linear Programming Kit)

6 Results

In this section we analyze the performance of our solution on
a number of scenarios and compare our approach with existing
camera control techniques on a publicly available dataset intro-
duced by [Galvane et al. 2015]. All our results can be seen in the
companion video (https://cinematography.inria.fr/
camera-on-rails).

6.1 Performance

We here provide an overview of the performance of our method
for different character placements and motions. The computational
time required (on a Core i7@2.4GHz running Unity 5) to generate
a camera rail is given in Table 1 for three different scenarios (S1 to
S3). In each scenario, the camera makes a transition between two
different user-defined framings. In the first scenario, the camera
tracks a single character as he moves in the environment for 32
seconds. In the second scenario, the camera transitions between two
different viewpoints specifications around a pair of static characters
during 8 seconds. In the last scenario, the camera tracks during 18
seconds two moving characters walking at different speeds and with
different walking directions. Figure 6 shows the characters’ paths
and the camera rails computed for each of these scenarios.

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 6: Sample camera rails computed (a) for a single moving
character, (b) for two static characters and (c) for two moving char-
acters.

Table 1 shows the computation time spent in each step of the pro-
cess for each of the three scenarios. The overall computation time to
create a smooth camera motion and orientation for the first scenario
well illustrates the efficiency of our solution; less than 2 seconds
are required to generate a 32-seconds camera motion. Moreover,
most of computation time is spent in the optimization process (95%
in average). Thus, there is not a significant impact of the number of
targets or the type of transition on the overall computational time.
We can however notice that the time spent in finding an optimal

https://cinematography.inria.fr/camera-on-rails
https://cinematography.inria.fr/camera-on-rails


position on the rail is greater when tracking a pair of targets than
when tracking a single character, since working with toric surfaces
is more expensive than working with simple spheres.

S1 S2 S3

Raw path 5 ms 13 ms 10 ms

Bezier interpolation 13 ms 14 ms 15 ms

Desired positions on the rail 74 ms 103 ms 342 ms

Optimization of the position 920 ms 49 ms 231 ms

Desired orientation on the rail 7 ms 9 ms 26 ms

Optimization of the orientation 940 ms 117 ms 877 ms

Overall computation 1.95 s 0.30 s 1.5 s

Table 1: Computation times for the different steps of the planning
process in three different scenarios (S1 to S3). S1: track a single
moving character during 28s. S2: move around a pair of static
characters for 8s. S3: track two moving characters for 20s.

6.2 Comparison with other methods

We compared our method with three other camera planning tech-
niques: (i) an approach relying on the model introduced by Lino
and Christie [2012], (ii) a recent technique based on steering be-
haviors [Galvane et al. 2014], and (iii) a derived version of [Gal-
vane et al. 2014] where the camera is steered along a virtual rail
rather than optimized. All the comparisons are performed on the
scenario S3.

Lino and Christie [2012]. Their technique can be used to create
camera motions that strictly enforce a simple framing on a pair of
targets. The resulting camera path corresponds to our raw camera
path. The main problem of this method is illustrated in Figure 7.
When the targets’ motions are too complex, the method will tend to
create jerky and unnatural camera motions. Moreover, as the cam-
era viewpoint is recomputed at each frame without considering ei-
ther the previous camera position, nor the camera speed, the result-
ing camera motion is not guaranteed to be continuous nor smooth.

(a) (b)

Figure 7: Comparison between the trajectory computed with (a)
the Manifold surface introduced by Lino and Christie and (b) our
camera rail.

Galvane et al. [2013; 2014] Based on the model of Lino and
Christie, Galvane et al. introduced a physically based model for
camera control that limits camera motions to ensure physically
plausible motions. In their approach, an optimal viewpoint is com-
puted and the camera is then steered toward this viewpoint. The
resulting camera motions are much smoother than the one obtained

with [Lino and Christie 2012] and provide interesting results in sim-
ple cases. However, as shown in Figure 8, when confronted to com-
plex situations, steering-based cameras fail in generating smooth
trajectories. Furthermore, the computational time required to com-
pute the camera path from the raw trajectory by using steering be-
haviors is greater than when using our method. It takes 3.33 seconds
to compute both the position and orientation for the whole duration
of the rush (given the raw optimal trajectory), whereas when using
our optimization process it only takes 1.1 second. Even though our
approach only offers an off-line solution – it requires an analysis
of the target characters’ motions –, it demonstrates better perfor-
mances in average than when using Galvane et al. real-time method.

(a) (b)

Figure 8: Comparison between the path computed (a) by steering
a camera and (b) by using our rail positioning process.

Extended version of Galvane et al. [2014] We also compared our
solution to an extended version of the method of Galvane et al. .
Instead of freely steering the camera around in the environment,
we constrained the camera motion along the same rail as in our
method. We then steered, at each frame, the camera towards the
optimal viewpoint on the rail by using steering behaviours defined
in Galvane et al. [2014]. This last comparison is important since it
confirms the necessity of the optimization we propose. Indeed, Fig-
ure 9 shows the evolution of the position of the camera on the rail
for both methods and displays the optimal camera position along
time. Our method closely follows the optimal position whereas the
steering camera is always behind on the rail.

Figure 9: Position of the cameras on the rail along time. Our op-
timized solution (green) smoothly approximates the optimal cam-
era positions on the rail (blue) while the autonomous camera (red)
hardly keeps-up and introduced a delay.

This graph reveals the main drawback of using a reactive method
like steering behaviors. The camera only moves or accelerates at
the last possible moment for it does not anticipate the characters
motion. Our solution on the other hand is able to anticipate the
movements by globally optimizing the camera positions. Figure 10
illustrates the difference between the two approaches. When the
characters suddenly move away from the camera, the reactive solu-
tion does not handle the abrupt movement and looses the visibility
over the targets for a moment. Our camera is able to maintain the
visibility over the characters by moving earlier along the rail.



Figure 10: Viewpoints of the two constrained cameras as the char-
acters move. The autonomous camera C1 is not able to track them
whereas our solution C2 is able to maintain the visibility over the
two characters by anticipating their movements.

7 Conclusion

In this paper, we have introduced a novel approach to create
smooth and natural camera motions that relies on traditional cin-
ematographic techniques. Our technique automatically computes
a camera rail from the specification of initial and final framings,
and by knowing the motions of the targets to track. We rely on
two constrained-optimization processes that ensure both the proper
framing of target characters, and smooth changes in the camera
speed. Results demonstrate the benefits of our technique in com-
parison with recent approaches. Possible extensions of our method
could be to constrain these camera motions to existing physical
camera rigs to improve realism and to add extra constraints along
the path at given key frames.

The solution we provide addresses a problem hardly explored be-
fore – the creation of cinematographic and smooth camera motions
in virtual cinematography – with possible applications for the cre-
ation of tools to assist cinematographers and animators in rapidly
drafting camera motions, and for automatic computation of cine-
matic replays in computer games.
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LANGUÉNOU, E. 2002. Modeling Camera Control with Con-
strained Hypertubes. In Principles and Practice of Constraint

Programming, vol. 2470 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 618–632.

DRUCKER, S. M., AND ZELTZER, D. 1994. Intelligent camera
control in a virtual environment. In Graphics Interface, 190–
199.

GALVANE, Q., CHRISTIE, M., RONFARD, R., LIM, C.-K., AND
CANI, M.-P. 2013. Steering Behaviors for Autonomous Cam-
eras. In Motion in Games, ACM, 93–102.

GALVANE, Q., RONFARD, R., CHRISTIE, M., AND SZILAS, N.
2014. Narrative-Driven Camera Control for Cinematic Replay
of Computer Games. In Motion In Games, ACM, Los Angeles,
United States.

GALVANE, Q., RONFARD, R., LINO, C., AND CHRISTIE, M.
2015. Continuity Editing for 3D Animation. In AAAI Confer-
ence on Artificial Intelligence, AAAI Press.

HALPER, N., AND OLIVIER, P. 2000. CAMPLAN: A Camera
Planning Agent. In Smart Graphics 2000 AAAI Spring Sympo-
sium, 92–100.

HALPER, N., HELBING, R., AND STROTHOTTE, T. 2001. A cam-
era engine for computer games: Managing the trade-off between
constraint satisfaction and frame coherence. In Proceedings of
the Eurographics Conference (EG 2001), Computer Graphics
Forum, vol. 20, 174–183.

HANSON, A., AND WERNERT, E. 1997. Constrained 3d naviga-
tion with 2d controllers. In Proceedings of the IEEE Visualiza-
tion Conference (VIS 97), 175–182.

LINO, C., AND CHRISTIE, M. 2012. Efficient Composition for
Virtual Camera Control. In ACM Siggraph / Eurographics Sym-
posium on Computer Animation, P. Kry and J. Lee, Eds.

LINO, C., AND CHRISTIE, M. 2015. Intuitive and Efficient Cam-
era Control with the Toric Space. ACM Transactions on Graph-
ics (TOG). Proceedings of ACM SIGGRAPH 2015.

LINO, C., CHRISTIE, M., LAMARCHE, F., SCHOFIELD, G., AND
OLIVIER, P. 2010. A Real-time Cinematography System for In-
teractive 3D Environments. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 139–148.

LINO, C., CHRISTIE, M., RANON, R., AND BARES, W. 2011.
The Director’s Lens: An Intelligent Assistant for Virtual Cine-
matography. In ACM International Conference on Multimedia.

LIXANDRU, E. T., AND ZORDAN, V. 2014. Physical Rig for First-
person, Look-at Cameras in Video Games. In Motion in Games,
ACM.

NIEUWENHUISEN, D., AND OVERMARS, M. H. 2003. Motion
planning for camera movements in virtual environments. Tech.
Rep. UU-CS-2003-004, Institute of Information and Computing
Sciences, Utrecht University.

OLIVIER, P., HALPER, N., PICKERING, J. H., AND LUNA, P.
1999. Visual Composition as Optimisation. In Artificial Intelli-
gence and Simulation of Behaviour, 22–30.

OSKAM, T., SUMNER, R. W., THUEREY, N., AND GROSS, M.
2009. Visibility transition planning for dynamic camera control.
In Proc. SIGGRAPH/Eurographics Symp. on Computer Anima-
tion, 55–65.


