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Abstract

We consider in this article the analysis of multicomponent signals, defined
as superpositions of modulated waves also called modes. More precisely, we
focus on the analysis of a variant of the second-order synchrosqueezing trans-
form, which was introduced recently in [13], to deal with modes containing
strong frequency modulation. Before going into this analysis, we revisit the
case where the modes are assumed to be with weak frequency modulation
as in the seminal paper of Daubechies et al. [7] to show that the constraint
on the compactness of the analysis window in the Fourier domain can be
alleviated. We also explain why the hypotheses made on the modes making
up the multicomponent signal must be different when one considers either
wavelet or short time Fourier transform -based synchrosqueezing. The rest of
the paper is devoted to the theoretical analysis of the variant of the second
order synchrosqueezing transform [13] and numerical simulations illustrate
the performance of the latter.
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1. Introduction

Multicomponent signals (MCs) are encountered in a number of fields of
practical interest such as meteorology, structural stability analysis, and med-
ical studies - see, e.g. [5, 6,9, 10]. Linear time-frequency (TF) analysis tech-
niques have been extensively used to analyze and process these signals [11],
the method to be used depending on the nature of the modes making up the
signal. Standard linear TF methods such as the short-time Fourier transform
(STFT) and the continuous wavelet transform (CWT) are commonly used
to analyze such signals. In that context, the reassignment method (RM)
was developed [1] to improve the readability of these linear TF representa-
tions. Unfortunately, since RM applies to the magnitude on the studied TF
transform, the method results in a loss of information and the reassigned
representation is not sufficient to recover the original signal.

Recently, Daubechies et al. [7] showed interesting results on the so-called
synchrosqueezing transform (SST) to represent MCs, a method introduced
in the mid-1990s for audio signal analysis [8]. SST combines the localization
and sparsity properties of RM with the invertibility of a traditional TF rep-
resentation. Originally proposed as a post-processing method applied to the
CWT, SST can alternatively be applied to STFT with minor changes [12], to
obtain the so-called FSST. Since the seminal paper of Daubechies et al. [7],
many new developments have been carried out in various directions. First,
an extension was proposed to the bidimensional case in [4], while a general-
ization of the wavelet approach by means of wavelet packets decomposition
for both the one dimensional and bidimensional cases is available in [17, 16].
Finally, it is also worth noting that a study of synchrosqueezing applied to a
more general class of multicomponent signals was done in [15].

In the present paper, we focus on what essentially limits the applicability
of SST which is the hypothesis of weak frequency modulation for the modes
making up the signal. To better take into account this frequency modulation,
FSST has recently been extended to the case of MCs containing modes with
strong frequency modulation [13, 2]. However, in these papers, no theoretical
analysis of the proposed new synchrosqueezing transform was provided. To
deal with this issue is one of the aim of this paper. For that purpose, we
first revisit the case of weak modulation for the modes, putting the emphasis



on the fact that the analysis window need not be compactly supported in
the Fourier domain, which consists in a new result. We then prove a new
approximation theorem on the novel synchrosqueezing transform we propose,
which we call second order synchrosqueezing.

The outline of the paper is as follows: in Section 2, we recall some notation
and definitions. In Section 3, we introduce FSST and wavelet-based SST
(WSST) along with the corresponding approximation results and explain
why the hypotheses on the phase of the modes have to be different. Then,
after having introduced some necessary ingredients, we derive, in Section 4,
the approximation theorem for the second order synchrosqueezing transform,
showing that this new transform is fully adapted for analyzing modes with
strong frequency modulations. Finally, numerical illustrations conclude the

paper.

2. Definitions

2.1. Short-time Fourier transform

We denote by L'(R) and L?(R) the space of integrable, and square in-
tegrable functions. Consider a signal f € L'(R), and take a window ¢ in
the Schwartz class, S(R), the space of smooth functions with fast decaying
derivatives of any order; its Fourier transform is defined by:

Fn) = [ fmyemrar. 1)

The need for time-localized frequency descriptors leads to short-time Fourier
transform (STFT) which is obtained through the use of a sliding window
g € L*(R) defined by:

Vfg(n7 t) = /Rf(T)g<7. _ t)ef%rn(‘r—t)dT — A(m t)€2i7r<1>(n,t). <2>

The representation of [V (n, t)|? in the TF plane is called the spectrogram of
f. The STFT admits the following synthesis formula (provided the window

g does not vanish and is continuous at 0):
1
ft:—/Vgn,tdn. 3

Further, if the signal is analytic (i.e. 7 < 0 = f(n) = 0) then the integral
domain for 7 is restricted to R,.



2.2. Continuous wavelet transform

Let us consider an admissible wavelet ¢ € L*(R), satisfying 0 < Cy, =
Joe |1/)(§)|2% < oo and then define for any time ¢ and scale a > 0, the
continuous wavelet transform (CWT) of f by:

Wyta.t) =5 [ s (") ar ()

a

where z* denotes the complex conjugate of z. Assuming that ¢ is analytic,

-~

i.e. Supp(v) C [0,00[, and f real-valued, the CWT admits the following
synthesis formula (Morlet formula):

1 e da
H=oR! / Wia, )22 5
0 =2r {7 [ witen'y ) 5)
/ 2 df
where R denotes the real part of a complex number and €}, = / (€ )z
0

2.3. Multicomponent signal

In the present paper, we analyze so-called multicomponent signals of the
form,

F() = 32 ful), with fu(t) = Ap(B)e ™, (6)

for some K, where Aj(t) and ¢ (t) are time-varying amplitude and phase
functions respectively such that Ag(t) > 0, ¢(t) > 0 and ¢, (t) > ¢,(t)
for all ¢. In the following, ¢).(t) is often called instantaneous frequency (IF)
of mode k and Ag(t) its instantaneous amplitude (IA). One of the goal of
TF analysis is to recover the instantaneous frequencies {¢}.(¢)}1<k<x and
amplitudes {Ax(t)}1<k<k, from a given TF representation of f. Note that,
if we are given real-valued functions, i.e. fi(t) = Ag(t) cos(2mx(t)), we can
still derive the same analysis by considering analytic windows or wavelets, as
soon as ¢} (t) > AVt.

3. Synchrosqueezing transform

The synchrosqueezing transform (SST) is an approach originally intro-
duced in the context of audio signals [8], whose theoretical analysis was re-
cently carried out in [7]. It belongs to the family of TF reassignment methods
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and corresponds to a nonlinear operator that sharpens the TF representation
of a signal while enabling mode reconstruction. Moreover, SST combines the
localization and sparsity properties of TF reassignment with the invertibility
property of traditional TF transforms, and is robust to a variety of signal
perturbations [14]. The key ingredient to SST is an IF estimate computed
from the TF representation, which we introduce now.

3.1. Computation of IF Estimate in the TF plane

In the STFT framework, the IF of signal f at time ¢ and frequency 7 can
be estimated by [1]:

N 1
We(n,t) = gatargvfg(n,t),
= 0;P(n,t) defined in (2),

1 (9th(7],75)
_ R(mvfgf(m) ) (7)

Note that the quantity of which we take the real part:

5 oV7i(n,t)
Dr(n,t) = ——2

"m0 o

is useful to more theoretical investigations but should not be used to estimate

real quantities such as IF. Similar quantities can be derived in the CW'T case

as follows: @f(a,t) =R (Ws(a,t)), with @ws(a,t) = Q%WB%JE((L“;;).

Remark 1. In [7], the estimate W (a,t) is used instead of @¢(a,t). However,
most theorems are valid only for a real estimate as will be shown later.
3.2. STFT-based synchrosqueezing transform

Definition 1. Let ¢ > 0 and A > 0. The set Ba . of multicomponent signals
with modulation € and separation A is the set of all multicomponent signals
defined in (6) satisfying:

A € CHR) N L¥(R), ¢y, € C*(R),
Sup Pr(t) < 00, (t) > 0, Ax(t) > 0, Vi (9)

AL @) <& ldk(t)] <e VEeR.
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Further, the fi.s are separated with resolution A, i.e., for allk € {1,..., K—1}
and all t,

P (1) — A1 (1) > 2. (10)

Definition 2. Let h be a L' normalized positive function belonging to C°(R),
the space of compactly supported smooth function, and pick v,6 > 0. The
STFT-based synchrosqueezing (FSST) of f with threshold v and accuracy &
is defined by:

1 1, fw—a&¢n,t)
T Y CEC ) P
r(h) g(0) Jve(n.t) >~ 7 )5 § 7 (1)

If we make & and v tend to zero, then T}S”(w,t) tends to some value which
we formally write as:

Ty(nt) = s [ Vi3 =2y 0)dn (12)

called FSST in the sequel.

Theorem 1. Consider f € Ba. and put & = /3. Let g € S(R), the
Schwartz class, be such that supp(g) C [—A, A]. Then, if € is small enough,
the following holds:

(a) [Vi(n,t)] > & only when there exists k € {1,..., K'} such that (n,t) €
Zi:={(n,t), s.t. [n— (1) <A}

(b) For all k € {1,.., K} and all (n,t) € Z, such that |V{(n,t)| > &, we
have

@r(n,t) — G ()] < €. (13)

(¢c) Forallk € {1,..., K}, there exists a constant C' such that for allt € R,

li / T (w, t)dw | — fi(t
512%( oot >w> el

Proof. This theorem gives a strong approximation result for the class Ba,
since it ensures that the non-zero coefficients of the FSST are localized around
the curves (¢, ¢ (t)), and that the reconstruction of the modes is easily ob-
tained from the concentrated representation. The main steps of the proofs
are detailed hereafter.

< Ce. (14)




(a)

For any (n,t) € R?, a zeroth order Taylor expansion of the amplitude
and first order expansion of the phase of the modes lead to:

Vi (n,t) ka 9(n — @) < el (1), (15)
where Ty (1) = KT, + 71, 5 Ag(t), and I, = / l2|"|g(x)|dx. 1f
k=1 R

1
& < |[Tull”, (16)
and since § is compactly supported in [—A; A], and the IFs of the modes
K
are separated by more than 2A, we have, for any (n,t) ¢ U Z:
k=1

[Vi(n,t)] <el(t) <e (17)

Now, we derive the same kind of estimate for 8tVfg . Let us first remark
that V7(n,t) is differentiable with respect to both variables, and that
for any (n,t) € R*:

VY (n.t) = 2imV{(n.1) = VF (n,1). (18)
The counterpart of equation (15) is then:
|0,V (0, 1) — 2im Z Fe®)er0)g(n — ¢ (1)] < & (a(t) + 27wl (1))
(19)
K
where ['y(t) = KI] + 7l > Ak(t), with 1] = / [t]"|g' (t)]|dt.
k=1 R

Now, we can remark that, since the sets Zj, are disjoint, there is at most
one non-zero term in the sums involved in equations (15) and (19). We

K
can thus write for any (n,t) € U Z:
k=1

(@5 (0, f) — Dk ()]

O (t) (fs(D)g(n — ¢1,(t)) —

Vi (n,1))

OV (1,1) = 2imh (1) ful)in = (1))
2im Vi (n, 1)

e (Ta(t) + 2m|n|T (1))

< 5z + &3 (t)

< (B0 + domitn).

Vf( 7)
el (1)

(O
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Hence, if ¢ is sufficiently small, i.e. if it satisfies for all ¢

~ Fg(t) , —1
E< |5+ EHEO+ AN (20)
one obtains
&(n, f) — (1) < E. 1)
(c) Let t € R, we have:
lim 79 w, 1) duw
60 Jjw—g) (t)|<& 7w 1)
= lim 7/ Vi t)5h ( dndw
6—0 |w_¢;€(t)‘<§ g(o) |qu(777t)‘>~ (77 )5 5 77
. 1 1 (D(n t)
=1 / 7‘/9 ,t/ 1 w—&(n,t) i
61_1)1/(1) |Vg(77t ( ) f(T] ) | ¢/ t)|<6(5 ( 5 ) wdan
a - e
= 4(0) V7i(n,t) lim 7h w—wlnt)y o oo
9(0) Sy moyi>z AURE o=t (t)]<& 6 < 5 n
o
_ VE(n. 1) dn,
9(0) Juvimni>eNemn - vl<e) f(” )i

where we use the Fubini and dominated convergence theorems, all the
functions being bounded on bounded integration sets, hence integrable.
We now prove that the integration interval of the last equation, denoted
by X = {|Vi(n,t)| >} N{|@(n,t) — ¢, (t)| < €}, equals the following
set:
Y ={[Vi(n.t)] > &} ({In — ¢r()] < A}.

If n € X, it is such that [V{(n,t)| > & and |&(n,t) — ¢,(t)| < . Also,
from (a) there exists a unique [ such that (n,t) € Z;. If [ # k, we would
have:

|Gp(n, 1) = d ()] > |d1(t) — @ (O] — [@p(n, 1) — &1(t)]
> 2A — &,

because of (b). If & satisfies

(LN
IN
>
—~
[\
[\
~



we would get |0f(n,t) — ¢)(t)| > &, which contradicts n € X. Hence,
[l = kand X C Y. Conversely, if n € Y, equation (25) immediately
shows 7 € Y, hence X =Y.

Finally,

li / T (w, t) dw | — fx(t
55%( sy l<e ! (. 1) w) f’“()|

1
= |— Vin,t)dn — t
9(0) /{vfg<n,t>|>é}ﬂ{|n¢;(t><A} 7. t) dr f’“()‘
1 1
. VEIn,t)dny — fult) — — Vin,t)d
9(0) /{n—¢;<t>|<A} 7 (m8) dn = Ji(?) g(0) /{|n—¢;<t>|<A}ﬂ{vfgm,tnss} 7 n. ) d
1 2A
< |l— Vi(n, t)dn — fi(t)| + g
9(0) /{n¢;<t>|<A} (n, ) dn f’“()| 19(0)]
1
< |— taln — @L.(t)) dn — fu(t
<5 Loy 000 = G001 (0
PR . VIO, ) — Fu(t)3(n — G(0))| dn + o
19(0)] Jim—epyjcay |4V T IREIRT T GBI AT ]
2A 2A
<04+ ——el'1(t) + g
o1 O o))
< 14 g
= Jg(0)]~

3.8. Generalization to non compactly supported §

In the above section, we assumed that § was compactly supported. We
here explain that we can state the same approximation result while relaxing
this strong condition.

Theorem 2. Assume that there exist constants K1, Ko > 0 such that g €
S(R) satisfies:

For all |n| > A, |§(n)] < K,

and g(n)|dn < Kyé.
[ il <

Then all conclusions of Theorem 1 remain valid.
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Proof.  (a) We first remark that equation (15) remains valid for any (n,t):

Vi(n,t) — kg fe)g(n — ¢i(1))] < el (t).

If we assume that for any ¢,

€ < min [; <K1 kZ::lAk(t)> ,;Fl(t)5] , (23)

K
then we get, for any (n,t) ¢ U Zx:

Vi t)| < e <K1;Ak(t) +F1(t)> <E.

111, € Zi wehave [V7(0,0)~ 0004 (0)] < = (3 £ 4u(0) 47100 )

(b) Similarly, we still have estimate (19) for any (n,t). If we assume that
forall k € {1,--- , K} and for all ¢,

¢ < min [; (i3] 5 (20 + s +aro) ] 7

=1
(24)
then we get for any (n,1) € Z such that [V{(n,t)| > &

(©r(n, f) — o) < & (25)

(c) Regarding point (c¢) of Theorem 1, the only difference when one con-
siders a non compactly supported window appears at the very end of
the proof. More precisely, the following term is not zero anymore, but
can be bounded in the following way:

! S A(t) )
‘g(()) /{n%(m@} fe()g(n — 6,(t)) dn — fk(t)‘ <0 /|n|>A 19(n)] dn
o A,
— 19O

10



Thus, point (c¢) of the theorem still holds, but with constant

4A + makaAkHong
C pu—
19(0)]

]

Remark 2. Let us remark that this extended result requires stronger as-
sumptions on &: conditions (16) and (20) are replaced by (23) and (24),
respectively. Note also that here, the separation parameter A depends on é.

Remark 3. It is interesting to remark also that f(t)g(n—¢,(t)) = Vgl1 (n,t)
with fL(7) = Ag(t)e? @kO+T=D9 ") Then, the right hand side of equa-
tion (15) and (19) can be rewritten respectively as [V{(n,t) — Vgé(n,t)| and
10:V{(n,t) —8751/9% (n,t)| so that Theorem 1 is based on the STFT of a constant
amplitude and first order phase approximation of the k&th mode.

3.4. Wawvelet based synchrosqueezing transform [7]
We now introduce SST in the wavelet framework.

Definition 3. Let ¢ > 0 and A € (0,1). The set Aa. of multicomponent
signals with modulation € and separation A corresponds to signals defined in
(6) with f satisfying:

A, € CHR)N L=(R), ¢ € C*(R),

. / /

%gﬂg @(t) > O,ilelﬂg) o (t) < 00, Ag(t) > 0, (26)

AL @) < eler ()] [05(1)] < elgy(t)] Vi eR.

Further, the fis are separated with resolution A, i.e., for allk € {1,--- | K —
1} and all t

|01 (D) = G ()] = AGya (2) + 1 (1))- (27)

Definition 4. Let h be a positive L' normalized window belonging to C°(R),
and consider vy, > 0, the wavelet-based synchrosqueezing (WSST) of f with
threshold v and accuracy 0 is defined by:

_ 1 (w—00s(a,t)) da
$5(w, 1) := O Wy t)ch (S 200D 44 o
Pan=ct [ Wi (D)L gy

11



Theorem 3. Let f € Aa., and set &€ = e3. Let ¥ be a wavelet belonging
to S(R) such that ¥ is supported in [l — A, 1+ A]. Then, provided e is
sufficiently small, the following hold:

> € only when, there exists k € {1, ...., K}, such that for each

(a) [Wy(a,t)]
t) € Zy = {(a,t), s.t. lag,(t) — 1] < A}.

pair (a,

(b) For each k € {1,..., K} and then for all (a,t) € Zy for which holds
|(We(a,t)| > €, we have

@r(a,t) — @) < & (29)

(c) Moreover, for each k € {1, ..., K}, there exists a constant C such that
foranyt eR

lim SY(w, t)dw — fi(t)| < CE. (30)

6=0 Jjw—¢) (t)|<&

Proof. This theorem is proved in [7] and gives a strong approximation result
for the class Aa ¢, since it ensures that the non-zero coefficients of the WSST

are localized around the curves (t, d)%(t)) in the time-scale space, and that
k

the reconstruction of the modes is easily obtained from the concentrated

representation. O

Remark 4. Pure waves obviously satisfy the assumptions of Theorems 1
and 3 for any €. However, in these theorems, we assumed different hypothe-
ses for ¢”(t), when considering FSST, from the ones originally made with
WSST. In the case on FSST, we can motivate the hypothesis put on ¢”(t),
by studying the IF estimate on a linear chirp, i.e., a wave with linear instan-
taneous frequency. To carry out this study, we consider the STFT computed
with a Gaussian window g(t) = e~™". To choose such a window is interesting
for our purpose, because one obtains a closed form expression for the STFT
of a linear chirp, as shown hereafter.

To carry out the study of the IF estimate w¢(n,t) for a linear chirp, we need
the following lemma:

12



Lemma 1. Consider u(t) = e ™" where z = re’ with cos > 0, so that u

is integrable. Then its Fourier transform reads

™

u(§) = rTe s e et (31)

Proof. This result is straightforward as one can proceed as in the case z
real. [

Then, consider the linear chirp h.(7) = Ae*™(") where ¢ is a quadratic
polynomial. To start with, we remark that h.(r) can be written in the
following form:

he(T) = he(t)e2™? OT-D+38" ()71 (32)
Then, we have the following result.

Proposition 1. The STFT of h., computed using the Gaussian window g
admits the following closed-form expression:

o _m2(+ie" (1)2) (n—o' (1))2

thc(n, t) = hc(t)r_%e_lie 146/ (1) ) (33)

Proof. We remark that

Vi) = he(t)e =" (n — ¢/ (t)) = h(t)e=™ (n — ¢ (1)),
where z = 1 — i¢"(t) = re?’. Lemma 1 then gives
— o' (¢ 2 n—o! (¢ 2 i
VO (1,) = hc(t)z_%e_”(n dw? hc(t)z_%e_”(l #/()2 i (34)
0
From this, we immediately get that:
. ¢//(t)2
t)—¢'(t) = —¢'(t)).
So now, if |n — ¢/(t)| < &, we obtain:
1

(Gn. (1) — ' ()] < el — m’-

Here we see that the quality of the estimate @y (n,t) close to the curve
(t,¢'(t)) only depends on the magnitude of ¢”(¢): if the latter goes to zero,
the estimate tends to ¢'(¢). This justifies why, in Theorem 1, we assume the
modes satisfy ¢”(t) < e: what matters is how small the modulation is, ¢'(t)
playing no role.

13



4. New FSST based on second order approximation of the phase

The original FSST assumes ¢”(t) is negligible. When it is not the case,
Theorems 1 and 3 are no longer valid, because they apply to the wrong
type of modes. Recently, an extension of FSST based on a second order
approximation of the phase was proposed [13], but, to our knowledge, no
theoretical analysis of the proposed estimate is available. We propose to
bridge that gap in this section.

4.1. Computation of the new IF estimate

Remember @¢(n,t) = 26;:/79((2) and then introduce:
s 0, V7i(n,t
i, QL 3

- 2inVy(n,t)

Similarly to & (n,t) = R(@(n,t)), we define t(n,t) = R(ts(n,t)). First, we
recall an estimate of the frequency modulation introduced in [13].

Definition 5. Let f € L*(R) and consider when Vi (n,t) # 0 and 0, <8V‘; 7()7;)0) #

2im the quantity

a 8tv ( )
i Oy (n, 1) ' ( v )
Gr(n,t) = —= = (36)
Ot r(n,t (n)
itp(n,1) — 0, <v9(nt))
An estimate of the frequency modulation is then defined by
qr(n,t) = R (qr(n,1))- (37)

The estimate (37) was used in [13] where it was proved that §¢(n,t) =
¢"(t), when f is a Gaussian modulated linear chirp, i.e. a chirp where both
¢ and log(A) are quadratic. Further, a new estimate of ¢/(t) was also derived
there, namely:

¢'(t) = (0, t) + dr(n, ) (t = (0, 1)), (38)
which is exact for constant amplitude linear chirp. Here we propose a slightly

different IF estimate than the one introduced in [13], which allows for math-
ematical study.
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Definition 6. Let f € L*(R), we define the second order IF complex estimate
of f as:

Pl — ST U000

and then its real part @;2) (n,t) = R(@;Z)(n, t)).

Proposition 2. Let f € L*(R), then the IF estimate @}2)(7),15) can be ex-
pressed by means of five different STFTs, since we have:

3 1 V¥ (n,t)
t) = n——2 "2
wy(n,t) n= 5 Vim0
i ! Ve (i, )V, t) — (VE (n,1))?
qf (na t) - . t 7 ta' ;
2im (VP (n,1))2 + V2 (0, )V (n,t) — V7 (0, )V (0, t)
- Vi(n,t)
t—ii(nt) = —-L2,
d Vi (n,t)

Proof. The expressions for @s(n,t) and t — ;(n,t) are straightforward. In-
deed, since ¢ is in the Schwartz class, the STFT of f belongs to C*°(R), and
we have:

0,VF(n,t) = —2imV(n.)

| , (40)
8tqu(777 t) = 2Z7Tnvfg(n7 t) o qu (777 t)

As far as the expression for ¢s(n,t) is concerned, we remark that:

Vi (n, t)0RV (n,t) — (9,V{(n,1))*

~ 1) =
Qf(n7 ) 2,”.(.(Vf9)2 _ Vfgagtvfg(n, t) + 8,5Vfg(77, t)anqu(n7 t>7

from which we derive the desired expression by noticing that:
OpVi(n.t) = 20mVy? (n,t) +An*nV (1),
where Vfg” and V]fgl are the STFT of f computed with windows ¢” and
t — tg'(t) respectively. ]
(2)

In the following section, we use this new IF estimate @;”(n,?) to define a
new synchrosqueezing transform for which we prove approximation results.
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4.2. Definition of the new FSST and approximation results

In this section, we define another class of chirp-like functions larger than
Ba . and show that they can be sucessfully dealt with by means of second
order FSST, which is defined in this section. So first, we define the new set
of multicomponent signals we are studying:

Definition 7. Let e > 0 and A > 0. The set B(AQ?E of multicomponent signals

with second order modulation € and separation A corresponds to the signals
defined in (6) satisfying:

(a) function fy is such that Ay and ¢ satisfy the following conditions:

Ai(t) € L=(R) N C*(R), ¢x(t) € C3(R),
or(1), ox(t), ¢i'(t) € L=(R),
Ault) > 0, inf 6(t) > 0, supdh(t) < oc.
te teR

A <&, [AL({)] < e, and [g7/(1)] <,

(b) the functions fi’s satisfy the following separation condition
Geyr(t) —@(t) >2A VteR |, Vke{l,--- K —1}. (41)

Now, let us define the second order FSST as follows

Definition 8. Let h be a positive L' normalized window belonging to C°(R),
and consider v,0 > 0, the second order FSST of f with threshold v and
accuracy O is defined by:

~(2)
N 1 1L (w—0; (n1)
T (w,t) = 7/ Vi, )=h | ——L 222 an. 42
f (w7 ) g(O) ‘V;}(U,t)|>’y f(nv )5 ( 5 ) Ui ( )

In Section 3, we showed that for functions f € Ba. a good IF estimate
was given by &g(n,t) and the approximation theorem followed. Here, to
assess the approximation property of the second order FSST we have just
introduced, we consider a function f € B(AQ?E for which we are going to prove

that a good IF estimate is provided by @;2) (n,t). The approximation theorem
is as follows:

16



Theorem 4. Consider f € Bffg, set & = /5. Let g be a window satisfy-

ing, for all't and oll k = 1,--- | K, if |77| > A, |g(r)e™ O™ ()] < Kae,

o) ()] < Ko, and [13g(r)em O ()] < Ko, Ko, Ko and K

being some constants. Furthermore if, forallk =1,--- | K, / lg(T)e ™%k ®)
{Inl>A

Kgé, for some constant Kg, then, provided € is sufficiently small, the follow-
ing hold:

(a) |Vi(n,t)| > & only when there exist k € {1,...., K} such that (n,t) € Zj.

(b) For all k € {1,..., K} and all (n,t) € Z;. such that |V{(n,t)| > & and
10,t4(n,t)| > & we have

P (n,1) — ¢, (1) < & (43)

(c) Moreover, for each k € {1,..., K}, there exists a constant D such that

< Dg, (44)

T}s’g(w, t)dw) — fi(t)

lim ——
(i“ 9(0) I,

where Mgz = {w : |w — ¢,.(t)| < &}, provided the Lebesque measure
pw{n, st.(n,t) € Zy, |0its(n,t)| < &} < A€ for some constant 7.

Remark 5. The assumption || > A = |g(7)e™ O™ (n)| < K¢ is some-
what complex, so we try here to explain what it really means. Let us fix
the ridge number k and set ¢ = ¢J(t), the assumption ensures a sufficient
decrease of the Fourier transform of:

I(7) = glr)e
Indeed, remarking that for g(t) = e‘”Q, [ has the closed-form expression:
1
)| = (14) 7 eme

it is clear that, if we take A large enough, we achieve the assumption. When
g is not a Gaussian function, we cannot compute [ , but can still perform an
estimation of the decay of |[ | by means of the stationary phase approximation:
the phase within the integral

l(n) — / g(T)e’L'TI'CT2€72i7TT]T dr
R

17
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admits a stationary point at 7. = Z. The stationary phase theorem finally

(0

Again, by assuming A large enough, one can satisfy the assumption. Now, if
we consider all the ridges together, things are more complex, since choosing a
large A implies the ridges need to be farther apart. But this is something that
is expected: the frequency modulation makes the frequency support of the
TF response associated with one mode larger, thus it changes the separation
condition. In practice, the window’s choice is driven by this trade-off between
separation and localization.

1

[i(n)] ~

€]

The proof of Theorem 4 involves a number of estimates, which are shown
hereafter, assuming all the hypotheses of Theorem 4 are satisfied. The main
idea of the proof is to approximate the mode f; around time ¢ by the linear
chirp

Fra(r) = Ak(t)€2i7r[¢k(t)""d’;c(t)(T_t)‘f'%d’g(t)(T_t)%' (45)

Lemma 2. For any (n,t), there is at most one k € {1,--- K} for which
n— @B < A.

The proof is straightforward and is left to the reader. For our purpose,
we need to analyze the behavior of the STF'T on a linear chirp, for which we
have the following proposition.

Proposition 3. Let h(1) = Ae*™") be a linear chirp and consider V)
the STFT of h obtained with a window g as introduced in Theorem 4. If
In—¢'(t)] > A then

Vi(n,t)] < eK3A.

Proof. We know that V}?(n,t) = h(t)g(TW(t)TQ(n — ¢/(t)) so that, if |n —
@' (t)] > A, assumptions on g lead to |V)Y(n,t)| < AKje. O
Proposition 4. For any k € {1,--- , K} and for any (n,t) € R? we have:
Vi (n,t) = Vi, (n, )] < eEi(t), (46)
with Ey(t) = I + S13Ax(t). if (n,t) & Zi, we get
Vi (0, 0)] < e(Ex(t) + K3 Ak(t)), (47)

18



and also, for any (n,t) € Zy:
Vi, t) = Vi ()] < Qi) (48)
K
where Q(t) = > Ey(t) + > K3 Ai(t).
=1 Ik
Proof. First, we write

Je(r) = Ap()e ™) = (A (r) — Ay(t))e )
+ Ak<t>62i7r[¢k(t)+¢;€(t)(7—t)+%¢%(t)(T_t)2]

+ Ak<t>[€2i7r[¢k(t)'i‘d’;g(t)(T_t)+%¢g(t)(T_t)2+%j:— oy () (r—x)?dz] _ €2i77[¢k(t)+¢;€(t)(T*t)+%¢Z(t)(T*t)2]]
= fea(7) 4 fra(7T) + frs(T). (49)
Then, for any (n,1),
V0] < [ 14r) = A)llglr = t)lar,
< / el — t|lg(r — t)|dr < eI,
R
Now, we also have
Vi, 0l < 7o) [ ([Tl @l = af do ) g(r = 0] dr
SA) [ el = tPlg(r — )] dr
R

3
< gAk(t)glg,

IN

leading to equation (46).
From this proposition, if (n,t) ¢ Z;, we trivially get

Vi ()] < & (Ex(t) + K3Ak(t))

and also, for any (n,t) € Z:

Vi, t) =V, )] < ¢ (Z Ei(t) + ZKsAz(t)) = el (),

£k
K
where Qi (t) =Y Ei(t) + > K3 Ai(1). O
=1 I#k
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K
We now prove item (a) of Theorem 4. If (n,t) ¢ U Z;, we immediately
=1
get:

Vi, t)| <ed (Bi(t) + KsAl(t) <&
=1

When ¢ is sufficiently small, which corresponds to item (a) of Theorem 4.

Now, we introduce several propositions that are useful to prove item (b) of
Theorem 4.

Proposition 5. Let h(1) = Ae?™(7) be q linear chirp, g be a window as
defined in Theorem 4. When |n— ¢'(t)| > A, we have

Vi9(n, 1) < AK,e.

Proof. The proof is analogous to that with window g. O

Proposition 6. Let f, be a mode defined as in Definition 7, and consider
the STFT of fi computed using window tg, where g is a window of the type
introduced in Theorem 4. Then, for any (n,t), we have

ViZ(n,t) = Vi2 (0, 1)] < eFy(t),
with Fy(t) = I + 51, Ax(t). Now, if (n,t) ¢ Zx, we get:
ViZ(n, )] < & (Fr(t) + K4Ax(t)
€ Ly:
V2 ()l < (), (50)

and, we also have, when (n,t

)
VE(n,t) —

k

where Ay (t) Z )+ Ky Z A(t)
=1 I£k

Proof. The proof is the same as that of Proposition 4 replacing g by tg. [

Proposition 7. For any (n,t), assuming g satisfies the hypotheses of Theo-
rem 4, we have:

K
Vi (n.t) = 2im Y (@t 1)+ GV

k=

where G(t) = Kfo+z7r§(uz4knoo + OO B + 01D Fu(1))

k=1

<:G(t), (51

—_
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Proof. Differentiating the STF'T of f with respect to t, we get:
Vi) / Al (T)e2m M) g (7 — t)e B g7

+ Z/ Ag(7)2im . (T)e 2w (n) g (7 — t)e " HmT qr

= Z/ Al (T)e¥m oM g (7 — t)e 2=t g7

+ Z/ Ag(7)2im [gb;(t) (1 =)oy (t) + / T —u)dy ( u} 2ok g (7 — t)e 2T g7

- Z / A7) g7 — (e TN 43 2im (VI (.1

k=1
+ Z 2im gy (H)V? (n, t)
k;i ]

+ kZl/RAk(T)%W (/t (1 —u)e" (u )du) 2T =2 o (- )7

We may then write:

< Z /R 44(Dllg(r = Oldr + 2 i [ 4o ([ 1 = ullo” (wldu) lo(r — v)ar
£ ((KIO + i \|Ak||oo7r]2> :

k=1

Finally, from Propositions 4 and 6 we have:

oI n.t) - 2mz (V2 0n.0) + ¢Z(t)Vt§2(n,t))'

<lavimy 2mz (VL (0, + ¢z<t>vfs<n,t>)]

+27rsz (0% () Ex(t) + |9k (1) Fi(1))
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hence (51). O
From this proposition, we get that, if (n,t) € Z:
0,V7 (n.1) — 2im (¢z<t>vfi2<n, 0+ SOV, (0.1)

< g0 - 20m 3 (AH0VE, 000+ OV 0.0)

14k

o X (AHOVE 00 + OV t>>\

<lavim.e —2mz(¢l W (n.0) + SOV (o t>)|

—|—27T€ZAZ (K3y(t) + Kalo] ()])
1#k

S 8Gk(t),

with Gi(t) = G(t) + 21 X Ai(t) (K30(t) + K4|¢](t)]) . From this, we finally
I#k
deduce:

\@Vﬁ( > 20 (@,()VE (1.1) + SRV (1.1)) |
£ (Gi(t) + 2m (S ()% (D) + |61 (1)|Ax(1)) = eBia(t).  (52)

Proposition 8. Let h(t) = Ae*™*® be a linear chirp, and assume g is a
window defined as in Theorem 4. When |n — ¢'(t)| > A, one has

V9, 1)) < AKe. (53)

Proof. The proof is identical to that with window g¢. O

Proposition 9. Let f;. be a mode defined as in Definition 7 and consider the
STFT of fi computed using window t2g, where g is defined as in Theorem 4.
In such a case, one has:

2 t2
‘ng(nvt) - sz<77>t)| < ng<t)7
with Hy(t) = I3 + 315 Ax(t). Now, if (n,t) & Zy, we get:
Vi (. 1)] < & (Hi(t) + K5A4(1)).
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From this, we immediately deduce that, for (n,t) € Zy, we have:

2 2
’Vft 9(77775) - V};Z(nat)l < 5\Ijk(t)a

HMN

)+ Ks ZAZ
1£k

where Wy (t

Proof. The proof is similar to that of Proposition 4, replacing g by t2¢g. [

Proposition 10. For any (n,t) one has:

OEVE(n,t —zmz( t) + 2img)(H)*)VE(n, 1)

+ dimgi ()0 (VS (0, £) + 2ime] (1) V(0 1)) | < e (1),
(54)

where

J(t) = K[0+277112HAlHOO+47r2122¢l ) Al
=1 =1
K
+2m > 61 (1)(To + 27| Arlloo 2) + [ (O)|(11 + 27 [| At oo T3)-
=1

Proof. Since

OV} (n.) z [, (A1) 2w (7) Al )+ 20 (7) A )

—477'2¢l<7—) l(T)> e?wrd)l( )g(T _ t>672i7r777—td7_
K
— Z/ A;/(T>e2i7r¢l(7)g(7_ _ t)6—2i7r77(7—_t)d7_
1=1’R

K
F2ir Y [ G A)EH O (r — ey
=1 /R

K .
+2i Y- [ G fl(P)glr — e dr,
=1 /R
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we have, for the first part of 07,V (n, 1),

7_)€2i7r¢l(7')g(7_ B t)e—2i7l'7](’r—t)d7— < Kel,. (55)

Then, for the second part of a;v; (n,t), we may write

K . K
20 Z/ (AT g(T — t)e” ETDdr — 2in Z o/ (Vi (n, t)‘

=1

<27rz / ([ 16" @lda) A)lg(r — 1)ldr]

< mz | Al

=1

Finally, we write for the third part of 0;V/(,):

K
zmz / O(T) f{(T)g( — t)e 2™T=Dq 2mz &1 (H)VE(n,t) + ¢;/<t>atv;g(n,t)’

217?2 / (=) w)du (A7) + 2imi(r) Au(r)) 274 Og 7 — pye Iy

< dn 52 1A () |1 (2) 12

=1

if € is sufficiently small. From this, we get:

<)o),

SRV (n,t —mz( OVE(n.1) + (HAVE. ) + & (A (n.1))

(56)
where JO(t) = K +27TZ | A ()] o011 —{—47r22 | A1 (t) |0 () I

=1 =1
Now, recalling that:

0:VE(n, 1) = 2im (S(OVE(m, 1) + S V(1)) | < e (lo + 27| All|o2)
0V (0, 1) = 2im (S(OVE (1) + 6 (OVE (0, 0) | < Ty + 27| Al o),
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we get,

OEVE(n,t) 2mz( ) + 2in g (t)2)VE (n, 1)

o+ iy (6] (V! (n.1) + 20 (°VE*(0.))| < 27 (0),

K
where J(t) = JO(t) + 2 l; O (1) Iy + 2 || Ay | oo I2) + |0} ()| (I1 + 270 || Ay oo I5).
- O

Now, since we have for any [:

Vi(nt) = Vi, (n,t)] < cEit),
|V]flg(777 ) Vle(nv >| S 5E(t)v
2 2

Vi 2, t) = Vi Jn, 1)) < eH(t),

we obtain:

Vi (n,t) 227?2( )+ 2im gy (t)*)VE, (0, 1)

+ dimg)(t)e; (1)V/, (0, 1) + 2img] (1)2V] L (n,1) )| < eJ'(8),

with

JH(t) = —|—27TZ |0 (8)|+2m (1)) En(t)+4m i (1)) ()| Fo () +2m) () Hy(2).

Now, if (n,t) € Zy, we may write, using Propositions 3, 6, 9:

ORVE (n,t) — 2im (($5(t) + 20wy, ()VE, (1,1)

+ i (DFOV]?, (0, ) + 2im (£ Vi(0,0))| < (o),

where

Ji(t) = JHt) + 7Y Au(t) (2Ksl¢] (8)] + 4 Ky () + Amy (8)] 6] (1) K + 6] (1)
I£k

25

2K5) .



Finally, we may write:
02V (n, ) — 2im ((64(1) + 20w (1)))VF (n, 1) + 4imf (DOK )V (0, 1) + 2imef (H)2V] *(n, 1)) |

< & (Jult) + (1) + 2w (6))(t) + 475 (0)| (DI AR(E) + 27 (1)*Tp(1)) = £ B (1),(57)
the last inequality being obtained using Proposition 4, 6 and 9.

Proposition 11. For any (n,t) € Zy, such that |[V{ (n,t)| > & and |0ty (n, t)| >
€ one has:
|3r(n, 1) — G ()] <& (58)
Proof. Before we start, we need to remark that if (n,t) € Z:
0.VF (0, 1) = 2im(&()VF (n,) + &1 (6)V/ (0, 1))

K
< (SO0, = 2k (V7o) + o V2 01.)|
=1

+

>0k (1) = GOVE (1. ) + (65(8) — & () V' (0, 1)

14k

K
S £ (KIO + Z ||Al||OO7TIQ + 2111?}{ Hgb;”oo ZEl(t) + K3Al(t)

=1 I£k

+2max 6] o Fi(t) + K4Al(t)> — eBy (1) (59)
Similarly we have:
V7 (,1) = 2im (@ (OVF (0,1) + SOV (n.1))]

K
<e (Kh 3 Aol + 2ma 60 3 Filt) + Kady(1)
=1 £k

#2max |of o i) + Ks Au(t)) 1= eBu(t) (60)

With these two inequalities we can prove the proposition. For the sake of
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clarity, we omit to write (n,t) in the proof that follows.

|05 (8) — qr(n, )| =

H(t) _ VfgatQtVfg - (atqu)Q
2in(VE)2 — VIOV + 0,Vio, V]
OVE [0V + ()0, V]| Vi [03VE + ¢l(t)02VE — 2im i (t)V]
2ir (V)2 = VIRVY +0,Vio,Vi  2ir(V)2 - ViOLVi +0,Vio,V}
O VLB VE — 2imef )V — 2img) (1) V]
2im (V)2 + 2ix VIOV — 2imd, ViV
VIOV = 2ima) ()0, V[ — 2imp(t) V] — 2ime),(t)0, V]
2in (V)2 + 2in VIOV — 2imd,ViV?

< B (b) Al
9
= T i (VI + VIOV — VIV
Vg
+eBy(t) L .
P 2im((V2 + VIOV — o ViV

VAR @O Ba(t) + 64,(8) By (1)
(VP2 + Viav) — o vivy

< & (Bue@®)0VE| + [VE(Ba(t) + |64() | Bur(t) + 64(t) Bs (1)) <

_|_

Rl

if € is sufficiently small. Note that the above result was proved using (52),
(57), (59) and (60). O

Lemma 3. Forallk € {1,..., K} and any (n,t) € Z, such that |V{(n,t)| > &
and |0,t;(n,t)| > € , we have

@ (n,t) = (D) <& (61)
Proof. According to definition of @&2)(77, t) in (39), we have

P (0, 6) = @p(n,t) + G (n, O — Tp(n, 1))
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It follows that
@ (n,1) — @l(2)

OV (n,t)+y (n,t)0n V7 (nt)
- 217rVJ (n,t) o Qb/ ( )’

BV (n,t)—2im Gy (n,t) V19 (n,t)
= | QiﬂVf‘g(n,t) ! B (;5/ <t)’

|ar ()= O] |[V; ()]

|2mv9 ) Vi)
B,k (t)
|27rv;(n,t)\
g3 [Bl,k<t>|atv;'|+|v;\(Ba,k(t)+|¢;;(t>\B4,k<t)+¢;(t>33,k<t>)]\v;9<n,t)\ <z
V7 (n.t)] =
when ¢ is sufficiently small. ]

To prove (c) of Theorem 4, is exactly the same as the proof in the weak
modulation case, except that we use at the very end of the proof the hypoth-
esis:

1 / — Kgé
= ine) (t)72 d | < 6 f l
g T)€e l 7’] 77 ~ or any s

|g(0) nl>A ™ () 19(0)]

and

vf%n,t)dn' < (22 am)e

ol
19(0)] ‘ {In—¢;,(O1<AY NHIVE ()|<e Ulaik s (m0)| <e}) 19(0)]

to conclude.

5. Numerical Results

In order to illustrate the behaviour of our new second order synchrosqueez-
ing transform, we apply it two synthetic test signals. One (signal 1) is made
of low-order polynomial chirps, that behave locally as linear chirps, and the
other one (signal 2) contains strongly nonlinear sinusoidal frequency modula-
tions. On Fig. 1, STFT, FSST, corresponding to the original synchrosqueez-
ing transform and, our new technique called new VSST for both signals 1
and 2 are depicted. We choose this denomination after the so-called VSST
technique which is the other transform based on the second order approxima-
tion of the phase, which was introduced in [13]. Note that in our simulations,

we use 1024 time samples over [0, 1] and a Gaussian window with parameter
Tt

o = 0.005, defined by g(t) = ore o7,
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Figure 1: first row: magnitude of STFT, FSST and new VSST for test-signal 1; second
row: same computation but for test-signal 2

5.1. Quality of representation

In order to quantify the quality of the representation given by the new
VSST, we propose to measure the amount of information contained in the
coefficients with the largest amplitude. In this regard, one way to compare
the different transformations is to compute the normalized energy associated
with the first coefficients with the largest amplitude: the faster the growth
of this energy towards 1, the sharper the representation. On Fig. 2 A and
B, these normalized energies are displayed with respect to the number of co-
efficients kept divided by the length of the signal, for both test-signals, and
for the three representations, namely VSST proposed in [13], new VSST and
FSST. In our context, the normalized energy is computed as the cumulative
sum of the squared sorted coefficients over the sum of all the squared coeffi-
cients. The first remark is that both VSST and new VSST behave similarly
for test-signal 1 while slightly better results are obtained when the latter is
used on test-signal 2, which contains stronger frequency modulations. The
second remark is that one needs only 3 coefficients per time instant to recover
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Figure 2: Normalized energy as a function of the number of sorted coeflicients for test-
signals 1 (A) and 2 (B). Abscissa gives the number of coefficients kept over the length N
of the signal, i.e., the mean number of coefficients kept in each column of the TF plane.
C and D: idem as A and B but for noisy signals (0 dB).

the signal energy, which is consistent with the three modes making up the
test-signal. In order to investigate the influence of noise on the sparsity of
the representation, we carry out the same experiments when the test-signals
are contaminated by white Gaussian noise (noise level 0 dB). The results
displayed on Fig. 2 C and D exhibit a slower increase of the normalized en-
ergy, since the coefficients corresponding to noise are spread over the whole
TF plane. However, our proposed new VSST still behaves better than both
VSST and FSST in this noisy situation.

5.2. Reconstruction of the modes

The main advantage of synchrosqueezing techniques over traditional re-
assignment techniques lies in its invertibility. To improve the accuracy of

30



L ——
I

‘Hw}‘\‘;‘\‘w ) 200 \/\/

.
o 100
So
[}
= ‘ ‘ : : 0 - - - -
0.2 0.4 0.6 08 0 02 04 06 08
t t
A B

0.1 0.2
5 0.05 | “ M ] §0.1‘I~ ﬁ \ 'm
L0 i

0 0

0.1 0.1
N [aV)
5005 1 goos ]
0 oL, M e, M D W\flwiwﬂl»hl‘wh N me il

0.1 T T T T 0.1
[ep) [ep]
5 0.05 5 0.05
] 0 i 0

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8
t t
C D

Figure 3: A:mode retrieval based on new VSST for test-signal 2; B: Estimated ridges
superimposed on the new VSST of test-signal 2. We use d = 5 in the reconstruction, and
B = 0, = 0.02 for the ridge extraction; C:Reconstruction errors associated with each
mode of test-signal 2 using new VSST; D: same as C but using VSST technique

the reassignment step in synchrosqueezing techniques by using new VSST
naturally leads to better reconstruction results. The reconstruction formula
used to retrieve the kth mode, assuming ¢}.(¢) is an estimate of ¢}(t), is as
follows:

filt) ~ /M%Wd Ty(w, t)dw, (62)

as explained in more details in [13]. The parameter d is here to compensate
for the fact that ¢/ (¢) is an estimate of ¢/, (¢) and not the true value. Provided
d is of the same order of magnitude as the estimation error, this reconstruc-
tion formula ensures an asymptotically perfect reconstruction. To compute
an estimation of the ridges (¢, ¢}(t)), knowing the number K of modes, we
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use the algorithm introduced in [3], which computes a local minimum of the

functional:

Er((or)k=1, k) = Z_j —/R|Tf(t, ¢k(t))|2dt+/R()‘90;g(t)2+690/lq/(t)2)dta (63)

A and [ being two positive tuning parameters. Then (g%(t))kle

argmin F¢((¢r) k=1, K )-
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Figure 4: A: Mode retrieval is expressed in SNR for d = 0. The best results are displayed
using a bold font, B: SNR associated with the reconstruction of test-signal 2 as a function
of d

To illustrate the behaviour of our new VSST technique, we first display
the reconstruction process associated with test-signal 2 on Fig. 3 A, the
ridges used for reconstruction being depicted on Fig. 3 B. Then, to compare
the proposed new VSST with the alternative technique proposed in [13], we
display, on Fig. 3 C and D, the reconstruction error at each time instant
for the three modes and for both VSST and new VSST. The improvement
brought by using new VSST instead of VSST appears to be the most sig-
nificant when the modulation is strong (i.e., in the mode associated with
the highest frequency in the studied case). To further quantify the accuracy
of mode reconstruction in terms of ouput SNR for test-signal 2, we display
on Figure 4 A and for d = 0, the ouput SNR computed by using formula
IIF112/11f = |2, where ||f|| is the reconstructed signal. As expected, new
VSST behaves better than other synchrosqueezing techniques on that kind
of signals. Finally, we study the quality of the reconstruction with respect to
the parameter d used in the integration formula (62) and still for test-signal
2. The results depicted on Figure 4 B confirm that the sparser representation
provided by new VSST naturally leads to a reconstruction procedure that
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requires fewer coefficients than other synchrosqueezing techniques to reach
the same quality of reconstruction.

6. Conclusion

In this paper, we developed a novel synchrosqueezing transform for ana-
lyzing multicomponent signals made of strongly frequency modulated modes,
which appeared to be particularly efficient to denoise multicomponent sig-
nals. We slightly modified the IF estimate proposed in [13] so as to make
the mathematical analysis of the corresponding synchrosqueezing transform
possible. In this regard, we proved a novel approximation theorem involv-
ing the proposed new synchrosqueezing transform. Numerical experiments
showed the benefits of taking into account phase modulation for better mode
reconstruction. However, a limitation of our new synchrosqueezing transform
is that its applicability is restricted to modes with almost constant ampli-
tude. To improve this aspect is a work currently underway. Nevertheless,
this novel transform can already be used without any restriction to denoise
monocomponent signals as demonstrated by numerical experiments.
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